// SPDX-License-Identifier: GPL-2.0-only /* * TI K3 R5F (MCU) Remote Processor driver * * Copyright (C) 2017-2022 Texas Instruments Incorporated - https://www.ti.com/ * Suman Anna */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "omap_remoteproc.h" #include "remoteproc_internal.h" #include "ti_sci_proc.h" /* This address can either be for ATCM or BTCM with the other at address 0x0 */ #define K3_R5_TCM_DEV_ADDR 0x41010000 /* R5 TI-SCI Processor Configuration Flags */ #define PROC_BOOT_CFG_FLAG_R5_DBG_EN 0x00000001 #define PROC_BOOT_CFG_FLAG_R5_DBG_NIDEN 0x00000002 #define PROC_BOOT_CFG_FLAG_R5_LOCKSTEP 0x00000100 #define PROC_BOOT_CFG_FLAG_R5_TEINIT 0x00000200 #define PROC_BOOT_CFG_FLAG_R5_NMFI_EN 0x00000400 #define PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE 0x00000800 #define PROC_BOOT_CFG_FLAG_R5_BTCM_EN 0x00001000 #define PROC_BOOT_CFG_FLAG_R5_ATCM_EN 0x00002000 /* Available from J7200 SoCs onwards */ #define PROC_BOOT_CFG_FLAG_R5_MEM_INIT_DIS 0x00004000 /* Applicable to only AM64x SoCs */ #define PROC_BOOT_CFG_FLAG_R5_SINGLE_CORE 0x00008000 /* R5 TI-SCI Processor Control Flags */ #define PROC_BOOT_CTRL_FLAG_R5_CORE_HALT 0x00000001 /* R5 TI-SCI Processor Status Flags */ #define PROC_BOOT_STATUS_FLAG_R5_WFE 0x00000001 #define PROC_BOOT_STATUS_FLAG_R5_WFI 0x00000002 #define PROC_BOOT_STATUS_FLAG_R5_CLK_GATED 0x00000004 #define PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED 0x00000100 /* Applicable to only AM64x SoCs */ #define PROC_BOOT_STATUS_FLAG_R5_SINGLECORE_ONLY 0x00000200 /** * struct k3_r5_mem - internal memory structure * @cpu_addr: MPU virtual address of the memory region * @bus_addr: Bus address used to access the memory region * @dev_addr: Device address from remoteproc view * @size: Size of the memory region */ struct k3_r5_mem { void __iomem *cpu_addr; phys_addr_t bus_addr; u32 dev_addr; size_t size; }; /* * All cluster mode values are not applicable on all SoCs. The following * are the modes supported on various SoCs: * Split mode : AM65x, J721E, J7200 and AM64x SoCs * LockStep mode : AM65x, J721E and J7200 SoCs * Single-CPU mode : AM64x SoCs only * Single-Core mode : AM62x, AM62A SoCs */ enum cluster_mode { CLUSTER_MODE_SPLIT = 0, CLUSTER_MODE_LOCKSTEP, CLUSTER_MODE_SINGLECPU, CLUSTER_MODE_SINGLECORE }; /** * struct k3_r5_soc_data - match data to handle SoC variations * @tcm_is_double: flag to denote the larger unified TCMs in certain modes * @tcm_ecc_autoinit: flag to denote the auto-initialization of TCMs for ECC * @single_cpu_mode: flag to denote if SoC/IP supports Single-CPU mode * @is_single_core: flag to denote if SoC/IP has only single core R5 */ struct k3_r5_soc_data { bool tcm_is_double; bool tcm_ecc_autoinit; bool single_cpu_mode; bool is_single_core; }; /** * struct k3_r5_cluster - K3 R5F Cluster structure * @dev: cached device pointer * @mode: Mode to configure the Cluster - Split or LockStep * @cores: list of R5 cores within the cluster * @soc_data: SoC-specific feature data for a R5FSS */ struct k3_r5_cluster { struct device *dev; enum cluster_mode mode; struct list_head cores; const struct k3_r5_soc_data *soc_data; }; /** * struct k3_r5_core - K3 R5 core structure * @elem: linked list item * @dev: cached device pointer * @rproc: rproc handle representing this core * @mem: internal memory regions data * @sram: on-chip SRAM memory regions data * @num_mems: number of internal memory regions * @num_sram: number of on-chip SRAM memory regions * @reset: reset control handle * @tsp: TI-SCI processor control handle * @ti_sci: TI-SCI handle * @ti_sci_id: TI-SCI device identifier * @atcm_enable: flag to control ATCM enablement * @btcm_enable: flag to control BTCM enablement * @loczrama: flag to dictate which TCM is at device address 0x0 */ struct k3_r5_core { struct list_head elem; struct device *dev; struct rproc *rproc; struct k3_r5_mem *mem; struct k3_r5_mem *sram; int num_mems; int num_sram; struct reset_control *reset; struct ti_sci_proc *tsp; const struct ti_sci_handle *ti_sci; u32 ti_sci_id; u32 atcm_enable; u32 btcm_enable; u32 loczrama; }; /** * struct k3_r5_rproc - K3 remote processor state * @dev: cached device pointer * @cluster: cached pointer to parent cluster structure * @mbox: mailbox channel handle * @client: mailbox client to request the mailbox channel * @rproc: rproc handle * @core: cached pointer to r5 core structure being used * @rmem: reserved memory regions data * @num_rmems: number of reserved memory regions */ struct k3_r5_rproc { struct device *dev; struct k3_r5_cluster *cluster; struct mbox_chan *mbox; struct mbox_client client; struct rproc *rproc; struct k3_r5_core *core; struct k3_r5_mem *rmem; int num_rmems; }; /** * k3_r5_rproc_mbox_callback() - inbound mailbox message handler * @client: mailbox client pointer used for requesting the mailbox channel * @data: mailbox payload * * This handler is invoked by the OMAP mailbox driver whenever a mailbox * message is received. Usually, the mailbox payload simply contains * the index of the virtqueue that is kicked by the remote processor, * and we let remoteproc core handle it. * * In addition to virtqueue indices, we also have some out-of-band values * that indicate different events. Those values are deliberately very * large so they don't coincide with virtqueue indices. */ static void k3_r5_rproc_mbox_callback(struct mbox_client *client, void *data) { struct k3_r5_rproc *kproc = container_of(client, struct k3_r5_rproc, client); struct device *dev = kproc->rproc->dev.parent; const char *name = kproc->rproc->name; u32 msg = omap_mbox_message(data); dev_dbg(dev, "mbox msg: 0x%x\n", msg); switch (msg) { case RP_MBOX_CRASH: /* * remoteproc detected an exception, but error recovery is not * supported. So, just log this for now */ dev_err(dev, "K3 R5F rproc %s crashed\n", name); break; case RP_MBOX_ECHO_REPLY: dev_info(dev, "received echo reply from %s\n", name); break; default: /* silently handle all other valid messages */ if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG) return; if (msg > kproc->rproc->max_notifyid) { dev_dbg(dev, "dropping unknown message 0x%x", msg); return; } /* msg contains the index of the triggered vring */ if (rproc_vq_interrupt(kproc->rproc, msg) == IRQ_NONE) dev_dbg(dev, "no message was found in vqid %d\n", msg); } } /* kick a virtqueue */ static void k3_r5_rproc_kick(struct rproc *rproc, int vqid) { struct k3_r5_rproc *kproc = rproc->priv; struct device *dev = rproc->dev.parent; mbox_msg_t msg = (mbox_msg_t)vqid; int ret; /* send the index of the triggered virtqueue in the mailbox payload */ ret = mbox_send_message(kproc->mbox, (void *)msg); if (ret < 0) dev_err(dev, "failed to send mailbox message, status = %d\n", ret); } static int k3_r5_split_reset(struct k3_r5_core *core) { int ret; ret = reset_control_assert(core->reset); if (ret) { dev_err(core->dev, "local-reset assert failed, ret = %d\n", ret); return ret; } ret = core->ti_sci->ops.dev_ops.put_device(core->ti_sci, core->ti_sci_id); if (ret) { dev_err(core->dev, "module-reset assert failed, ret = %d\n", ret); if (reset_control_deassert(core->reset)) dev_warn(core->dev, "local-reset deassert back failed\n"); } return ret; } static int k3_r5_split_release(struct k3_r5_core *core) { int ret; ret = core->ti_sci->ops.dev_ops.get_device(core->ti_sci, core->ti_sci_id); if (ret) { dev_err(core->dev, "module-reset deassert failed, ret = %d\n", ret); return ret; } ret = reset_control_deassert(core->reset); if (ret) { dev_err(core->dev, "local-reset deassert failed, ret = %d\n", ret); if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci, core->ti_sci_id)) dev_warn(core->dev, "module-reset assert back failed\n"); } return ret; } static int k3_r5_lockstep_reset(struct k3_r5_cluster *cluster) { struct k3_r5_core *core; int ret; /* assert local reset on all applicable cores */ list_for_each_entry(core, &cluster->cores, elem) { ret = reset_control_assert(core->reset); if (ret) { dev_err(core->dev, "local-reset assert failed, ret = %d\n", ret); core = list_prev_entry(core, elem); goto unroll_local_reset; } } /* disable PSC modules on all applicable cores */ list_for_each_entry(core, &cluster->cores, elem) { ret = core->ti_sci->ops.dev_ops.put_device(core->ti_sci, core->ti_sci_id); if (ret) { dev_err(core->dev, "module-reset assert failed, ret = %d\n", ret); goto unroll_module_reset; } } return 0; unroll_module_reset: list_for_each_entry_continue_reverse(core, &cluster->cores, elem) { if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci, core->ti_sci_id)) dev_warn(core->dev, "module-reset assert back failed\n"); } core = list_last_entry(&cluster->cores, struct k3_r5_core, elem); unroll_local_reset: list_for_each_entry_from_reverse(core, &cluster->cores, elem) { if (reset_control_deassert(core->reset)) dev_warn(core->dev, "local-reset deassert back failed\n"); } return ret; } static int k3_r5_lockstep_release(struct k3_r5_cluster *cluster) { struct k3_r5_core *core; int ret; /* enable PSC modules on all applicable cores */ list_for_each_entry_reverse(core, &cluster->cores, elem) { ret = core->ti_sci->ops.dev_ops.get_device(core->ti_sci, core->ti_sci_id); if (ret) { dev_err(core->dev, "module-reset deassert failed, ret = %d\n", ret); core = list_next_entry(core, elem); goto unroll_module_reset; } } /* deassert local reset on all applicable cores */ list_for_each_entry_reverse(core, &cluster->cores, elem) { ret = reset_control_deassert(core->reset); if (ret) { dev_err(core->dev, "module-reset deassert failed, ret = %d\n", ret); goto unroll_local_reset; } } return 0; unroll_local_reset: list_for_each_entry_continue(core, &cluster->cores, elem) { if (reset_control_assert(core->reset)) dev_warn(core->dev, "local-reset assert back failed\n"); } core = list_first_entry(&cluster->cores, struct k3_r5_core, elem); unroll_module_reset: list_for_each_entry_from(core, &cluster->cores, elem) { if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci, core->ti_sci_id)) dev_warn(core->dev, "module-reset assert back failed\n"); } return ret; } static inline int k3_r5_core_halt(struct k3_r5_core *core) { return ti_sci_proc_set_control(core->tsp, PROC_BOOT_CTRL_FLAG_R5_CORE_HALT, 0); } static inline int k3_r5_core_run(struct k3_r5_core *core) { return ti_sci_proc_set_control(core->tsp, 0, PROC_BOOT_CTRL_FLAG_R5_CORE_HALT); } static int k3_r5_rproc_request_mbox(struct rproc *rproc) { struct k3_r5_rproc *kproc = rproc->priv; struct mbox_client *client = &kproc->client; struct device *dev = kproc->dev; int ret; client->dev = dev; client->tx_done = NULL; client->rx_callback = k3_r5_rproc_mbox_callback; client->tx_block = false; client->knows_txdone = false; kproc->mbox = mbox_request_channel(client, 0); if (IS_ERR(kproc->mbox)) { ret = -EBUSY; dev_err(dev, "mbox_request_channel failed: %ld\n", PTR_ERR(kproc->mbox)); return ret; } /* * Ping the remote processor, this is only for sanity-sake for now; * there is no functional effect whatsoever. * * Note that the reply will _not_ arrive immediately: this message * will wait in the mailbox fifo until the remote processor is booted. */ ret = mbox_send_message(kproc->mbox, (void *)RP_MBOX_ECHO_REQUEST); if (ret < 0) { dev_err(dev, "mbox_send_message failed: %d\n", ret); mbox_free_channel(kproc->mbox); return ret; } return 0; } /* * The R5F cores have controls for both a reset and a halt/run. The code * execution from DDR requires the initial boot-strapping code to be run * from the internal TCMs. This function is used to release the resets on * applicable cores to allow loading into the TCMs. The .prepare() ops is * invoked by remoteproc core before any firmware loading, and is followed * by the .start() ops after loading to actually let the R5 cores run. * * The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to * execute code, but combines the TCMs from both cores. The resets for both * cores need to be released to make this possible, as the TCMs are in general * private to each core. Only Core0 needs to be unhalted for running the * cluster in this mode. The function uses the same reset logic as LockStep * mode for this (though the behavior is agnostic of the reset release order). * This callback is invoked only in remoteproc mode. */ static int k3_r5_rproc_prepare(struct rproc *rproc) { struct k3_r5_rproc *kproc = rproc->priv; struct k3_r5_cluster *cluster = kproc->cluster; struct k3_r5_core *core = kproc->core; struct device *dev = kproc->dev; u32 ctrl = 0, cfg = 0, stat = 0; u64 boot_vec = 0; bool mem_init_dis; int ret; ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl, &stat); if (ret < 0) return ret; mem_init_dis = !!(cfg & PROC_BOOT_CFG_FLAG_R5_MEM_INIT_DIS); /* Re-use LockStep-mode reset logic for Single-CPU mode */ ret = (cluster->mode == CLUSTER_MODE_LOCKSTEP || cluster->mode == CLUSTER_MODE_SINGLECPU) ? k3_r5_lockstep_release(cluster) : k3_r5_split_release(core); if (ret) { dev_err(dev, "unable to enable cores for TCM loading, ret = %d\n", ret); return ret; } /* * Newer IP revisions like on J7200 SoCs support h/w auto-initialization * of TCMs, so there is no need to perform the s/w memzero. This bit is * configurable through System Firmware, the default value does perform * auto-init, but account for it in case it is disabled */ if (cluster->soc_data->tcm_ecc_autoinit && !mem_init_dis) { dev_dbg(dev, "leveraging h/w init for TCM memories\n"); return 0; } /* * Zero out both TCMs unconditionally (access from v8 Arm core is not * affected by ATCM & BTCM enable configuration values) so that ECC * can be effective on all TCM addresses. */ dev_dbg(dev, "zeroing out ATCM memory\n"); memset(core->mem[0].cpu_addr, 0x00, core->mem[0].size); dev_dbg(dev, "zeroing out BTCM memory\n"); memset(core->mem[1].cpu_addr, 0x00, core->mem[1].size); return 0; } /* * This function implements the .unprepare() ops and performs the complimentary * operations to that of the .prepare() ops. The function is used to assert the * resets on all applicable cores for the rproc device (depending on LockStep * or Split mode). This completes the second portion of powering down the R5F * cores. The cores themselves are only halted in the .stop() ops, and the * .unprepare() ops is invoked by the remoteproc core after the remoteproc is * stopped. * * The Single-CPU mode on applicable SoCs (eg: AM64x) combines the TCMs from * both cores. The access is made possible only with releasing the resets for * both cores, but with only Core0 unhalted. This function re-uses the same * reset assert logic as LockStep mode for this mode (though the behavior is * agnostic of the reset assert order). This callback is invoked only in * remoteproc mode. */ static int k3_r5_rproc_unprepare(struct rproc *rproc) { struct k3_r5_rproc *kproc = rproc->priv; struct k3_r5_cluster *cluster = kproc->cluster; struct k3_r5_core *core = kproc->core; struct device *dev = kproc->dev; int ret; /* Re-use LockStep-mode reset logic for Single-CPU mode */ ret = (cluster->mode == CLUSTER_MODE_LOCKSTEP || cluster->mode == CLUSTER_MODE_SINGLECPU) ? k3_r5_lockstep_reset(cluster) : k3_r5_split_reset(core); if (ret) dev_err(dev, "unable to disable cores, ret = %d\n", ret); return ret; } /* * The R5F start sequence includes two different operations * 1. Configure the boot vector for R5F core(s) * 2. Unhalt/Run the R5F core(s) * * The sequence is different between LockStep and Split modes. The LockStep * mode requires the boot vector to be configured only for Core0, and then * unhalt both the cores to start the execution - Core1 needs to be unhalted * first followed by Core0. The Split-mode requires that Core0 to be maintained * always in a higher power state that Core1 (implying Core1 needs to be started * always only after Core0 is started). * * The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to execute * code, so only Core0 needs to be unhalted. The function uses the same logic * flow as Split-mode for this. This callback is invoked only in remoteproc * mode. */ static int k3_r5_rproc_start(struct rproc *rproc) { struct k3_r5_rproc *kproc = rproc->priv; struct k3_r5_cluster *cluster = kproc->cluster; struct device *dev = kproc->dev; struct k3_r5_core *core; u32 boot_addr; int ret; ret = k3_r5_rproc_request_mbox(rproc); if (ret) return ret; boot_addr = rproc->bootaddr; /* TODO: add boot_addr sanity checking */ dev_dbg(dev, "booting R5F core using boot addr = 0x%x\n", boot_addr); /* boot vector need not be programmed for Core1 in LockStep mode */ core = kproc->core; ret = ti_sci_proc_set_config(core->tsp, boot_addr, 0, 0); if (ret) goto put_mbox; /* unhalt/run all applicable cores */ if (cluster->mode == CLUSTER_MODE_LOCKSTEP) { list_for_each_entry_reverse(core, &cluster->cores, elem) { ret = k3_r5_core_run(core); if (ret) goto unroll_core_run; } } else { ret = k3_r5_core_run(core); if (ret) goto put_mbox; } return 0; unroll_core_run: list_for_each_entry_continue(core, &cluster->cores, elem) { if (k3_r5_core_halt(core)) dev_warn(core->dev, "core halt back failed\n"); } put_mbox: mbox_free_channel(kproc->mbox); return ret; } /* * The R5F stop function includes the following operations * 1. Halt R5F core(s) * * The sequence is different between LockStep and Split modes, and the order * of cores the operations are performed are also in general reverse to that * of the start function. The LockStep mode requires each operation to be * performed first on Core0 followed by Core1. The Split-mode requires that * Core0 to be maintained always in a higher power state that Core1 (implying * Core1 needs to be stopped first before Core0). * * The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to execute * code, so only Core0 needs to be halted. The function uses the same logic * flow as Split-mode for this. * * Note that the R5F halt operation in general is not effective when the R5F * core is running, but is needed to make sure the core won't run after * deasserting the reset the subsequent time. The asserting of reset can * be done here, but is preferred to be done in the .unprepare() ops - this * maintains the symmetric behavior between the .start(), .stop(), .prepare() * and .unprepare() ops, and also balances them well between sysfs 'state' * flow and device bind/unbind or module removal. This callback is invoked * only in remoteproc mode. */ static int k3_r5_rproc_stop(struct rproc *rproc) { struct k3_r5_rproc *kproc = rproc->priv; struct k3_r5_cluster *cluster = kproc->cluster; struct k3_r5_core *core = kproc->core; int ret; /* halt all applicable cores */ if (cluster->mode == CLUSTER_MODE_LOCKSTEP) { list_for_each_entry(core, &cluster->cores, elem) { ret = k3_r5_core_halt(core); if (ret) { core = list_prev_entry(core, elem); goto unroll_core_halt; } } } else { ret = k3_r5_core_halt(core); if (ret) goto out; } mbox_free_channel(kproc->mbox); return 0; unroll_core_halt: list_for_each_entry_from_reverse(core, &cluster->cores, elem) { if (k3_r5_core_run(core)) dev_warn(core->dev, "core run back failed\n"); } out: return ret; } /* * Attach to a running R5F remote processor (IPC-only mode) * * The R5F attach callback only needs to request the mailbox, the remote * processor is already booted, so there is no need to issue any TI-SCI * commands to boot the R5F cores in IPC-only mode. This callback is invoked * only in IPC-only mode. */ static int k3_r5_rproc_attach(struct rproc *rproc) { struct k3_r5_rproc *kproc = rproc->priv; struct device *dev = kproc->dev; int ret; ret = k3_r5_rproc_request_mbox(rproc); if (ret) return ret; dev_info(dev, "R5F core initialized in IPC-only mode\n"); return 0; } /* * Detach from a running R5F remote processor (IPC-only mode) * * The R5F detach callback performs the opposite operation to attach callback * and only needs to release the mailbox, the R5F cores are not stopped and * will be left in booted state in IPC-only mode. This callback is invoked * only in IPC-only mode. */ static int k3_r5_rproc_detach(struct rproc *rproc) { struct k3_r5_rproc *kproc = rproc->priv; struct device *dev = kproc->dev; mbox_free_channel(kproc->mbox); dev_info(dev, "R5F core deinitialized in IPC-only mode\n"); return 0; } /* * This function implements the .get_loaded_rsc_table() callback and is used * to provide the resource table for the booted R5F in IPC-only mode. The K3 R5F * firmwares follow a design-by-contract approach and are expected to have the * resource table at the base of the DDR region reserved for firmware usage. * This provides flexibility for the remote processor to be booted by different * bootloaders that may or may not have the ability to publish the resource table * address and size through a DT property. This callback is invoked only in * IPC-only mode. */ static struct resource_table *k3_r5_get_loaded_rsc_table(struct rproc *rproc, size_t *rsc_table_sz) { struct k3_r5_rproc *kproc = rproc->priv; struct device *dev = kproc->dev; if (!kproc->rmem[0].cpu_addr) { dev_err(dev, "memory-region #1 does not exist, loaded rsc table can't be found"); return ERR_PTR(-ENOMEM); } /* * NOTE: The resource table size is currently hard-coded to a maximum * of 256 bytes. The most common resource table usage for K3 firmwares * is to only have the vdev resource entry and an optional trace entry. * The exact size could be computed based on resource table address, but * the hard-coded value suffices to support the IPC-only mode. */ *rsc_table_sz = 256; return (struct resource_table *)kproc->rmem[0].cpu_addr; } /* * Internal Memory translation helper * * Custom function implementing the rproc .da_to_va ops to provide address * translation (device address to kernel virtual address) for internal RAMs * present in a DSP or IPU device). The translated addresses can be used * either by the remoteproc core for loading, or by any rpmsg bus drivers. */ static void *k3_r5_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem) { struct k3_r5_rproc *kproc = rproc->priv; struct k3_r5_core *core = kproc->core; void __iomem *va = NULL; phys_addr_t bus_addr; u32 dev_addr, offset; size_t size; int i; if (len == 0) return NULL; /* handle both R5 and SoC views of ATCM and BTCM */ for (i = 0; i < core->num_mems; i++) { bus_addr = core->mem[i].bus_addr; dev_addr = core->mem[i].dev_addr; size = core->mem[i].size; /* handle R5-view addresses of TCMs */ if (da >= dev_addr && ((da + len) <= (dev_addr + size))) { offset = da - dev_addr; va = core->mem[i].cpu_addr + offset; return (__force void *)va; } /* handle SoC-view addresses of TCMs */ if (da >= bus_addr && ((da + len) <= (bus_addr + size))) { offset = da - bus_addr; va = core->mem[i].cpu_addr + offset; return (__force void *)va; } } /* handle any SRAM regions using SoC-view addresses */ for (i = 0; i < core->num_sram; i++) { dev_addr = core->sram[i].dev_addr; size = core->sram[i].size; if (da >= dev_addr && ((da + len) <= (dev_addr + size))) { offset = da - dev_addr; va = core->sram[i].cpu_addr + offset; return (__force void *)va; } } /* handle static DDR reserved memory regions */ for (i = 0; i < kproc->num_rmems; i++) { dev_addr = kproc->rmem[i].dev_addr; size = kproc->rmem[i].size; if (da >= dev_addr && ((da + len) <= (dev_addr + size))) { offset = da - dev_addr; va = kproc->rmem[i].cpu_addr + offset; return (__force void *)va; } } return NULL; } static const struct rproc_ops k3_r5_rproc_ops = { .prepare = k3_r5_rproc_prepare, .unprepare = k3_r5_rproc_unprepare, .start = k3_r5_rproc_start, .stop = k3_r5_rproc_stop, .kick = k3_r5_rproc_kick, .da_to_va = k3_r5_rproc_da_to_va, }; /* * Internal R5F Core configuration * * Each R5FSS has a cluster-level setting for configuring the processor * subsystem either in a safety/fault-tolerant LockStep mode or a performance * oriented Split mode on most SoCs. A fewer SoCs support a non-safety mode * as an alternate for LockStep mode that exercises only a single R5F core * called Single-CPU mode. Each R5F core has a number of settings to either * enable/disable each of the TCMs, control which TCM appears at the R5F core's * address 0x0. These settings need to be configured before the resets for the * corresponding core are released. These settings are all protected and managed * by the System Processor. * * This function is used to pre-configure these settings for each R5F core, and * the configuration is all done through various ti_sci_proc functions that * communicate with the System Processor. The function also ensures that both * the cores are halted before the .prepare() step. * * The function is called from k3_r5_cluster_rproc_init() and is invoked either * once (in LockStep mode or Single-CPU modes) or twice (in Split mode). Support * for LockStep-mode is dictated by an eFUSE register bit, and the config * settings retrieved from DT are adjusted accordingly as per the permitted * cluster mode. Another eFUSE register bit dictates if the R5F cluster only * supports a Single-CPU mode. All cluster level settings like Cluster mode and * TEINIT (exception handling state dictating ARM or Thumb mode) can only be set * and retrieved using Core0. * * The function behavior is different based on the cluster mode. The R5F cores * are configured independently as per their individual settings in Split mode. * They are identically configured in LockStep mode using the primary Core0 * settings. However, some individual settings cannot be set in LockStep mode. * This is overcome by switching to Split-mode initially and then programming * both the cores with the same settings, before reconfiguing again for * LockStep mode. */ static int k3_r5_rproc_configure(struct k3_r5_rproc *kproc) { struct k3_r5_cluster *cluster = kproc->cluster; struct device *dev = kproc->dev; struct k3_r5_core *core0, *core, *temp; u32 ctrl = 0, cfg = 0, stat = 0; u32 set_cfg = 0, clr_cfg = 0; u64 boot_vec = 0; bool lockstep_en; bool single_cpu; int ret; core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem); if (cluster->mode == CLUSTER_MODE_LOCKSTEP || cluster->mode == CLUSTER_MODE_SINGLECPU || cluster->mode == CLUSTER_MODE_SINGLECORE) { core = core0; } else { core = kproc->core; } ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl, &stat); if (ret < 0) return ret; dev_dbg(dev, "boot_vector = 0x%llx, cfg = 0x%x ctrl = 0x%x stat = 0x%x\n", boot_vec, cfg, ctrl, stat); single_cpu = !!(stat & PROC_BOOT_STATUS_FLAG_R5_SINGLECORE_ONLY); lockstep_en = !!(stat & PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED); /* Override to single CPU mode if set in status flag */ if (single_cpu && cluster->mode == CLUSTER_MODE_SPLIT) { dev_err(cluster->dev, "split-mode not permitted, force configuring for single-cpu mode\n"); cluster->mode = CLUSTER_MODE_SINGLECPU; } /* Override to split mode if lockstep enable bit is not set in status flag */ if (!lockstep_en && cluster->mode == CLUSTER_MODE_LOCKSTEP) { dev_err(cluster->dev, "lockstep mode not permitted, force configuring for split-mode\n"); cluster->mode = CLUSTER_MODE_SPLIT; } /* always enable ARM mode and set boot vector to 0 */ boot_vec = 0x0; if (core == core0) { clr_cfg = PROC_BOOT_CFG_FLAG_R5_TEINIT; /* * Single-CPU configuration bit can only be configured * on Core0 and system firmware will NACK any requests * with the bit configured, so program it only on * permitted cores */ if (cluster->mode == CLUSTER_MODE_SINGLECPU || cluster->mode == CLUSTER_MODE_SINGLECORE) { set_cfg = PROC_BOOT_CFG_FLAG_R5_SINGLE_CORE; } else { /* * LockStep configuration bit is Read-only on Split-mode * _only_ devices and system firmware will NACK any * requests with the bit configured, so program it only * on permitted devices */ if (lockstep_en) clr_cfg |= PROC_BOOT_CFG_FLAG_R5_LOCKSTEP; } } if (core->atcm_enable) set_cfg |= PROC_BOOT_CFG_FLAG_R5_ATCM_EN; else clr_cfg |= PROC_BOOT_CFG_FLAG_R5_ATCM_EN; if (core->btcm_enable) set_cfg |= PROC_BOOT_CFG_FLAG_R5_BTCM_EN; else clr_cfg |= PROC_BOOT_CFG_FLAG_R5_BTCM_EN; if (core->loczrama) set_cfg |= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE; else clr_cfg |= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE; if (cluster->mode == CLUSTER_MODE_LOCKSTEP) { /* * work around system firmware limitations to make sure both * cores are programmed symmetrically in LockStep. LockStep * and TEINIT config is only allowed with Core0. */ list_for_each_entry(temp, &cluster->cores, elem) { ret = k3_r5_core_halt(temp); if (ret) goto out; if (temp != core) { clr_cfg &= ~PROC_BOOT_CFG_FLAG_R5_LOCKSTEP; clr_cfg &= ~PROC_BOOT_CFG_FLAG_R5_TEINIT; } ret = ti_sci_proc_set_config(temp->tsp, boot_vec, set_cfg, clr_cfg); if (ret) goto out; } set_cfg = PROC_BOOT_CFG_FLAG_R5_LOCKSTEP; clr_cfg = 0; ret = ti_sci_proc_set_config(core->tsp, boot_vec, set_cfg, clr_cfg); } else { ret = k3_r5_core_halt(core); if (ret) goto out; ret = ti_sci_proc_set_config(core->tsp, boot_vec, set_cfg, clr_cfg); } out: return ret; } static int k3_r5_reserved_mem_init(struct k3_r5_rproc *kproc) { struct device *dev = kproc->dev; struct device_node *np = dev_of_node(dev); struct device_node *rmem_np; struct reserved_mem *rmem; int num_rmems; int ret, i; num_rmems = of_property_count_elems_of_size(np, "memory-region", sizeof(phandle)); if (num_rmems <= 0) { dev_err(dev, "device does not have reserved memory regions, ret = %d\n", num_rmems); return -EINVAL; } if (num_rmems < 2) { dev_err(dev, "device needs at least two memory regions to be defined, num = %d\n", num_rmems); return -EINVAL; } /* use reserved memory region 0 for vring DMA allocations */ ret = of_reserved_mem_device_init_by_idx(dev, np, 0); if (ret) { dev_err(dev, "device cannot initialize DMA pool, ret = %d\n", ret); return ret; } num_rmems--; kproc->rmem = kcalloc(num_rmems, sizeof(*kproc->rmem), GFP_KERNEL); if (!kproc->rmem) { ret = -ENOMEM; goto release_rmem; } /* use remaining reserved memory regions for static carveouts */ for (i = 0; i < num_rmems; i++) { rmem_np = of_parse_phandle(np, "memory-region", i + 1); if (!rmem_np) { ret = -EINVAL; goto unmap_rmem; } rmem = of_reserved_mem_lookup(rmem_np); if (!rmem) { of_node_put(rmem_np); ret = -EINVAL; goto unmap_rmem; } of_node_put(rmem_np); kproc->rmem[i].bus_addr = rmem->base; /* * R5Fs do not have an MMU, but have a Region Address Translator * (RAT) module that provides a fixed entry translation between * the 32-bit processor addresses to 64-bit bus addresses. The * RAT is programmable only by the R5F cores. Support for RAT * is currently not supported, so 64-bit address regions are not * supported. The absence of MMUs implies that the R5F device * addresses/supported memory regions are restricted to 32-bit * bus addresses, and are identical */ kproc->rmem[i].dev_addr = (u32)rmem->base; kproc->rmem[i].size = rmem->size; kproc->rmem[i].cpu_addr = ioremap_wc(rmem->base, rmem->size); if (!kproc->rmem[i].cpu_addr) { dev_err(dev, "failed to map reserved memory#%d at %pa of size %pa\n", i + 1, &rmem->base, &rmem->size); ret = -ENOMEM; goto unmap_rmem; } dev_dbg(dev, "reserved memory%d: bus addr %pa size 0x%zx va %pK da 0x%x\n", i + 1, &kproc->rmem[i].bus_addr, kproc->rmem[i].size, kproc->rmem[i].cpu_addr, kproc->rmem[i].dev_addr); } kproc->num_rmems = num_rmems; return 0; unmap_rmem: for (i--; i >= 0; i--) iounmap(kproc->rmem[i].cpu_addr); kfree(kproc->rmem); release_rmem: of_reserved_mem_device_release(dev); return ret; } static void k3_r5_reserved_mem_exit(struct k3_r5_rproc *kproc) { int i; for (i = 0; i < kproc->num_rmems; i++) iounmap(kproc->rmem[i].cpu_addr); kfree(kproc->rmem); of_reserved_mem_device_release(kproc->dev); } /* * Each R5F core within a typical R5FSS instance has a total of 64 KB of TCMs, * split equally into two 32 KB banks between ATCM and BTCM. The TCMs from both * cores are usable in Split-mode, but only the Core0 TCMs can be used in * LockStep-mode. The newer revisions of the R5FSS IP maximizes these TCMs by * leveraging the Core1 TCMs as well in certain modes where they would have * otherwise been unusable (Eg: LockStep-mode on J7200 SoCs, Single-CPU mode on * AM64x SoCs). This is done by making a Core1 TCM visible immediately after the * corresponding Core0 TCM. The SoC memory map uses the larger 64 KB sizes for * the Core0 TCMs, and the dts representation reflects this increased size on * supported SoCs. The Core0 TCM sizes therefore have to be adjusted to only * half the original size in Split mode. */ static void k3_r5_adjust_tcm_sizes(struct k3_r5_rproc *kproc) { struct k3_r5_cluster *cluster = kproc->cluster; struct k3_r5_core *core = kproc->core; struct device *cdev = core->dev; struct k3_r5_core *core0; if (cluster->mode == CLUSTER_MODE_LOCKSTEP || cluster->mode == CLUSTER_MODE_SINGLECPU || cluster->mode == CLUSTER_MODE_SINGLECORE || !cluster->soc_data->tcm_is_double) return; core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem); if (core == core0) { WARN_ON(core->mem[0].size != SZ_64K); WARN_ON(core->mem[1].size != SZ_64K); core->mem[0].size /= 2; core->mem[1].size /= 2; dev_dbg(cdev, "adjusted TCM sizes, ATCM = 0x%zx BTCM = 0x%zx\n", core->mem[0].size, core->mem[1].size); } } /* * This function checks and configures a R5F core for IPC-only or remoteproc * mode. The driver is configured to be in IPC-only mode for a R5F core when * the core has been loaded and started by a bootloader. The IPC-only mode is * detected by querying the System Firmware for reset, power on and halt status * and ensuring that the core is running. Any incomplete steps at bootloader * are validated and errored out. * * In IPC-only mode, the driver state flags for ATCM, BTCM and LOCZRAMA settings * and cluster mode parsed originally from kernel DT are updated to reflect the * actual values configured by bootloader. The driver internal device memory * addresses for TCMs are also updated. */ static int k3_r5_rproc_configure_mode(struct k3_r5_rproc *kproc) { struct k3_r5_cluster *cluster = kproc->cluster; struct k3_r5_core *core = kproc->core; struct device *cdev = core->dev; bool r_state = false, c_state = false, lockstep_en = false, single_cpu = false; u32 ctrl = 0, cfg = 0, stat = 0, halted = 0; u64 boot_vec = 0; u32 atcm_enable, btcm_enable, loczrama; struct k3_r5_core *core0; enum cluster_mode mode = cluster->mode; int ret; core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem); ret = core->ti_sci->ops.dev_ops.is_on(core->ti_sci, core->ti_sci_id, &r_state, &c_state); if (ret) { dev_err(cdev, "failed to get initial state, mode cannot be determined, ret = %d\n", ret); return ret; } if (r_state != c_state) { dev_warn(cdev, "R5F core may have been powered on by a different host, programmed state (%d) != actual state (%d)\n", r_state, c_state); } ret = reset_control_status(core->reset); if (ret < 0) { dev_err(cdev, "failed to get initial local reset status, ret = %d\n", ret); return ret; } ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl, &stat); if (ret < 0) { dev_err(cdev, "failed to get initial processor status, ret = %d\n", ret); return ret; } atcm_enable = cfg & PROC_BOOT_CFG_FLAG_R5_ATCM_EN ? 1 : 0; btcm_enable = cfg & PROC_BOOT_CFG_FLAG_R5_BTCM_EN ? 1 : 0; loczrama = cfg & PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE ? 1 : 0; single_cpu = cfg & PROC_BOOT_CFG_FLAG_R5_SINGLE_CORE ? 1 : 0; lockstep_en = cfg & PROC_BOOT_CFG_FLAG_R5_LOCKSTEP ? 1 : 0; if (single_cpu && mode != CLUSTER_MODE_SINGLECORE) mode = CLUSTER_MODE_SINGLECPU; if (lockstep_en) mode = CLUSTER_MODE_LOCKSTEP; halted = ctrl & PROC_BOOT_CTRL_FLAG_R5_CORE_HALT; /* * IPC-only mode detection requires both local and module resets to * be deasserted and R5F core to be unhalted. Local reset status is * irrelevant if module reset is asserted (POR value has local reset * deasserted), and is deemed as remoteproc mode */ if (c_state && !ret && !halted) { dev_info(cdev, "configured R5F for IPC-only mode\n"); kproc->rproc->state = RPROC_DETACHED; ret = 1; /* override rproc ops with only required IPC-only mode ops */ kproc->rproc->ops->prepare = NULL; kproc->rproc->ops->unprepare = NULL; kproc->rproc->ops->start = NULL; kproc->rproc->ops->stop = NULL; kproc->rproc->ops->attach = k3_r5_rproc_attach; kproc->rproc->ops->detach = k3_r5_rproc_detach; kproc->rproc->ops->get_loaded_rsc_table = k3_r5_get_loaded_rsc_table; } else if (!c_state) { dev_info(cdev, "configured R5F for remoteproc mode\n"); ret = 0; } else { dev_err(cdev, "mismatched mode: local_reset = %s, module_reset = %s, core_state = %s\n", !ret ? "deasserted" : "asserted", c_state ? "deasserted" : "asserted", halted ? "halted" : "unhalted"); ret = -EINVAL; } /* fixup TCMs, cluster & core flags to actual values in IPC-only mode */ if (ret > 0) { if (core == core0) cluster->mode = mode; core->atcm_enable = atcm_enable; core->btcm_enable = btcm_enable; core->loczrama = loczrama; core->mem[0].dev_addr = loczrama ? 0 : K3_R5_TCM_DEV_ADDR; core->mem[1].dev_addr = loczrama ? K3_R5_TCM_DEV_ADDR : 0; } return ret; } static int k3_r5_cluster_rproc_init(struct platform_device *pdev) { struct k3_r5_cluster *cluster = platform_get_drvdata(pdev); struct device *dev = &pdev->dev; struct k3_r5_rproc *kproc; struct k3_r5_core *core, *core1; struct device *cdev; const char *fw_name; struct rproc *rproc; int ret, ret1; core1 = list_last_entry(&cluster->cores, struct k3_r5_core, elem); list_for_each_entry(core, &cluster->cores, elem) { cdev = core->dev; ret = rproc_of_parse_firmware(cdev, 0, &fw_name); if (ret) { dev_err(dev, "failed to parse firmware-name property, ret = %d\n", ret); goto out; } rproc = rproc_alloc(cdev, dev_name(cdev), &k3_r5_rproc_ops, fw_name, sizeof(*kproc)); if (!rproc) { ret = -ENOMEM; goto out; } /* K3 R5s have a Region Address Translator (RAT) but no MMU */ rproc->has_iommu = false; /* error recovery is not supported at present */ rproc->recovery_disabled = true; kproc = rproc->priv; kproc->cluster = cluster; kproc->core = core; kproc->dev = cdev; kproc->rproc = rproc; core->rproc = rproc; ret = k3_r5_rproc_configure_mode(kproc); if (ret < 0) goto err_config; if (ret) goto init_rmem; ret = k3_r5_rproc_configure(kproc); if (ret) { dev_err(dev, "initial configure failed, ret = %d\n", ret); goto err_config; } init_rmem: k3_r5_adjust_tcm_sizes(kproc); ret = k3_r5_reserved_mem_init(kproc); if (ret) { dev_err(dev, "reserved memory init failed, ret = %d\n", ret); goto err_config; } ret = rproc_add(rproc); if (ret) { dev_err(dev, "rproc_add failed, ret = %d\n", ret); goto err_add; } /* create only one rproc in lockstep, single-cpu or * single core mode */ if (cluster->mode == CLUSTER_MODE_LOCKSTEP || cluster->mode == CLUSTER_MODE_SINGLECPU || cluster->mode == CLUSTER_MODE_SINGLECORE) break; } return 0; err_split: if (rproc->state == RPROC_ATTACHED) { ret1 = rproc_detach(rproc); if (ret1) { dev_err(kproc->dev, "failed to detach rproc, ret = %d\n", ret1); return ret1; } } rproc_del(rproc); err_add: k3_r5_reserved_mem_exit(kproc); err_config: rproc_free(rproc); core->rproc = NULL; out: /* undo core0 upon any failures on core1 in split-mode */ if (cluster->mode == CLUSTER_MODE_SPLIT && core == core1) { core = list_prev_entry(core, elem); rproc = core->rproc; kproc = rproc->priv; goto err_split; } return ret; } static void k3_r5_cluster_rproc_exit(void *data) { struct k3_r5_cluster *cluster = platform_get_drvdata(data); struct k3_r5_rproc *kproc; struct k3_r5_core *core; struct rproc *rproc; int ret; /* * lockstep mode and single-cpu modes have only one rproc associated * with first core, whereas split-mode has two rprocs associated with * each core, and requires that core1 be powered down first */ core = (cluster->mode == CLUSTER_MODE_LOCKSTEP || cluster->mode == CLUSTER_MODE_SINGLECPU) ? list_first_entry(&cluster->cores, struct k3_r5_core, elem) : list_last_entry(&cluster->cores, struct k3_r5_core, elem); list_for_each_entry_from_reverse(core, &cluster->cores, elem) { rproc = core->rproc; kproc = rproc->priv; if (rproc->state == RPROC_ATTACHED) { ret = rproc_detach(rproc); if (ret) { dev_err(kproc->dev, "failed to detach rproc, ret = %d\n", ret); return; } } rproc_del(rproc); k3_r5_reserved_mem_exit(kproc); rproc_free(rproc); core->rproc = NULL; } } static int k3_r5_core_of_get_internal_memories(struct platform_device *pdev, struct k3_r5_core *core) { static const char * const mem_names[] = {"atcm", "btcm"}; struct device *dev = &pdev->dev; struct resource *res; int num_mems; int i; num_mems = ARRAY_SIZE(mem_names); core->mem = devm_kcalloc(dev, num_mems, sizeof(*core->mem), GFP_KERNEL); if (!core->mem) return -ENOMEM; for (i = 0; i < num_mems; i++) { res = platform_get_resource_byname(pdev, IORESOURCE_MEM, mem_names[i]); if (!res) { dev_err(dev, "found no memory resource for %s\n", mem_names[i]); return -EINVAL; } if (!devm_request_mem_region(dev, res->start, resource_size(res), dev_name(dev))) { dev_err(dev, "could not request %s region for resource\n", mem_names[i]); return -EBUSY; } /* * TCMs are designed in general to support RAM-like backing * memories. So, map these as Normal Non-Cached memories. This * also avoids/fixes any potential alignment faults due to * unaligned data accesses when using memcpy() or memset() * functions (normally seen with device type memory). */ core->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start, resource_size(res)); if (!core->mem[i].cpu_addr) { dev_err(dev, "failed to map %s memory\n", mem_names[i]); return -ENOMEM; } core->mem[i].bus_addr = res->start; /* * TODO: * The R5F cores can place ATCM & BTCM anywhere in its address * based on the corresponding Region Registers in the System * Control coprocessor. For now, place ATCM and BTCM at * addresses 0 and 0x41010000 (same as the bus address on AM65x * SoCs) based on loczrama setting */ if (!strcmp(mem_names[i], "atcm")) { core->mem[i].dev_addr = core->loczrama ? 0 : K3_R5_TCM_DEV_ADDR; } else { core->mem[i].dev_addr = core->loczrama ? K3_R5_TCM_DEV_ADDR : 0; } core->mem[i].size = resource_size(res); dev_dbg(dev, "memory %5s: bus addr %pa size 0x%zx va %pK da 0x%x\n", mem_names[i], &core->mem[i].bus_addr, core->mem[i].size, core->mem[i].cpu_addr, core->mem[i].dev_addr); } core->num_mems = num_mems; return 0; } static int k3_r5_core_of_get_sram_memories(struct platform_device *pdev, struct k3_r5_core *core) { struct device_node *np = pdev->dev.of_node; struct device *dev = &pdev->dev; struct device_node *sram_np; struct resource res; int num_sram; int i, ret; num_sram = of_property_count_elems_of_size(np, "sram", sizeof(phandle)); if (num_sram <= 0) { dev_dbg(dev, "device does not use reserved on-chip memories, num_sram = %d\n", num_sram); return 0; } core->sram = devm_kcalloc(dev, num_sram, sizeof(*core->sram), GFP_KERNEL); if (!core->sram) return -ENOMEM; for (i = 0; i < num_sram; i++) { sram_np = of_parse_phandle(np, "sram", i); if (!sram_np) return -EINVAL; if (!of_device_is_available(sram_np)) { of_node_put(sram_np); return -EINVAL; } ret = of_address_to_resource(sram_np, 0, &res); of_node_put(sram_np); if (ret) return -EINVAL; core->sram[i].bus_addr = res.start; core->sram[i].dev_addr = res.start; core->sram[i].size = resource_size(&res); core->sram[i].cpu_addr = devm_ioremap_wc(dev, res.start, resource_size(&res)); if (!core->sram[i].cpu_addr) { dev_err(dev, "failed to parse and map sram%d memory at %pad\n", i, &res.start); return -ENOMEM; } dev_dbg(dev, "memory sram%d: bus addr %pa size 0x%zx va %pK da 0x%x\n", i, &core->sram[i].bus_addr, core->sram[i].size, core->sram[i].cpu_addr, core->sram[i].dev_addr); } core->num_sram = num_sram; return 0; } static struct ti_sci_proc *k3_r5_core_of_get_tsp(struct device *dev, const struct ti_sci_handle *sci) { struct ti_sci_proc *tsp; u32 temp[2]; int ret; ret = of_property_read_u32_array(dev_of_node(dev), "ti,sci-proc-ids", temp, 2); if (ret < 0) return ERR_PTR(ret); tsp = devm_kzalloc(dev, sizeof(*tsp), GFP_KERNEL); if (!tsp) return ERR_PTR(-ENOMEM); tsp->dev = dev; tsp->sci = sci; tsp->ops = &sci->ops.proc_ops; tsp->proc_id = temp[0]; tsp->host_id = temp[1]; return tsp; } static int k3_r5_core_of_init(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev_of_node(dev); struct k3_r5_core *core; int ret; if (!devres_open_group(dev, k3_r5_core_of_init, GFP_KERNEL)) return -ENOMEM; core = devm_kzalloc(dev, sizeof(*core), GFP_KERNEL); if (!core) { ret = -ENOMEM; goto err; } core->dev = dev; /* * Use SoC Power-on-Reset values as default if no DT properties are * used to dictate the TCM configurations */ core->atcm_enable = 0; core->btcm_enable = 1; core->loczrama = 1; ret = of_property_read_u32(np, "ti,atcm-enable", &core->atcm_enable); if (ret < 0 && ret != -EINVAL) { dev_err(dev, "invalid format for ti,atcm-enable, ret = %d\n", ret); goto err; } ret = of_property_read_u32(np, "ti,btcm-enable", &core->btcm_enable); if (ret < 0 && ret != -EINVAL) { dev_err(dev, "invalid format for ti,btcm-enable, ret = %d\n", ret); goto err; } ret = of_property_read_u32(np, "ti,loczrama", &core->loczrama); if (ret < 0 && ret != -EINVAL) { dev_err(dev, "invalid format for ti,loczrama, ret = %d\n", ret); goto err; } core->ti_sci = devm_ti_sci_get_by_phandle(dev, "ti,sci"); if (IS_ERR(core->ti_sci)) { ret = PTR_ERR(core->ti_sci); if (ret != -EPROBE_DEFER) { dev_err(dev, "failed to get ti-sci handle, ret = %d\n", ret); } core->ti_sci = NULL; goto err; } ret = of_property_read_u32(np, "ti,sci-dev-id", &core->ti_sci_id); if (ret) { dev_err(dev, "missing 'ti,sci-dev-id' property\n"); goto err; } core->reset = devm_reset_control_get_exclusive(dev, NULL); if (IS_ERR_OR_NULL(core->reset)) { ret = PTR_ERR_OR_ZERO(core->reset); if (!ret) ret = -ENODEV; if (ret != -EPROBE_DEFER) { dev_err(dev, "failed to get reset handle, ret = %d\n", ret); } goto err; } core->tsp = k3_r5_core_of_get_tsp(dev, core->ti_sci); if (IS_ERR(core->tsp)) { ret = PTR_ERR(core->tsp); dev_err(dev, "failed to construct ti-sci proc control, ret = %d\n", ret); goto err; } ret = k3_r5_core_of_get_internal_memories(pdev, core); if (ret) { dev_err(dev, "failed to get internal memories, ret = %d\n", ret); goto err; } ret = k3_r5_core_of_get_sram_memories(pdev, core); if (ret) { dev_err(dev, "failed to get sram memories, ret = %d\n", ret); goto err; } ret = ti_sci_proc_request(core->tsp); if (ret < 0) { dev_err(dev, "ti_sci_proc_request failed, ret = %d\n", ret); goto err; } platform_set_drvdata(pdev, core); devres_close_group(dev, k3_r5_core_of_init); return 0; err: devres_release_group(dev, k3_r5_core_of_init); return ret; } /* * free the resources explicitly since driver model is not being used * for the child R5F devices */ static void k3_r5_core_of_exit(struct platform_device *pdev) { struct k3_r5_core *core = platform_get_drvdata(pdev); struct device *dev = &pdev->dev; int ret; ret = ti_sci_proc_release(core->tsp); if (ret) dev_err(dev, "failed to release proc, ret = %d\n", ret); platform_set_drvdata(pdev, NULL); devres_release_group(dev, k3_r5_core_of_init); } static void k3_r5_cluster_of_exit(void *data) { struct k3_r5_cluster *cluster = platform_get_drvdata(data); struct platform_device *cpdev; struct k3_r5_core *core, *temp; list_for_each_entry_safe_reverse(core, temp, &cluster->cores, elem) { list_del(&core->elem); cpdev = to_platform_device(core->dev); k3_r5_core_of_exit(cpdev); } } static int k3_r5_cluster_of_init(struct platform_device *pdev) { struct k3_r5_cluster *cluster = platform_get_drvdata(pdev); struct device *dev = &pdev->dev; struct device_node *np = dev_of_node(dev); struct platform_device *cpdev; struct device_node *child; struct k3_r5_core *core; int ret; for_each_available_child_of_node(np, child) { cpdev = of_find_device_by_node(child); if (!cpdev) { ret = -ENODEV; dev_err(dev, "could not get R5 core platform device\n"); of_node_put(child); goto fail; } ret = k3_r5_core_of_init(cpdev); if (ret) { dev_err(dev, "k3_r5_core_of_init failed, ret = %d\n", ret); put_device(&cpdev->dev); of_node_put(child); goto fail; } core = platform_get_drvdata(cpdev); put_device(&cpdev->dev); list_add_tail(&core->elem, &cluster->cores); } return 0; fail: k3_r5_cluster_of_exit(pdev); return ret; } static int k3_r5_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev_of_node(dev); struct k3_r5_cluster *cluster; const struct k3_r5_soc_data *data; int ret; int num_cores; data = of_device_get_match_data(&pdev->dev); if (!data) { dev_err(dev, "SoC-specific data is not defined\n"); return -ENODEV; } cluster = devm_kzalloc(dev, sizeof(*cluster), GFP_KERNEL); if (!cluster) return -ENOMEM; cluster->dev = dev; cluster->soc_data = data; INIT_LIST_HEAD(&cluster->cores); ret = of_property_read_u32(np, "ti,cluster-mode", &cluster->mode); if (ret < 0 && ret != -EINVAL) { dev_err(dev, "invalid format for ti,cluster-mode, ret = %d\n", ret); return ret; } if (ret == -EINVAL) { /* * default to most common efuse configurations - Split-mode on AM64x * and LockStep-mode on all others * default to most common efuse configurations - * Split-mode on AM64x * Single core on AM62x * LockStep-mode on all others */ if (!data->is_single_core) cluster->mode = data->single_cpu_mode ? CLUSTER_MODE_SPLIT : CLUSTER_MODE_LOCKSTEP; else cluster->mode = CLUSTER_MODE_SINGLECORE; } if ((cluster->mode == CLUSTER_MODE_SINGLECPU && !data->single_cpu_mode) || (cluster->mode == CLUSTER_MODE_SINGLECORE && !data->is_single_core)) { dev_err(dev, "Cluster mode = %d is not supported on this SoC\n", cluster->mode); return -EINVAL; } num_cores = of_get_available_child_count(np); if (num_cores != 2 && !data->is_single_core) { dev_err(dev, "MCU cluster requires both R5F cores to be enabled but num_cores is set to = %d\n", num_cores); return -ENODEV; } if (num_cores != 1 && data->is_single_core) { dev_err(dev, "SoC supports only single core R5 but num_cores is set to %d\n", num_cores); return -ENODEV; } platform_set_drvdata(pdev, cluster); ret = devm_of_platform_populate(dev); if (ret) { dev_err(dev, "devm_of_platform_populate failed, ret = %d\n", ret); return ret; } ret = k3_r5_cluster_of_init(pdev); if (ret) { dev_err(dev, "k3_r5_cluster_of_init failed, ret = %d\n", ret); return ret; } ret = devm_add_action_or_reset(dev, k3_r5_cluster_of_exit, pdev); if (ret) return ret; ret = k3_r5_cluster_rproc_init(pdev); if (ret) { dev_err(dev, "k3_r5_cluster_rproc_init failed, ret = %d\n", ret); return ret; } ret = devm_add_action_or_reset(dev, k3_r5_cluster_rproc_exit, pdev); if (ret) return ret; return 0; } static const struct k3_r5_soc_data am65_j721e_soc_data = { .tcm_is_double = false, .tcm_ecc_autoinit = false, .single_cpu_mode = false, .is_single_core = false, }; static const struct k3_r5_soc_data j7200_j721s2_soc_data = { .tcm_is_double = true, .tcm_ecc_autoinit = true, .single_cpu_mode = false, .is_single_core = false, }; static const struct k3_r5_soc_data am64_soc_data = { .tcm_is_double = true, .tcm_ecc_autoinit = true, .single_cpu_mode = true, .is_single_core = false, }; static const struct k3_r5_soc_data am62_soc_data = { .tcm_is_double = false, .tcm_ecc_autoinit = true, .single_cpu_mode = false, .is_single_core = true, }; static const struct of_device_id k3_r5_of_match[] = { { .compatible = "ti,am654-r5fss", .data = &am65_j721e_soc_data, }, { .compatible = "ti,j721e-r5fss", .data = &am65_j721e_soc_data, }, { .compatible = "ti,j7200-r5fss", .data = &j7200_j721s2_soc_data, }, { .compatible = "ti,am64-r5fss", .data = &am64_soc_data, }, { .compatible = "ti,am62-r5fss", .data = &am62_soc_data, }, { .compatible = "ti,j721s2-r5fss", .data = &j7200_j721s2_soc_data, }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, k3_r5_of_match); static struct platform_driver k3_r5_rproc_driver = { .probe = k3_r5_probe, .driver = { .name = "k3_r5_rproc", .of_match_table = k3_r5_of_match, }, }; module_platform_driver(k3_r5_rproc_driver); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("TI K3 R5F remote processor driver"); MODULE_AUTHOR("Suman Anna ");