// SPDX-License-Identifier: GPL-2.0 /* * NVMe over Fabrics common host code. * Copyright (c) 2015-2016 HGST, a Western Digital Company. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include "nvme.h" #include "fabrics.h" #include static LIST_HEAD(nvmf_transports); static DECLARE_RWSEM(nvmf_transports_rwsem); static LIST_HEAD(nvmf_hosts); static DEFINE_MUTEX(nvmf_hosts_mutex); static struct nvmf_host *nvmf_default_host; static struct nvmf_host *nvmf_host_alloc(const char *hostnqn, uuid_t *id) { struct nvmf_host *host; host = kmalloc(sizeof(*host), GFP_KERNEL); if (!host) return NULL; kref_init(&host->ref); uuid_copy(&host->id, id); strscpy(host->nqn, hostnqn, NVMF_NQN_SIZE); return host; } static struct nvmf_host *nvmf_host_add(const char *hostnqn, uuid_t *id) { struct nvmf_host *host; mutex_lock(&nvmf_hosts_mutex); /* * We have defined a host as how it is perceived by the target. * Therefore, we don't allow different Host NQNs with the same Host ID. * Similarly, we do not allow the usage of the same Host NQN with * different Host IDs. This'll maintain unambiguous host identification. */ list_for_each_entry(host, &nvmf_hosts, list) { bool same_hostnqn = !strcmp(host->nqn, hostnqn); bool same_hostid = uuid_equal(&host->id, id); if (same_hostnqn && same_hostid) { kref_get(&host->ref); goto out_unlock; } if (same_hostnqn) { pr_err("found same hostnqn %s but different hostid %pUb\n", hostnqn, id); host = ERR_PTR(-EINVAL); goto out_unlock; } if (same_hostid) { pr_err("found same hostid %pUb but different hostnqn %s\n", id, hostnqn); host = ERR_PTR(-EINVAL); goto out_unlock; } } host = nvmf_host_alloc(hostnqn, id); if (!host) { host = ERR_PTR(-ENOMEM); goto out_unlock; } list_add_tail(&host->list, &nvmf_hosts); out_unlock: mutex_unlock(&nvmf_hosts_mutex); return host; } static struct nvmf_host *nvmf_host_default(void) { struct nvmf_host *host; char nqn[NVMF_NQN_SIZE]; uuid_t id; uuid_gen(&id); snprintf(nqn, NVMF_NQN_SIZE, "nqn.2014-08.org.nvmexpress:uuid:%pUb", &id); host = nvmf_host_alloc(nqn, &id); if (!host) return NULL; mutex_lock(&nvmf_hosts_mutex); list_add_tail(&host->list, &nvmf_hosts); mutex_unlock(&nvmf_hosts_mutex); return host; } static void nvmf_host_destroy(struct kref *ref) { struct nvmf_host *host = container_of(ref, struct nvmf_host, ref); mutex_lock(&nvmf_hosts_mutex); list_del(&host->list); mutex_unlock(&nvmf_hosts_mutex); kfree(host); } static void nvmf_host_put(struct nvmf_host *host) { if (host) kref_put(&host->ref, nvmf_host_destroy); } /** * nvmf_get_address() - Get address/port * @ctrl: Host NVMe controller instance which we got the address * @buf: OUTPUT parameter that will contain the address/port * @size: buffer size */ int nvmf_get_address(struct nvme_ctrl *ctrl, char *buf, int size) { int len = 0; if (ctrl->opts->mask & NVMF_OPT_TRADDR) len += scnprintf(buf, size, "traddr=%s", ctrl->opts->traddr); if (ctrl->opts->mask & NVMF_OPT_TRSVCID) len += scnprintf(buf + len, size - len, "%strsvcid=%s", (len) ? "," : "", ctrl->opts->trsvcid); if (ctrl->opts->mask & NVMF_OPT_HOST_TRADDR) len += scnprintf(buf + len, size - len, "%shost_traddr=%s", (len) ? "," : "", ctrl->opts->host_traddr); if (ctrl->opts->mask & NVMF_OPT_HOST_IFACE) len += scnprintf(buf + len, size - len, "%shost_iface=%s", (len) ? "," : "", ctrl->opts->host_iface); len += scnprintf(buf + len, size - len, "\n"); return len; } EXPORT_SYMBOL_GPL(nvmf_get_address); /** * nvmf_reg_read32() - NVMe Fabrics "Property Get" API function. * @ctrl: Host NVMe controller instance maintaining the admin * queue used to submit the property read command to * the allocated NVMe controller resource on the target system. * @off: Starting offset value of the targeted property * register (see the fabrics section of the NVMe standard). * @val: OUTPUT parameter that will contain the value of * the property after a successful read. * * Used by the host system to retrieve a 32-bit capsule property value * from an NVMe controller on the target system. * * ("Capsule property" is an "PCIe register concept" applied to the * NVMe fabrics space.) * * Return: * 0: successful read * > 0: NVMe error status code * < 0: Linux errno error code */ int nvmf_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) { struct nvme_command cmd = { }; union nvme_result res; int ret; cmd.prop_get.opcode = nvme_fabrics_command; cmd.prop_get.fctype = nvme_fabrics_type_property_get; cmd.prop_get.offset = cpu_to_le32(off); ret = __nvme_submit_sync_cmd(ctrl->fabrics_q, &cmd, &res, NULL, 0, NVME_QID_ANY, 0); if (ret >= 0) *val = le64_to_cpu(res.u64); if (unlikely(ret != 0)) dev_err(ctrl->device, "Property Get error: %d, offset %#x\n", ret > 0 ? ret & ~NVME_SC_DNR : ret, off); return ret; } EXPORT_SYMBOL_GPL(nvmf_reg_read32); /** * nvmf_reg_read64() - NVMe Fabrics "Property Get" API function. * @ctrl: Host NVMe controller instance maintaining the admin * queue used to submit the property read command to * the allocated controller resource on the target system. * @off: Starting offset value of the targeted property * register (see the fabrics section of the NVMe standard). * @val: OUTPUT parameter that will contain the value of * the property after a successful read. * * Used by the host system to retrieve a 64-bit capsule property value * from an NVMe controller on the target system. * * ("Capsule property" is an "PCIe register concept" applied to the * NVMe fabrics space.) * * Return: * 0: successful read * > 0: NVMe error status code * < 0: Linux errno error code */ int nvmf_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) { struct nvme_command cmd = { }; union nvme_result res; int ret; cmd.prop_get.opcode = nvme_fabrics_command; cmd.prop_get.fctype = nvme_fabrics_type_property_get; cmd.prop_get.attrib = 1; cmd.prop_get.offset = cpu_to_le32(off); ret = __nvme_submit_sync_cmd(ctrl->fabrics_q, &cmd, &res, NULL, 0, NVME_QID_ANY, 0); if (ret >= 0) *val = le64_to_cpu(res.u64); if (unlikely(ret != 0)) dev_err(ctrl->device, "Property Get error: %d, offset %#x\n", ret > 0 ? ret & ~NVME_SC_DNR : ret, off); return ret; } EXPORT_SYMBOL_GPL(nvmf_reg_read64); /** * nvmf_reg_write32() - NVMe Fabrics "Property Write" API function. * @ctrl: Host NVMe controller instance maintaining the admin * queue used to submit the property read command to * the allocated NVMe controller resource on the target system. * @off: Starting offset value of the targeted property * register (see the fabrics section of the NVMe standard). * @val: Input parameter that contains the value to be * written to the property. * * Used by the NVMe host system to write a 32-bit capsule property value * to an NVMe controller on the target system. * * ("Capsule property" is an "PCIe register concept" applied to the * NVMe fabrics space.) * * Return: * 0: successful write * > 0: NVMe error status code * < 0: Linux errno error code */ int nvmf_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) { struct nvme_command cmd = { }; int ret; cmd.prop_set.opcode = nvme_fabrics_command; cmd.prop_set.fctype = nvme_fabrics_type_property_set; cmd.prop_set.attrib = 0; cmd.prop_set.offset = cpu_to_le32(off); cmd.prop_set.value = cpu_to_le64(val); ret = __nvme_submit_sync_cmd(ctrl->fabrics_q, &cmd, NULL, NULL, 0, NVME_QID_ANY, 0); if (unlikely(ret)) dev_err(ctrl->device, "Property Set error: %d, offset %#x\n", ret > 0 ? ret & ~NVME_SC_DNR : ret, off); return ret; } EXPORT_SYMBOL_GPL(nvmf_reg_write32); /** * nvmf_log_connect_error() - Error-parsing-diagnostic print out function for * connect() errors. * @ctrl: The specific /dev/nvmeX device that had the error. * @errval: Error code to be decoded in a more human-friendly * printout. * @offset: For use with the NVMe error code * NVME_SC_CONNECT_INVALID_PARAM. * @cmd: This is the SQE portion of a submission capsule. * @data: This is the "Data" portion of a submission capsule. */ static void nvmf_log_connect_error(struct nvme_ctrl *ctrl, int errval, int offset, struct nvme_command *cmd, struct nvmf_connect_data *data) { int err_sctype = errval & ~NVME_SC_DNR; if (errval < 0) { dev_err(ctrl->device, "Connect command failed, errno: %d\n", errval); return; } switch (err_sctype) { case NVME_SC_CONNECT_INVALID_PARAM: if (offset >> 16) { char *inv_data = "Connect Invalid Data Parameter"; switch (offset & 0xffff) { case (offsetof(struct nvmf_connect_data, cntlid)): dev_err(ctrl->device, "%s, cntlid: %d\n", inv_data, data->cntlid); break; case (offsetof(struct nvmf_connect_data, hostnqn)): dev_err(ctrl->device, "%s, hostnqn \"%s\"\n", inv_data, data->hostnqn); break; case (offsetof(struct nvmf_connect_data, subsysnqn)): dev_err(ctrl->device, "%s, subsysnqn \"%s\"\n", inv_data, data->subsysnqn); break; default: dev_err(ctrl->device, "%s, starting byte offset: %d\n", inv_data, offset & 0xffff); break; } } else { char *inv_sqe = "Connect Invalid SQE Parameter"; switch (offset) { case (offsetof(struct nvmf_connect_command, qid)): dev_err(ctrl->device, "%s, qid %d\n", inv_sqe, cmd->connect.qid); break; default: dev_err(ctrl->device, "%s, starting byte offset: %d\n", inv_sqe, offset); } } break; case NVME_SC_CONNECT_INVALID_HOST: dev_err(ctrl->device, "Connect for subsystem %s is not allowed, hostnqn: %s\n", data->subsysnqn, data->hostnqn); break; case NVME_SC_CONNECT_CTRL_BUSY: dev_err(ctrl->device, "Connect command failed: controller is busy or not available\n"); break; case NVME_SC_CONNECT_FORMAT: dev_err(ctrl->device, "Connect incompatible format: %d", cmd->connect.recfmt); break; case NVME_SC_HOST_PATH_ERROR: dev_err(ctrl->device, "Connect command failed: host path error\n"); break; case NVME_SC_AUTH_REQUIRED: dev_err(ctrl->device, "Connect command failed: authentication required\n"); break; default: dev_err(ctrl->device, "Connect command failed, error wo/DNR bit: %d\n", err_sctype); break; } } static struct nvmf_connect_data *nvmf_connect_data_prep(struct nvme_ctrl *ctrl, u16 cntlid) { struct nvmf_connect_data *data; data = kzalloc(sizeof(*data), GFP_KERNEL); if (!data) return NULL; uuid_copy(&data->hostid, &ctrl->opts->host->id); data->cntlid = cpu_to_le16(cntlid); strscpy(data->subsysnqn, ctrl->opts->subsysnqn, NVMF_NQN_SIZE); strscpy(data->hostnqn, ctrl->opts->host->nqn, NVMF_NQN_SIZE); return data; } static void nvmf_connect_cmd_prep(struct nvme_ctrl *ctrl, u16 qid, struct nvme_command *cmd) { cmd->connect.opcode = nvme_fabrics_command; cmd->connect.fctype = nvme_fabrics_type_connect; cmd->connect.qid = cpu_to_le16(qid); if (qid) { cmd->connect.sqsize = cpu_to_le16(ctrl->sqsize); } else { cmd->connect.sqsize = cpu_to_le16(NVME_AQ_DEPTH - 1); /* * set keep-alive timeout in seconds granularity (ms * 1000) */ cmd->connect.kato = cpu_to_le32(ctrl->kato * 1000); } if (ctrl->opts->disable_sqflow) cmd->connect.cattr |= NVME_CONNECT_DISABLE_SQFLOW; } /** * nvmf_connect_admin_queue() - NVMe Fabrics Admin Queue "Connect" * API function. * @ctrl: Host nvme controller instance used to request * a new NVMe controller allocation on the target * system and establish an NVMe Admin connection to * that controller. * * This function enables an NVMe host device to request a new allocation of * an NVMe controller resource on a target system as well establish a * fabrics-protocol connection of the NVMe Admin queue between the * host system device and the allocated NVMe controller on the * target system via a NVMe Fabrics "Connect" command. * * Return: * 0: success * > 0: NVMe error status code * < 0: Linux errno error code * */ int nvmf_connect_admin_queue(struct nvme_ctrl *ctrl) { struct nvme_command cmd = { }; union nvme_result res; struct nvmf_connect_data *data; int ret; u32 result; nvmf_connect_cmd_prep(ctrl, 0, &cmd); data = nvmf_connect_data_prep(ctrl, 0xffff); if (!data) return -ENOMEM; ret = __nvme_submit_sync_cmd(ctrl->fabrics_q, &cmd, &res, data, sizeof(*data), NVME_QID_ANY, NVME_SUBMIT_AT_HEAD | NVME_SUBMIT_NOWAIT | NVME_SUBMIT_RESERVED); if (ret) { nvmf_log_connect_error(ctrl, ret, le32_to_cpu(res.u32), &cmd, data); goto out_free_data; } result = le32_to_cpu(res.u32); ctrl->cntlid = result & 0xFFFF; if (result & (NVME_CONNECT_AUTHREQ_ATR | NVME_CONNECT_AUTHREQ_ASCR)) { /* Secure concatenation is not implemented */ if (result & NVME_CONNECT_AUTHREQ_ASCR) { dev_warn(ctrl->device, "qid 0: secure concatenation is not supported\n"); ret = NVME_SC_AUTH_REQUIRED; goto out_free_data; } /* Authentication required */ ret = nvme_auth_negotiate(ctrl, 0); if (ret) { dev_warn(ctrl->device, "qid 0: authentication setup failed\n"); ret = NVME_SC_AUTH_REQUIRED; goto out_free_data; } ret = nvme_auth_wait(ctrl, 0); if (ret) dev_warn(ctrl->device, "qid 0: authentication failed\n"); else dev_info(ctrl->device, "qid 0: authenticated\n"); } out_free_data: kfree(data); return ret; } EXPORT_SYMBOL_GPL(nvmf_connect_admin_queue); /** * nvmf_connect_io_queue() - NVMe Fabrics I/O Queue "Connect" * API function. * @ctrl: Host nvme controller instance used to establish an * NVMe I/O queue connection to the already allocated NVMe * controller on the target system. * @qid: NVMe I/O queue number for the new I/O connection between * host and target (note qid == 0 is illegal as this is * the Admin queue, per NVMe standard). * * This function issues a fabrics-protocol connection * of a NVMe I/O queue (via NVMe Fabrics "Connect" command) * between the host system device and the allocated NVMe controller * on the target system. * * Return: * 0: success * > 0: NVMe error status code * < 0: Linux errno error code */ int nvmf_connect_io_queue(struct nvme_ctrl *ctrl, u16 qid) { struct nvme_command cmd = { }; struct nvmf_connect_data *data; union nvme_result res; int ret; u32 result; nvmf_connect_cmd_prep(ctrl, qid, &cmd); data = nvmf_connect_data_prep(ctrl, ctrl->cntlid); if (!data) return -ENOMEM; ret = __nvme_submit_sync_cmd(ctrl->connect_q, &cmd, &res, data, sizeof(*data), qid, NVME_SUBMIT_AT_HEAD | NVME_SUBMIT_RESERVED | NVME_SUBMIT_NOWAIT); if (ret) { nvmf_log_connect_error(ctrl, ret, le32_to_cpu(res.u32), &cmd, data); goto out_free_data; } result = le32_to_cpu(res.u32); if (result & (NVME_CONNECT_AUTHREQ_ATR | NVME_CONNECT_AUTHREQ_ASCR)) { /* Secure concatenation is not implemented */ if (result & NVME_CONNECT_AUTHREQ_ASCR) { dev_warn(ctrl->device, "qid 0: secure concatenation is not supported\n"); ret = NVME_SC_AUTH_REQUIRED; goto out_free_data; } /* Authentication required */ ret = nvme_auth_negotiate(ctrl, qid); if (ret) { dev_warn(ctrl->device, "qid %d: authentication setup failed\n", qid); ret = NVME_SC_AUTH_REQUIRED; } else { ret = nvme_auth_wait(ctrl, qid); if (ret) dev_warn(ctrl->device, "qid %u: authentication failed\n", qid); } } out_free_data: kfree(data); return ret; } EXPORT_SYMBOL_GPL(nvmf_connect_io_queue); bool nvmf_should_reconnect(struct nvme_ctrl *ctrl) { if (ctrl->opts->max_reconnects == -1 || ctrl->nr_reconnects < ctrl->opts->max_reconnects) return true; return false; } EXPORT_SYMBOL_GPL(nvmf_should_reconnect); /** * nvmf_register_transport() - NVMe Fabrics Library registration function. * @ops: Transport ops instance to be registered to the * common fabrics library. * * API function that registers the type of specific transport fabric * being implemented to the common NVMe fabrics library. Part of * the overall init sequence of starting up a fabrics driver. */ int nvmf_register_transport(struct nvmf_transport_ops *ops) { if (!ops->create_ctrl) return -EINVAL; down_write(&nvmf_transports_rwsem); list_add_tail(&ops->entry, &nvmf_transports); up_write(&nvmf_transports_rwsem); return 0; } EXPORT_SYMBOL_GPL(nvmf_register_transport); /** * nvmf_unregister_transport() - NVMe Fabrics Library unregistration function. * @ops: Transport ops instance to be unregistered from the * common fabrics library. * * Fabrics API function that unregisters the type of specific transport * fabric being implemented from the common NVMe fabrics library. * Part of the overall exit sequence of unloading the implemented driver. */ void nvmf_unregister_transport(struct nvmf_transport_ops *ops) { down_write(&nvmf_transports_rwsem); list_del(&ops->entry); up_write(&nvmf_transports_rwsem); } EXPORT_SYMBOL_GPL(nvmf_unregister_transport); static struct nvmf_transport_ops *nvmf_lookup_transport( struct nvmf_ctrl_options *opts) { struct nvmf_transport_ops *ops; lockdep_assert_held(&nvmf_transports_rwsem); list_for_each_entry(ops, &nvmf_transports, entry) { if (strcmp(ops->name, opts->transport) == 0) return ops; } return NULL; } static struct key *nvmf_parse_key(int key_id) { struct key *key; if (!IS_ENABLED(CONFIG_NVME_TCP_TLS)) { pr_err("TLS is not supported\n"); return ERR_PTR(-EINVAL); } key = key_lookup(key_id); if (IS_ERR(key)) pr_err("key id %08x not found\n", key_id); else pr_debug("Using key id %08x\n", key_id); return key; } static const match_table_t opt_tokens = { { NVMF_OPT_TRANSPORT, "transport=%s" }, { NVMF_OPT_TRADDR, "traddr=%s" }, { NVMF_OPT_TRSVCID, "trsvcid=%s" }, { NVMF_OPT_NQN, "nqn=%s" }, { NVMF_OPT_QUEUE_SIZE, "queue_size=%d" }, { NVMF_OPT_NR_IO_QUEUES, "nr_io_queues=%d" }, { NVMF_OPT_RECONNECT_DELAY, "reconnect_delay=%d" }, { NVMF_OPT_CTRL_LOSS_TMO, "ctrl_loss_tmo=%d" }, { NVMF_OPT_KATO, "keep_alive_tmo=%d" }, { NVMF_OPT_HOSTNQN, "hostnqn=%s" }, { NVMF_OPT_HOST_TRADDR, "host_traddr=%s" }, { NVMF_OPT_HOST_IFACE, "host_iface=%s" }, { NVMF_OPT_HOST_ID, "hostid=%s" }, { NVMF_OPT_DUP_CONNECT, "duplicate_connect" }, { NVMF_OPT_DISABLE_SQFLOW, "disable_sqflow" }, { NVMF_OPT_HDR_DIGEST, "hdr_digest" }, { NVMF_OPT_DATA_DIGEST, "data_digest" }, { NVMF_OPT_NR_WRITE_QUEUES, "nr_write_queues=%d" }, { NVMF_OPT_NR_POLL_QUEUES, "nr_poll_queues=%d" }, { NVMF_OPT_TOS, "tos=%d" }, #ifdef CONFIG_NVME_TCP_TLS { NVMF_OPT_KEYRING, "keyring=%d" }, { NVMF_OPT_TLS_KEY, "tls_key=%d" }, #endif { NVMF_OPT_FAIL_FAST_TMO, "fast_io_fail_tmo=%d" }, { NVMF_OPT_DISCOVERY, "discovery" }, #ifdef CONFIG_NVME_HOST_AUTH { NVMF_OPT_DHCHAP_SECRET, "dhchap_secret=%s" }, { NVMF_OPT_DHCHAP_CTRL_SECRET, "dhchap_ctrl_secret=%s" }, #endif #ifdef CONFIG_NVME_TCP_TLS { NVMF_OPT_TLS, "tls" }, #endif { NVMF_OPT_ERR, NULL } }; static int nvmf_parse_options(struct nvmf_ctrl_options *opts, const char *buf) { substring_t args[MAX_OPT_ARGS]; char *options, *o, *p; int token, ret = 0; size_t nqnlen = 0; int ctrl_loss_tmo = NVMF_DEF_CTRL_LOSS_TMO, key_id; uuid_t hostid; char hostnqn[NVMF_NQN_SIZE]; struct key *key; /* Set defaults */ opts->queue_size = NVMF_DEF_QUEUE_SIZE; opts->nr_io_queues = num_online_cpus(); opts->reconnect_delay = NVMF_DEF_RECONNECT_DELAY; opts->kato = 0; opts->duplicate_connect = false; opts->fast_io_fail_tmo = NVMF_DEF_FAIL_FAST_TMO; opts->hdr_digest = false; opts->data_digest = false; opts->tos = -1; /* < 0 == use transport default */ opts->tls = false; opts->tls_key = NULL; opts->keyring = NULL; options = o = kstrdup(buf, GFP_KERNEL); if (!options) return -ENOMEM; /* use default host if not given by user space */ uuid_copy(&hostid, &nvmf_default_host->id); strscpy(hostnqn, nvmf_default_host->nqn, NVMF_NQN_SIZE); while ((p = strsep(&o, ",\n")) != NULL) { if (!*p) continue; token = match_token(p, opt_tokens, args); opts->mask |= token; switch (token) { case NVMF_OPT_TRANSPORT: p = match_strdup(args); if (!p) { ret = -ENOMEM; goto out; } kfree(opts->transport); opts->transport = p; break; case NVMF_OPT_NQN: p = match_strdup(args); if (!p) { ret = -ENOMEM; goto out; } kfree(opts->subsysnqn); opts->subsysnqn = p; nqnlen = strlen(opts->subsysnqn); if (nqnlen >= NVMF_NQN_SIZE) { pr_err("%s needs to be < %d bytes\n", opts->subsysnqn, NVMF_NQN_SIZE); ret = -EINVAL; goto out; } opts->discovery_nqn = !(strcmp(opts->subsysnqn, NVME_DISC_SUBSYS_NAME)); break; case NVMF_OPT_TRADDR: p = match_strdup(args); if (!p) { ret = -ENOMEM; goto out; } kfree(opts->traddr); opts->traddr = p; break; case NVMF_OPT_TRSVCID: p = match_strdup(args); if (!p) { ret = -ENOMEM; goto out; } kfree(opts->trsvcid); opts->trsvcid = p; break; case NVMF_OPT_QUEUE_SIZE: if (match_int(args, &token)) { ret = -EINVAL; goto out; } if (token < NVMF_MIN_QUEUE_SIZE || token > NVMF_MAX_QUEUE_SIZE) { pr_err("Invalid queue_size %d\n", token); ret = -EINVAL; goto out; } opts->queue_size = token; break; case NVMF_OPT_NR_IO_QUEUES: if (match_int(args, &token)) { ret = -EINVAL; goto out; } if (token <= 0) { pr_err("Invalid number of IOQs %d\n", token); ret = -EINVAL; goto out; } if (opts->discovery_nqn) { pr_debug("Ignoring nr_io_queues value for discovery controller\n"); break; } opts->nr_io_queues = min_t(unsigned int, num_online_cpus(), token); break; case NVMF_OPT_KATO: if (match_int(args, &token)) { ret = -EINVAL; goto out; } if (token < 0) { pr_err("Invalid keep_alive_tmo %d\n", token); ret = -EINVAL; goto out; } else if (token == 0 && !opts->discovery_nqn) { /* Allowed for debug */ pr_warn("keep_alive_tmo 0 won't execute keep alives!!!\n"); } opts->kato = token; break; case NVMF_OPT_CTRL_LOSS_TMO: if (match_int(args, &token)) { ret = -EINVAL; goto out; } if (token < 0) pr_warn("ctrl_loss_tmo < 0 will reconnect forever\n"); ctrl_loss_tmo = token; break; case NVMF_OPT_FAIL_FAST_TMO: if (match_int(args, &token)) { ret = -EINVAL; goto out; } if (token >= 0) pr_warn("I/O fail on reconnect controller after %d sec\n", token); else token = -1; opts->fast_io_fail_tmo = token; break; case NVMF_OPT_HOSTNQN: if (opts->host) { pr_err("hostnqn already user-assigned: %s\n", opts->host->nqn); ret = -EADDRINUSE; goto out; } p = match_strdup(args); if (!p) { ret = -ENOMEM; goto out; } nqnlen = strlen(p); if (nqnlen >= NVMF_NQN_SIZE) { pr_err("%s needs to be < %d bytes\n", p, NVMF_NQN_SIZE); kfree(p); ret = -EINVAL; goto out; } strscpy(hostnqn, p, NVMF_NQN_SIZE); kfree(p); break; case NVMF_OPT_RECONNECT_DELAY: if (match_int(args, &token)) { ret = -EINVAL; goto out; } if (token <= 0) { pr_err("Invalid reconnect_delay %d\n", token); ret = -EINVAL; goto out; } opts->reconnect_delay = token; break; case NVMF_OPT_HOST_TRADDR: p = match_strdup(args); if (!p) { ret = -ENOMEM; goto out; } kfree(opts->host_traddr); opts->host_traddr = p; break; case NVMF_OPT_HOST_IFACE: p = match_strdup(args); if (!p) { ret = -ENOMEM; goto out; } kfree(opts->host_iface); opts->host_iface = p; break; case NVMF_OPT_HOST_ID: p = match_strdup(args); if (!p) { ret = -ENOMEM; goto out; } ret = uuid_parse(p, &hostid); if (ret) { pr_err("Invalid hostid %s\n", p); ret = -EINVAL; kfree(p); goto out; } kfree(p); break; case NVMF_OPT_DUP_CONNECT: opts->duplicate_connect = true; break; case NVMF_OPT_DISABLE_SQFLOW: opts->disable_sqflow = true; break; case NVMF_OPT_HDR_DIGEST: opts->hdr_digest = true; break; case NVMF_OPT_DATA_DIGEST: opts->data_digest = true; break; case NVMF_OPT_NR_WRITE_QUEUES: if (match_int(args, &token)) { ret = -EINVAL; goto out; } if (token <= 0) { pr_err("Invalid nr_write_queues %d\n", token); ret = -EINVAL; goto out; } opts->nr_write_queues = token; break; case NVMF_OPT_NR_POLL_QUEUES: if (match_int(args, &token)) { ret = -EINVAL; goto out; } if (token <= 0) { pr_err("Invalid nr_poll_queues %d\n", token); ret = -EINVAL; goto out; } opts->nr_poll_queues = token; break; case NVMF_OPT_TOS: if (match_int(args, &token)) { ret = -EINVAL; goto out; } if (token < 0) { pr_err("Invalid type of service %d\n", token); ret = -EINVAL; goto out; } if (token > 255) { pr_warn("Clamping type of service to 255\n"); token = 255; } opts->tos = token; break; case NVMF_OPT_KEYRING: if (match_int(args, &key_id) || key_id <= 0) { ret = -EINVAL; goto out; } key = nvmf_parse_key(key_id); if (IS_ERR(key)) { ret = PTR_ERR(key); goto out; } key_put(opts->keyring); opts->keyring = key; break; case NVMF_OPT_TLS_KEY: if (match_int(args, &key_id) || key_id <= 0) { ret = -EINVAL; goto out; } key = nvmf_parse_key(key_id); if (IS_ERR(key)) { ret = PTR_ERR(key); goto out; } key_put(opts->tls_key); opts->tls_key = key; break; case NVMF_OPT_DISCOVERY: opts->discovery_nqn = true; break; case NVMF_OPT_DHCHAP_SECRET: p = match_strdup(args); if (!p) { ret = -ENOMEM; goto out; } if (strlen(p) < 11 || strncmp(p, "DHHC-1:", 7)) { pr_err("Invalid DH-CHAP secret %s\n", p); ret = -EINVAL; goto out; } kfree(opts->dhchap_secret); opts->dhchap_secret = p; break; case NVMF_OPT_DHCHAP_CTRL_SECRET: p = match_strdup(args); if (!p) { ret = -ENOMEM; goto out; } if (strlen(p) < 11 || strncmp(p, "DHHC-1:", 7)) { pr_err("Invalid DH-CHAP secret %s\n", p); ret = -EINVAL; goto out; } kfree(opts->dhchap_ctrl_secret); opts->dhchap_ctrl_secret = p; break; case NVMF_OPT_TLS: if (!IS_ENABLED(CONFIG_NVME_TCP_TLS)) { pr_err("TLS is not supported\n"); ret = -EINVAL; goto out; } opts->tls = true; break; default: pr_warn("unknown parameter or missing value '%s' in ctrl creation request\n", p); ret = -EINVAL; goto out; } } if (opts->discovery_nqn) { opts->nr_io_queues = 0; opts->nr_write_queues = 0; opts->nr_poll_queues = 0; opts->duplicate_connect = true; } else { if (!opts->kato) opts->kato = NVME_DEFAULT_KATO; } if (ctrl_loss_tmo < 0) { opts->max_reconnects = -1; } else { opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo, opts->reconnect_delay); if (ctrl_loss_tmo < opts->fast_io_fail_tmo) pr_warn("failfast tmo (%d) larger than controller loss tmo (%d)\n", opts->fast_io_fail_tmo, ctrl_loss_tmo); } opts->host = nvmf_host_add(hostnqn, &hostid); if (IS_ERR(opts->host)) { ret = PTR_ERR(opts->host); opts->host = NULL; goto out; } out: kfree(options); return ret; } void nvmf_set_io_queues(struct nvmf_ctrl_options *opts, u32 nr_io_queues, u32 io_queues[HCTX_MAX_TYPES]) { if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) { /* * separate read/write queues * hand out dedicated default queues only after we have * sufficient read queues. */ io_queues[HCTX_TYPE_READ] = opts->nr_io_queues; nr_io_queues -= io_queues[HCTX_TYPE_READ]; io_queues[HCTX_TYPE_DEFAULT] = min(opts->nr_write_queues, nr_io_queues); nr_io_queues -= io_queues[HCTX_TYPE_DEFAULT]; } else { /* * shared read/write queues * either no write queues were requested, or we don't have * sufficient queue count to have dedicated default queues. */ io_queues[HCTX_TYPE_DEFAULT] = min(opts->nr_io_queues, nr_io_queues); nr_io_queues -= io_queues[HCTX_TYPE_DEFAULT]; } if (opts->nr_poll_queues && nr_io_queues) { /* map dedicated poll queues only if we have queues left */ io_queues[HCTX_TYPE_POLL] = min(opts->nr_poll_queues, nr_io_queues); } } EXPORT_SYMBOL_GPL(nvmf_set_io_queues); void nvmf_map_queues(struct blk_mq_tag_set *set, struct nvme_ctrl *ctrl, u32 io_queues[HCTX_MAX_TYPES]) { struct nvmf_ctrl_options *opts = ctrl->opts; if (opts->nr_write_queues && io_queues[HCTX_TYPE_READ]) { /* separate read/write queues */ set->map[HCTX_TYPE_DEFAULT].nr_queues = io_queues[HCTX_TYPE_DEFAULT]; set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; set->map[HCTX_TYPE_READ].nr_queues = io_queues[HCTX_TYPE_READ]; set->map[HCTX_TYPE_READ].queue_offset = io_queues[HCTX_TYPE_DEFAULT]; } else { /* shared read/write queues */ set->map[HCTX_TYPE_DEFAULT].nr_queues = io_queues[HCTX_TYPE_DEFAULT]; set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; set->map[HCTX_TYPE_READ].nr_queues = io_queues[HCTX_TYPE_DEFAULT]; set->map[HCTX_TYPE_READ].queue_offset = 0; } blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); blk_mq_map_queues(&set->map[HCTX_TYPE_READ]); if (opts->nr_poll_queues && io_queues[HCTX_TYPE_POLL]) { /* map dedicated poll queues only if we have queues left */ set->map[HCTX_TYPE_POLL].nr_queues = io_queues[HCTX_TYPE_POLL]; set->map[HCTX_TYPE_POLL].queue_offset = io_queues[HCTX_TYPE_DEFAULT] + io_queues[HCTX_TYPE_READ]; blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]); } dev_info(ctrl->device, "mapped %d/%d/%d default/read/poll queues.\n", io_queues[HCTX_TYPE_DEFAULT], io_queues[HCTX_TYPE_READ], io_queues[HCTX_TYPE_POLL]); } EXPORT_SYMBOL_GPL(nvmf_map_queues); static int nvmf_check_required_opts(struct nvmf_ctrl_options *opts, unsigned int required_opts) { if ((opts->mask & required_opts) != required_opts) { unsigned int i; for (i = 0; i < ARRAY_SIZE(opt_tokens); i++) { if ((opt_tokens[i].token & required_opts) && !(opt_tokens[i].token & opts->mask)) { pr_warn("missing parameter '%s'\n", opt_tokens[i].pattern); } } return -EINVAL; } return 0; } bool nvmf_ip_options_match(struct nvme_ctrl *ctrl, struct nvmf_ctrl_options *opts) { if (!nvmf_ctlr_matches_baseopts(ctrl, opts) || strcmp(opts->traddr, ctrl->opts->traddr) || strcmp(opts->trsvcid, ctrl->opts->trsvcid)) return false; /* * Checking the local address or host interfaces is rough. * * In most cases, none is specified and the host port or * host interface is selected by the stack. * * Assume no match if: * - local address or host interface is specified and address * or host interface is not the same * - local address or host interface is not specified but * remote is, or vice versa (admin using specific * host_traddr/host_iface when it matters). */ if ((opts->mask & NVMF_OPT_HOST_TRADDR) && (ctrl->opts->mask & NVMF_OPT_HOST_TRADDR)) { if (strcmp(opts->host_traddr, ctrl->opts->host_traddr)) return false; } else if ((opts->mask & NVMF_OPT_HOST_TRADDR) || (ctrl->opts->mask & NVMF_OPT_HOST_TRADDR)) { return false; } if ((opts->mask & NVMF_OPT_HOST_IFACE) && (ctrl->opts->mask & NVMF_OPT_HOST_IFACE)) { if (strcmp(opts->host_iface, ctrl->opts->host_iface)) return false; } else if ((opts->mask & NVMF_OPT_HOST_IFACE) || (ctrl->opts->mask & NVMF_OPT_HOST_IFACE)) { return false; } return true; } EXPORT_SYMBOL_GPL(nvmf_ip_options_match); static int nvmf_check_allowed_opts(struct nvmf_ctrl_options *opts, unsigned int allowed_opts) { if (opts->mask & ~allowed_opts) { unsigned int i; for (i = 0; i < ARRAY_SIZE(opt_tokens); i++) { if ((opt_tokens[i].token & opts->mask) && (opt_tokens[i].token & ~allowed_opts)) { pr_warn("invalid parameter '%s'\n", opt_tokens[i].pattern); } } return -EINVAL; } return 0; } void nvmf_free_options(struct nvmf_ctrl_options *opts) { nvmf_host_put(opts->host); key_put(opts->keyring); key_put(opts->tls_key); kfree(opts->transport); kfree(opts->traddr); kfree(opts->trsvcid); kfree(opts->subsysnqn); kfree(opts->host_traddr); kfree(opts->host_iface); kfree(opts->dhchap_secret); kfree(opts->dhchap_ctrl_secret); kfree(opts); } EXPORT_SYMBOL_GPL(nvmf_free_options); #define NVMF_REQUIRED_OPTS (NVMF_OPT_TRANSPORT | NVMF_OPT_NQN) #define NVMF_ALLOWED_OPTS (NVMF_OPT_QUEUE_SIZE | NVMF_OPT_NR_IO_QUEUES | \ NVMF_OPT_KATO | NVMF_OPT_HOSTNQN | \ NVMF_OPT_HOST_ID | NVMF_OPT_DUP_CONNECT |\ NVMF_OPT_DISABLE_SQFLOW | NVMF_OPT_DISCOVERY |\ NVMF_OPT_FAIL_FAST_TMO | NVMF_OPT_DHCHAP_SECRET |\ NVMF_OPT_DHCHAP_CTRL_SECRET) static struct nvme_ctrl * nvmf_create_ctrl(struct device *dev, const char *buf) { struct nvmf_ctrl_options *opts; struct nvmf_transport_ops *ops; struct nvme_ctrl *ctrl; int ret; opts = kzalloc(sizeof(*opts), GFP_KERNEL); if (!opts) return ERR_PTR(-ENOMEM); ret = nvmf_parse_options(opts, buf); if (ret) goto out_free_opts; request_module("nvme-%s", opts->transport); /* * Check the generic options first as we need a valid transport for * the lookup below. Then clear the generic flags so that transport * drivers don't have to care about them. */ ret = nvmf_check_required_opts(opts, NVMF_REQUIRED_OPTS); if (ret) goto out_free_opts; opts->mask &= ~NVMF_REQUIRED_OPTS; down_read(&nvmf_transports_rwsem); ops = nvmf_lookup_transport(opts); if (!ops) { pr_info("no handler found for transport %s.\n", opts->transport); ret = -EINVAL; goto out_unlock; } if (!try_module_get(ops->module)) { ret = -EBUSY; goto out_unlock; } up_read(&nvmf_transports_rwsem); ret = nvmf_check_required_opts(opts, ops->required_opts); if (ret) goto out_module_put; ret = nvmf_check_allowed_opts(opts, NVMF_ALLOWED_OPTS | ops->allowed_opts | ops->required_opts); if (ret) goto out_module_put; ctrl = ops->create_ctrl(dev, opts); if (IS_ERR(ctrl)) { ret = PTR_ERR(ctrl); goto out_module_put; } module_put(ops->module); return ctrl; out_module_put: module_put(ops->module); goto out_free_opts; out_unlock: up_read(&nvmf_transports_rwsem); out_free_opts: nvmf_free_options(opts); return ERR_PTR(ret); } static const struct class nvmf_class = { .name = "nvme-fabrics", }; static struct device *nvmf_device; static DEFINE_MUTEX(nvmf_dev_mutex); static ssize_t nvmf_dev_write(struct file *file, const char __user *ubuf, size_t count, loff_t *pos) { struct seq_file *seq_file = file->private_data; struct nvme_ctrl *ctrl; const char *buf; int ret = 0; if (count > PAGE_SIZE) return -ENOMEM; buf = memdup_user_nul(ubuf, count); if (IS_ERR(buf)) return PTR_ERR(buf); mutex_lock(&nvmf_dev_mutex); if (seq_file->private) { ret = -EINVAL; goto out_unlock; } ctrl = nvmf_create_ctrl(nvmf_device, buf); if (IS_ERR(ctrl)) { ret = PTR_ERR(ctrl); goto out_unlock; } seq_file->private = ctrl; out_unlock: mutex_unlock(&nvmf_dev_mutex); kfree(buf); return ret ? ret : count; } static void __nvmf_concat_opt_tokens(struct seq_file *seq_file) { const struct match_token *tok; int idx; /* * Add dummy entries for instance and cntlid to * signal an invalid/non-existing controller */ seq_puts(seq_file, "instance=-1,cntlid=-1"); for (idx = 0; idx < ARRAY_SIZE(opt_tokens); idx++) { tok = &opt_tokens[idx]; if (tok->token == NVMF_OPT_ERR) continue; seq_puts(seq_file, ","); seq_puts(seq_file, tok->pattern); } seq_puts(seq_file, "\n"); } static int nvmf_dev_show(struct seq_file *seq_file, void *private) { struct nvme_ctrl *ctrl; mutex_lock(&nvmf_dev_mutex); ctrl = seq_file->private; if (!ctrl) { __nvmf_concat_opt_tokens(seq_file); goto out_unlock; } seq_printf(seq_file, "instance=%d,cntlid=%d\n", ctrl->instance, ctrl->cntlid); out_unlock: mutex_unlock(&nvmf_dev_mutex); return 0; } static int nvmf_dev_open(struct inode *inode, struct file *file) { /* * The miscdevice code initializes file->private_data, but doesn't * make use of it later. */ file->private_data = NULL; return single_open(file, nvmf_dev_show, NULL); } static int nvmf_dev_release(struct inode *inode, struct file *file) { struct seq_file *seq_file = file->private_data; struct nvme_ctrl *ctrl = seq_file->private; if (ctrl) nvme_put_ctrl(ctrl); return single_release(inode, file); } static const struct file_operations nvmf_dev_fops = { .owner = THIS_MODULE, .write = nvmf_dev_write, .read = seq_read, .open = nvmf_dev_open, .release = nvmf_dev_release, }; static struct miscdevice nvmf_misc = { .minor = MISC_DYNAMIC_MINOR, .name = "nvme-fabrics", .fops = &nvmf_dev_fops, }; static int __init nvmf_init(void) { int ret; nvmf_default_host = nvmf_host_default(); if (!nvmf_default_host) return -ENOMEM; ret = class_register(&nvmf_class); if (ret) { pr_err("couldn't register class nvme-fabrics\n"); goto out_free_host; } nvmf_device = device_create(&nvmf_class, NULL, MKDEV(0, 0), NULL, "ctl"); if (IS_ERR(nvmf_device)) { pr_err("couldn't create nvme-fabrics device!\n"); ret = PTR_ERR(nvmf_device); goto out_destroy_class; } ret = misc_register(&nvmf_misc); if (ret) { pr_err("couldn't register misc device: %d\n", ret); goto out_destroy_device; } return 0; out_destroy_device: device_destroy(&nvmf_class, MKDEV(0, 0)); out_destroy_class: class_unregister(&nvmf_class); out_free_host: nvmf_host_put(nvmf_default_host); return ret; } static void __exit nvmf_exit(void) { misc_deregister(&nvmf_misc); device_destroy(&nvmf_class, MKDEV(0, 0)); class_unregister(&nvmf_class); nvmf_host_put(nvmf_default_host); BUILD_BUG_ON(sizeof(struct nvmf_common_command) != 64); BUILD_BUG_ON(sizeof(struct nvmf_connect_command) != 64); BUILD_BUG_ON(sizeof(struct nvmf_property_get_command) != 64); BUILD_BUG_ON(sizeof(struct nvmf_property_set_command) != 64); BUILD_BUG_ON(sizeof(struct nvmf_auth_send_command) != 64); BUILD_BUG_ON(sizeof(struct nvmf_auth_receive_command) != 64); BUILD_BUG_ON(sizeof(struct nvmf_connect_data) != 1024); BUILD_BUG_ON(sizeof(struct nvmf_auth_dhchap_negotiate_data) != 8); BUILD_BUG_ON(sizeof(struct nvmf_auth_dhchap_challenge_data) != 16); BUILD_BUG_ON(sizeof(struct nvmf_auth_dhchap_reply_data) != 16); BUILD_BUG_ON(sizeof(struct nvmf_auth_dhchap_success1_data) != 16); BUILD_BUG_ON(sizeof(struct nvmf_auth_dhchap_success2_data) != 16); } MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("NVMe host fabrics library"); module_init(nvmf_init); module_exit(nvmf_exit);