// SPDX-License-Identifier: GPL-2.0 /* * Support for Medifield PNW Camera Imaging ISP subsystem. * * Copyright (c) 2010 Intel Corporation. All Rights Reserved. * * Copyright (c) 2010 Silicon Hive www.siliconhive.com. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License version * 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * */ /* * This file contains functions for buffer object structure management */ #include #include #include /* for GFP_ATOMIC */ #include #include #include #include #include /* for kmalloc */ #include #include #include #include #include #include #include #include #include #include #include "atomisp_internal.h" #include "hmm/hmm_common.h" #include "hmm/hmm_bo.h" static int __bo_init(struct hmm_bo_device *bdev, struct hmm_buffer_object *bo, unsigned int pgnr) { check_bodev_null_return(bdev, -EINVAL); var_equal_return(hmm_bo_device_inited(bdev), 0, -EINVAL, "hmm_bo_device not inited yet.\n"); /* prevent zero size buffer object */ if (pgnr == 0) { dev_err(atomisp_dev, "0 size buffer is not allowed.\n"); return -EINVAL; } memset(bo, 0, sizeof(*bo)); mutex_init(&bo->mutex); /* init the bo->list HEAD as an element of entire_bo_list */ INIT_LIST_HEAD(&bo->list); bo->bdev = bdev; bo->vmap_addr = NULL; bo->status = HMM_BO_FREE; bo->start = bdev->start; bo->pgnr = pgnr; bo->end = bo->start + pgnr_to_size(pgnr); bo->prev = NULL; bo->next = NULL; return 0; } static struct hmm_buffer_object *__bo_search_and_remove_from_free_rbtree( struct rb_node *node, unsigned int pgnr) { struct hmm_buffer_object *this, *ret_bo, *temp_bo; this = rb_entry(node, struct hmm_buffer_object, node); if (this->pgnr == pgnr || (this->pgnr > pgnr && !this->node.rb_left)) { goto remove_bo_and_return; } else { if (this->pgnr < pgnr) { if (!this->node.rb_right) return NULL; ret_bo = __bo_search_and_remove_from_free_rbtree( this->node.rb_right, pgnr); } else { ret_bo = __bo_search_and_remove_from_free_rbtree( this->node.rb_left, pgnr); } if (!ret_bo) { if (this->pgnr > pgnr) goto remove_bo_and_return; else return NULL; } return ret_bo; } remove_bo_and_return: /* NOTE: All nodes on free rbtree have a 'prev' that points to NULL. * 1. check if 'this->next' is NULL: * yes: erase 'this' node and rebalance rbtree, return 'this'. */ if (!this->next) { rb_erase(&this->node, &this->bdev->free_rbtree); return this; } /* NOTE: if 'this->next' is not NULL, always return 'this->next' bo. * 2. check if 'this->next->next' is NULL: * yes: change the related 'next/prev' pointer, * return 'this->next' but the rbtree stays unchanged. */ temp_bo = this->next; this->next = temp_bo->next; if (temp_bo->next) temp_bo->next->prev = this; temp_bo->next = NULL; temp_bo->prev = NULL; return temp_bo; } static struct hmm_buffer_object *__bo_search_by_addr(struct rb_root *root, ia_css_ptr start) { struct rb_node *n = root->rb_node; struct hmm_buffer_object *bo; do { bo = rb_entry(n, struct hmm_buffer_object, node); if (bo->start > start) { if (!n->rb_left) return NULL; n = n->rb_left; } else if (bo->start < start) { if (!n->rb_right) return NULL; n = n->rb_right; } else { return bo; } } while (n); return NULL; } static struct hmm_buffer_object *__bo_search_by_addr_in_range( struct rb_root *root, unsigned int start) { struct rb_node *n = root->rb_node; struct hmm_buffer_object *bo; do { bo = rb_entry(n, struct hmm_buffer_object, node); if (bo->start > start) { if (!n->rb_left) return NULL; n = n->rb_left; } else { if (bo->end > start) return bo; if (!n->rb_right) return NULL; n = n->rb_right; } } while (n); return NULL; } static void __bo_insert_to_free_rbtree(struct rb_root *root, struct hmm_buffer_object *bo) { struct rb_node **new = &root->rb_node; struct rb_node *parent = NULL; struct hmm_buffer_object *this; unsigned int pgnr = bo->pgnr; while (*new) { parent = *new; this = container_of(*new, struct hmm_buffer_object, node); if (pgnr < this->pgnr) { new = &((*new)->rb_left); } else if (pgnr > this->pgnr) { new = &((*new)->rb_right); } else { bo->prev = this; bo->next = this->next; if (this->next) this->next->prev = bo; this->next = bo; bo->status = (bo->status & ~HMM_BO_MASK) | HMM_BO_FREE; return; } } bo->status = (bo->status & ~HMM_BO_MASK) | HMM_BO_FREE; rb_link_node(&bo->node, parent, new); rb_insert_color(&bo->node, root); } static void __bo_insert_to_alloc_rbtree(struct rb_root *root, struct hmm_buffer_object *bo) { struct rb_node **new = &root->rb_node; struct rb_node *parent = NULL; struct hmm_buffer_object *this; unsigned int start = bo->start; while (*new) { parent = *new; this = container_of(*new, struct hmm_buffer_object, node); if (start < this->start) new = &((*new)->rb_left); else new = &((*new)->rb_right); } kref_init(&bo->kref); bo->status = (bo->status & ~HMM_BO_MASK) | HMM_BO_ALLOCED; rb_link_node(&bo->node, parent, new); rb_insert_color(&bo->node, root); } static struct hmm_buffer_object *__bo_break_up(struct hmm_bo_device *bdev, struct hmm_buffer_object *bo, unsigned int pgnr) { struct hmm_buffer_object *new_bo; unsigned long flags; int ret; new_bo = kmem_cache_alloc(bdev->bo_cache, GFP_KERNEL); if (!new_bo) { dev_err(atomisp_dev, "%s: __bo_alloc failed!\n", __func__); return NULL; } ret = __bo_init(bdev, new_bo, pgnr); if (ret) { dev_err(atomisp_dev, "%s: __bo_init failed!\n", __func__); kmem_cache_free(bdev->bo_cache, new_bo); return NULL; } new_bo->start = bo->start; new_bo->end = new_bo->start + pgnr_to_size(pgnr); bo->start = new_bo->end; bo->pgnr = bo->pgnr - pgnr; spin_lock_irqsave(&bdev->list_lock, flags); list_add_tail(&new_bo->list, &bo->list); spin_unlock_irqrestore(&bdev->list_lock, flags); return new_bo; } static void __bo_take_off_handling(struct hmm_buffer_object *bo) { struct hmm_bo_device *bdev = bo->bdev; /* There are 4 situations when we take off a known bo from free rbtree: * 1. if bo->next && bo->prev == NULL, bo is a rbtree node * and does not have a linked list after bo, to take off this bo, * we just need erase bo directly and rebalance the free rbtree */ if (!bo->prev && !bo->next) { rb_erase(&bo->node, &bdev->free_rbtree); /* 2. when bo->next != NULL && bo->prev == NULL, bo is a rbtree node, * and has a linked list,to take off this bo we need erase bo * first, then, insert bo->next into free rbtree and rebalance * the free rbtree */ } else if (!bo->prev && bo->next) { bo->next->prev = NULL; rb_erase(&bo->node, &bdev->free_rbtree); __bo_insert_to_free_rbtree(&bdev->free_rbtree, bo->next); bo->next = NULL; /* 3. when bo->prev != NULL && bo->next == NULL, bo is not a rbtree * node, bo is the last element of the linked list after rbtree * node, to take off this bo, we just need set the "prev/next" * pointers to NULL, the free rbtree stays unchaged */ } else if (bo->prev && !bo->next) { bo->prev->next = NULL; bo->prev = NULL; /* 4. when bo->prev != NULL && bo->next != NULL ,bo is not a rbtree * node, bo is in the middle of the linked list after rbtree node, * to take off this bo, we just set take the "prev/next" pointers * to NULL, the free rbtree stays unchaged */ } else if (bo->prev && bo->next) { bo->next->prev = bo->prev; bo->prev->next = bo->next; bo->next = NULL; bo->prev = NULL; } } static struct hmm_buffer_object *__bo_merge(struct hmm_buffer_object *bo, struct hmm_buffer_object *next_bo) { struct hmm_bo_device *bdev; unsigned long flags; bdev = bo->bdev; next_bo->start = bo->start; next_bo->pgnr = next_bo->pgnr + bo->pgnr; spin_lock_irqsave(&bdev->list_lock, flags); list_del(&bo->list); spin_unlock_irqrestore(&bdev->list_lock, flags); kmem_cache_free(bo->bdev->bo_cache, bo); return next_bo; } /* * hmm_bo_device functions. */ int hmm_bo_device_init(struct hmm_bo_device *bdev, struct isp_mmu_client *mmu_driver, unsigned int vaddr_start, unsigned int size) { struct hmm_buffer_object *bo; unsigned long flags; int ret; check_bodev_null_return(bdev, -EINVAL); ret = isp_mmu_init(&bdev->mmu, mmu_driver); if (ret) { dev_err(atomisp_dev, "isp_mmu_init failed.\n"); return ret; } bdev->start = vaddr_start; bdev->pgnr = size_to_pgnr_ceil(size); bdev->size = pgnr_to_size(bdev->pgnr); spin_lock_init(&bdev->list_lock); mutex_init(&bdev->rbtree_mutex); bdev->flag = HMM_BO_DEVICE_INITED; INIT_LIST_HEAD(&bdev->entire_bo_list); bdev->allocated_rbtree = RB_ROOT; bdev->free_rbtree = RB_ROOT; bdev->bo_cache = kmem_cache_create("bo_cache", sizeof(struct hmm_buffer_object), 0, 0, NULL); if (!bdev->bo_cache) { dev_err(atomisp_dev, "%s: create cache failed!\n", __func__); isp_mmu_exit(&bdev->mmu); return -ENOMEM; } bo = kmem_cache_alloc(bdev->bo_cache, GFP_KERNEL); if (!bo) { dev_err(atomisp_dev, "%s: __bo_alloc failed!\n", __func__); isp_mmu_exit(&bdev->mmu); return -ENOMEM; } ret = __bo_init(bdev, bo, bdev->pgnr); if (ret) { dev_err(atomisp_dev, "%s: __bo_init failed!\n", __func__); kmem_cache_free(bdev->bo_cache, bo); isp_mmu_exit(&bdev->mmu); return -EINVAL; } spin_lock_irqsave(&bdev->list_lock, flags); list_add_tail(&bo->list, &bdev->entire_bo_list); spin_unlock_irqrestore(&bdev->list_lock, flags); __bo_insert_to_free_rbtree(&bdev->free_rbtree, bo); return 0; } struct hmm_buffer_object *hmm_bo_alloc(struct hmm_bo_device *bdev, unsigned int pgnr) { struct hmm_buffer_object *bo, *new_bo; struct rb_root *root = &bdev->free_rbtree; check_bodev_null_return(bdev, NULL); var_equal_return(hmm_bo_device_inited(bdev), 0, NULL, "hmm_bo_device not inited yet.\n"); if (pgnr == 0) { dev_err(atomisp_dev, "0 size buffer is not allowed.\n"); return NULL; } mutex_lock(&bdev->rbtree_mutex); bo = __bo_search_and_remove_from_free_rbtree(root->rb_node, pgnr); if (!bo) { mutex_unlock(&bdev->rbtree_mutex); dev_err(atomisp_dev, "%s: Out of Memory! hmm_bo_alloc failed", __func__); return NULL; } if (bo->pgnr > pgnr) { new_bo = __bo_break_up(bdev, bo, pgnr); if (!new_bo) { mutex_unlock(&bdev->rbtree_mutex); dev_err(atomisp_dev, "%s: __bo_break_up failed!\n", __func__); return NULL; } __bo_insert_to_alloc_rbtree(&bdev->allocated_rbtree, new_bo); __bo_insert_to_free_rbtree(&bdev->free_rbtree, bo); mutex_unlock(&bdev->rbtree_mutex); return new_bo; } __bo_insert_to_alloc_rbtree(&bdev->allocated_rbtree, bo); mutex_unlock(&bdev->rbtree_mutex); return bo; } void hmm_bo_release(struct hmm_buffer_object *bo) { struct hmm_bo_device *bdev = bo->bdev; struct hmm_buffer_object *next_bo, *prev_bo; mutex_lock(&bdev->rbtree_mutex); /* * FIX ME: * * how to destroy the bo when it is stilled MMAPED? * * ideally, this will not happened as hmm_bo_release * will only be called when kref reaches 0, and in mmap * operation the hmm_bo_ref will eventually be called. * so, if this happened, something goes wrong. */ if (bo->status & HMM_BO_MMAPED) { mutex_unlock(&bdev->rbtree_mutex); dev_dbg(atomisp_dev, "destroy bo which is MMAPED, do nothing\n"); return; } if (bo->status & HMM_BO_BINDED) { dev_warn(atomisp_dev, "the bo is still binded, unbind it first...\n"); hmm_bo_unbind(bo); } if (bo->status & HMM_BO_PAGE_ALLOCED) { dev_warn(atomisp_dev, "the pages is not freed, free pages first\n"); hmm_bo_free_pages(bo); } if (bo->status & HMM_BO_VMAPED || bo->status & HMM_BO_VMAPED_CACHED) { dev_warn(atomisp_dev, "the vunmap is not done, do it...\n"); hmm_bo_vunmap(bo); } rb_erase(&bo->node, &bdev->allocated_rbtree); prev_bo = list_entry(bo->list.prev, struct hmm_buffer_object, list); next_bo = list_entry(bo->list.next, struct hmm_buffer_object, list); if (bo->list.prev != &bdev->entire_bo_list && prev_bo->end == bo->start && (prev_bo->status & HMM_BO_MASK) == HMM_BO_FREE) { __bo_take_off_handling(prev_bo); bo = __bo_merge(prev_bo, bo); } if (bo->list.next != &bdev->entire_bo_list && next_bo->start == bo->end && (next_bo->status & HMM_BO_MASK) == HMM_BO_FREE) { __bo_take_off_handling(next_bo); bo = __bo_merge(bo, next_bo); } __bo_insert_to_free_rbtree(&bdev->free_rbtree, bo); mutex_unlock(&bdev->rbtree_mutex); return; } void hmm_bo_device_exit(struct hmm_bo_device *bdev) { struct hmm_buffer_object *bo; unsigned long flags; dev_dbg(atomisp_dev, "%s: entering!\n", __func__); check_bodev_null_return_void(bdev); /* * release all allocated bos even they a in use * and all bos will be merged into a big bo */ while (!RB_EMPTY_ROOT(&bdev->allocated_rbtree)) hmm_bo_release( rbtree_node_to_hmm_bo(bdev->allocated_rbtree.rb_node)); dev_dbg(atomisp_dev, "%s: finished releasing all allocated bos!\n", __func__); /* free all bos to release all ISP virtual memory */ while (!list_empty(&bdev->entire_bo_list)) { bo = list_to_hmm_bo(bdev->entire_bo_list.next); spin_lock_irqsave(&bdev->list_lock, flags); list_del(&bo->list); spin_unlock_irqrestore(&bdev->list_lock, flags); kmem_cache_free(bdev->bo_cache, bo); } dev_dbg(atomisp_dev, "%s: finished to free all bos!\n", __func__); kmem_cache_destroy(bdev->bo_cache); isp_mmu_exit(&bdev->mmu); } int hmm_bo_device_inited(struct hmm_bo_device *bdev) { check_bodev_null_return(bdev, -EINVAL); return bdev->flag == HMM_BO_DEVICE_INITED; } int hmm_bo_allocated(struct hmm_buffer_object *bo) { check_bo_null_return(bo, 0); return bo->status & HMM_BO_ALLOCED; } struct hmm_buffer_object *hmm_bo_device_search_start( struct hmm_bo_device *bdev, ia_css_ptr vaddr) { struct hmm_buffer_object *bo; check_bodev_null_return(bdev, NULL); mutex_lock(&bdev->rbtree_mutex); bo = __bo_search_by_addr(&bdev->allocated_rbtree, vaddr); if (!bo) { mutex_unlock(&bdev->rbtree_mutex); dev_err(atomisp_dev, "%s can not find bo with addr: 0x%x\n", __func__, vaddr); return NULL; } mutex_unlock(&bdev->rbtree_mutex); return bo; } struct hmm_buffer_object *hmm_bo_device_search_in_range( struct hmm_bo_device *bdev, unsigned int vaddr) { struct hmm_buffer_object *bo; check_bodev_null_return(bdev, NULL); mutex_lock(&bdev->rbtree_mutex); bo = __bo_search_by_addr_in_range(&bdev->allocated_rbtree, vaddr); if (!bo) { mutex_unlock(&bdev->rbtree_mutex); dev_err(atomisp_dev, "%s can not find bo contain addr: 0x%x\n", __func__, vaddr); return NULL; } mutex_unlock(&bdev->rbtree_mutex); return bo; } struct hmm_buffer_object *hmm_bo_device_search_vmap_start( struct hmm_bo_device *bdev, const void *vaddr) { struct list_head *pos; struct hmm_buffer_object *bo; unsigned long flags; check_bodev_null_return(bdev, NULL); spin_lock_irqsave(&bdev->list_lock, flags); list_for_each(pos, &bdev->entire_bo_list) { bo = list_to_hmm_bo(pos); /* pass bo which has no vm_node allocated */ if ((bo->status & HMM_BO_MASK) == HMM_BO_FREE) continue; if (bo->vmap_addr == vaddr) goto found; } spin_unlock_irqrestore(&bdev->list_lock, flags); return NULL; found: spin_unlock_irqrestore(&bdev->list_lock, flags); return bo; } static void free_pages_bulk_array(unsigned long nr_pages, struct page **page_array) { unsigned long i; for (i = 0; i < nr_pages; i++) __free_pages(page_array[i], 0); } static void free_private_bo_pages(struct hmm_buffer_object *bo) { set_pages_array_wb(bo->pages, bo->pgnr); free_pages_bulk_array(bo->pgnr, bo->pages); } /*Allocate pages which will be used only by ISP*/ static int alloc_private_pages(struct hmm_buffer_object *bo) { const gfp_t gfp = __GFP_NOWARN | __GFP_RECLAIM | __GFP_FS; int ret; ret = alloc_pages_bulk_array(gfp, bo->pgnr, bo->pages); if (ret != bo->pgnr) { free_pages_bulk_array(ret, bo->pages); dev_err(atomisp_dev, "alloc_pages_bulk_array() failed\n"); return -ENOMEM; } ret = set_pages_array_uc(bo->pages, bo->pgnr); if (ret) { dev_err(atomisp_dev, "set pages uncacheable failed.\n"); free_pages_bulk_array(bo->pgnr, bo->pages); return ret; } return 0; } static int alloc_vmalloc_pages(struct hmm_buffer_object *bo, void *vmalloc_addr) { void *vaddr = vmalloc_addr; int i; for (i = 0; i < bo->pgnr; i++) { bo->pages[i] = vmalloc_to_page(vaddr); if (!bo->pages[i]) { dev_err(atomisp_dev, "Error could not get page %d of vmalloc buf\n", i); return -ENOMEM; } vaddr += PAGE_SIZE; } return 0; } /* * allocate/free physical pages for the bo. * * type indicate where are the pages from. currently we have 3 types * of memory: HMM_BO_PRIVATE, HMM_BO_VMALLOC. * * vmalloc_addr is only valid when type is HMM_BO_VMALLOC. */ int hmm_bo_alloc_pages(struct hmm_buffer_object *bo, enum hmm_bo_type type, void *vmalloc_addr) { int ret = -EINVAL; check_bo_null_return(bo, -EINVAL); mutex_lock(&bo->mutex); check_bo_status_no_goto(bo, HMM_BO_PAGE_ALLOCED, status_err); bo->pages = kcalloc(bo->pgnr, sizeof(struct page *), GFP_KERNEL); if (unlikely(!bo->pages)) { ret = -ENOMEM; goto alloc_err; } if (type == HMM_BO_PRIVATE) { ret = alloc_private_pages(bo); } else if (type == HMM_BO_VMALLOC) { ret = alloc_vmalloc_pages(bo, vmalloc_addr); } else { dev_err(atomisp_dev, "invalid buffer type.\n"); ret = -EINVAL; } if (ret) goto alloc_err; bo->type = type; bo->status |= HMM_BO_PAGE_ALLOCED; mutex_unlock(&bo->mutex); return 0; alloc_err: kfree(bo->pages); mutex_unlock(&bo->mutex); dev_err(atomisp_dev, "alloc pages err...\n"); return ret; status_err: mutex_unlock(&bo->mutex); dev_err(atomisp_dev, "buffer object has already page allocated.\n"); return -EINVAL; } /* * free physical pages of the bo. */ void hmm_bo_free_pages(struct hmm_buffer_object *bo) { check_bo_null_return_void(bo); mutex_lock(&bo->mutex); check_bo_status_yes_goto(bo, HMM_BO_PAGE_ALLOCED, status_err2); /* clear the flag anyway. */ bo->status &= (~HMM_BO_PAGE_ALLOCED); if (bo->type == HMM_BO_PRIVATE) free_private_bo_pages(bo); else if (bo->type == HMM_BO_VMALLOC) ; /* No-op, nothing to do */ else dev_err(atomisp_dev, "invalid buffer type.\n"); kfree(bo->pages); mutex_unlock(&bo->mutex); return; status_err2: mutex_unlock(&bo->mutex); dev_err(atomisp_dev, "buffer object not page allocated yet.\n"); } int hmm_bo_page_allocated(struct hmm_buffer_object *bo) { check_bo_null_return(bo, 0); return bo->status & HMM_BO_PAGE_ALLOCED; } /* * bind the physical pages to a virtual address space. */ int hmm_bo_bind(struct hmm_buffer_object *bo) { int ret; unsigned int virt; struct hmm_bo_device *bdev; unsigned int i; check_bo_null_return(bo, -EINVAL); mutex_lock(&bo->mutex); check_bo_status_yes_goto(bo, HMM_BO_PAGE_ALLOCED | HMM_BO_ALLOCED, status_err1); check_bo_status_no_goto(bo, HMM_BO_BINDED, status_err2); bdev = bo->bdev; virt = bo->start; for (i = 0; i < bo->pgnr; i++) { ret = isp_mmu_map(&bdev->mmu, virt, page_to_phys(bo->pages[i]), 1); if (ret) goto map_err; virt += (1 << PAGE_SHIFT); } /* * flush TBL here. * * theoretically, we donot need to flush TLB as we didnot change * any existed address mappings, but for Silicon Hive's MMU, its * really a bug here. I guess when fetching PTEs (page table entity) * to TLB, its MMU will fetch additional INVALID PTEs automatically * for performance issue. EX, we only set up 1 page address mapping, * meaning updating 1 PTE, but the MMU fetches 4 PTE at one time, * so the additional 3 PTEs are invalid. */ if (bo->start != 0x0) isp_mmu_flush_tlb_range(&bdev->mmu, bo->start, (bo->pgnr << PAGE_SHIFT)); bo->status |= HMM_BO_BINDED; mutex_unlock(&bo->mutex); return 0; map_err: /* unbind the physical pages with related virtual address space */ virt = bo->start; for ( ; i > 0; i--) { isp_mmu_unmap(&bdev->mmu, virt, 1); virt += pgnr_to_size(1); } mutex_unlock(&bo->mutex); dev_err(atomisp_dev, "setup MMU address mapping failed.\n"); return ret; status_err2: mutex_unlock(&bo->mutex); dev_err(atomisp_dev, "buffer object already binded.\n"); return -EINVAL; status_err1: mutex_unlock(&bo->mutex); dev_err(atomisp_dev, "buffer object vm_node or page not allocated.\n"); return -EINVAL; } /* * unbind the physical pages with related virtual address space. */ void hmm_bo_unbind(struct hmm_buffer_object *bo) { unsigned int virt; struct hmm_bo_device *bdev; unsigned int i; check_bo_null_return_void(bo); mutex_lock(&bo->mutex); check_bo_status_yes_goto(bo, HMM_BO_PAGE_ALLOCED | HMM_BO_ALLOCED | HMM_BO_BINDED, status_err); bdev = bo->bdev; virt = bo->start; for (i = 0; i < bo->pgnr; i++) { isp_mmu_unmap(&bdev->mmu, virt, 1); virt += pgnr_to_size(1); } /* * flush TLB as the address mapping has been removed and * related TLBs should be invalidated. */ isp_mmu_flush_tlb_range(&bdev->mmu, bo->start, (bo->pgnr << PAGE_SHIFT)); bo->status &= (~HMM_BO_BINDED); mutex_unlock(&bo->mutex); return; status_err: mutex_unlock(&bo->mutex); dev_err(atomisp_dev, "buffer vm or page not allocated or not binded yet.\n"); } int hmm_bo_binded(struct hmm_buffer_object *bo) { int ret; check_bo_null_return(bo, 0); mutex_lock(&bo->mutex); ret = bo->status & HMM_BO_BINDED; mutex_unlock(&bo->mutex); return ret; } void *hmm_bo_vmap(struct hmm_buffer_object *bo, bool cached) { check_bo_null_return(bo, NULL); mutex_lock(&bo->mutex); if (((bo->status & HMM_BO_VMAPED) && !cached) || ((bo->status & HMM_BO_VMAPED_CACHED) && cached)) { mutex_unlock(&bo->mutex); return bo->vmap_addr; } /* cached status need to be changed, so vunmap first */ if (bo->status & HMM_BO_VMAPED || bo->status & HMM_BO_VMAPED_CACHED) { vunmap(bo->vmap_addr); bo->vmap_addr = NULL; bo->status &= ~(HMM_BO_VMAPED | HMM_BO_VMAPED_CACHED); } bo->vmap_addr = vmap(bo->pages, bo->pgnr, VM_MAP, cached ? PAGE_KERNEL : PAGE_KERNEL_NOCACHE); if (unlikely(!bo->vmap_addr)) { mutex_unlock(&bo->mutex); dev_err(atomisp_dev, "vmap failed...\n"); return NULL; } bo->status |= (cached ? HMM_BO_VMAPED_CACHED : HMM_BO_VMAPED); mutex_unlock(&bo->mutex); return bo->vmap_addr; } void hmm_bo_flush_vmap(struct hmm_buffer_object *bo) { check_bo_null_return_void(bo); mutex_lock(&bo->mutex); if (!(bo->status & HMM_BO_VMAPED_CACHED) || !bo->vmap_addr) { mutex_unlock(&bo->mutex); return; } clflush_cache_range(bo->vmap_addr, bo->pgnr * PAGE_SIZE); mutex_unlock(&bo->mutex); } void hmm_bo_vunmap(struct hmm_buffer_object *bo) { check_bo_null_return_void(bo); mutex_lock(&bo->mutex); if (bo->status & HMM_BO_VMAPED || bo->status & HMM_BO_VMAPED_CACHED) { vunmap(bo->vmap_addr); bo->vmap_addr = NULL; bo->status &= ~(HMM_BO_VMAPED | HMM_BO_VMAPED_CACHED); } mutex_unlock(&bo->mutex); return; } void hmm_bo_ref(struct hmm_buffer_object *bo) { check_bo_null_return_void(bo); kref_get(&bo->kref); } static void kref_hmm_bo_release(struct kref *kref) { if (!kref) return; hmm_bo_release(kref_to_hmm_bo(kref)); } void hmm_bo_unref(struct hmm_buffer_object *bo) { check_bo_null_return_void(bo); kref_put(&bo->kref, kref_hmm_bo_release); } static void hmm_bo_vm_open(struct vm_area_struct *vma) { struct hmm_buffer_object *bo = (struct hmm_buffer_object *)vma->vm_private_data; check_bo_null_return_void(bo); hmm_bo_ref(bo); mutex_lock(&bo->mutex); bo->status |= HMM_BO_MMAPED; bo->mmap_count++; mutex_unlock(&bo->mutex); } static void hmm_bo_vm_close(struct vm_area_struct *vma) { struct hmm_buffer_object *bo = (struct hmm_buffer_object *)vma->vm_private_data; check_bo_null_return_void(bo); hmm_bo_unref(bo); mutex_lock(&bo->mutex); bo->mmap_count--; if (!bo->mmap_count) { bo->status &= (~HMM_BO_MMAPED); vma->vm_private_data = NULL; } mutex_unlock(&bo->mutex); } static const struct vm_operations_struct hmm_bo_vm_ops = { .open = hmm_bo_vm_open, .close = hmm_bo_vm_close, }; /* * mmap the bo to user space. */ int hmm_bo_mmap(struct vm_area_struct *vma, struct hmm_buffer_object *bo) { unsigned int start, end; unsigned int virt; unsigned int pgnr, i; unsigned int pfn; check_bo_null_return(bo, -EINVAL); check_bo_status_yes_goto(bo, HMM_BO_PAGE_ALLOCED, status_err); pgnr = bo->pgnr; start = vma->vm_start; end = vma->vm_end; /* * check vma's virtual address space size and buffer object's size. * must be the same. */ if ((start + pgnr_to_size(pgnr)) != end) { dev_warn(atomisp_dev, "vma's address space size not equal to buffer object's size"); return -EINVAL; } virt = vma->vm_start; for (i = 0; i < pgnr; i++) { pfn = page_to_pfn(bo->pages[i]); if (remap_pfn_range(vma, virt, pfn, PAGE_SIZE, PAGE_SHARED)) { dev_warn(atomisp_dev, "remap_pfn_range failed: virt = 0x%x, pfn = 0x%x, mapped_pgnr = %d\n", virt, pfn, 1); return -EINVAL; } virt += PAGE_SIZE; } vma->vm_private_data = bo; vma->vm_ops = &hmm_bo_vm_ops; vm_flags_set(vma, VM_IO | VM_DONTEXPAND | VM_DONTDUMP); /* * call hmm_bo_vm_open explicitly. */ hmm_bo_vm_open(vma); return 0; status_err: dev_err(atomisp_dev, "buffer page not allocated yet.\n"); return -EINVAL; }