/* * Copyright (c) 2014 Redpine Signals Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #include #include #include "rsi_sdio.h" #include "rsi_common.h" /** * rsi_sdio_master_access_msword() - This function sets the AHB master access * MS word in the SDIO slave registers. * @adapter: Pointer to the adapter structure. * @ms_word: ms word need to be initialized. * * Return: status: 0 on success, -1 on failure. */ int rsi_sdio_master_access_msword(struct rsi_hw *adapter, u16 ms_word) { u8 byte; u8 function = 0; int status = 0; byte = (u8)(ms_word & 0x00FF); rsi_dbg(INIT_ZONE, "%s: MASTER_ACCESS_MSBYTE:0x%x\n", __func__, byte); status = rsi_sdio_write_register(adapter, function, SDIO_MASTER_ACCESS_MSBYTE, &byte); if (status) { rsi_dbg(ERR_ZONE, "%s: fail to access MASTER_ACCESS_MSBYTE\n", __func__); return -1; } byte = (u8)(ms_word >> 8); rsi_dbg(INIT_ZONE, "%s:MASTER_ACCESS_LSBYTE:0x%x\n", __func__, byte); status = rsi_sdio_write_register(adapter, function, SDIO_MASTER_ACCESS_LSBYTE, &byte); return status; } static void rsi_rx_handler(struct rsi_hw *adapter); void rsi_sdio_rx_thread(struct rsi_common *common) { struct rsi_hw *adapter = common->priv; struct rsi_91x_sdiodev *sdev = adapter->rsi_dev; do { rsi_wait_event(&sdev->rx_thread.event, EVENT_WAIT_FOREVER); rsi_reset_event(&sdev->rx_thread.event); rsi_rx_handler(adapter); } while (!atomic_read(&sdev->rx_thread.thread_done)); rsi_dbg(INFO_ZONE, "%s: Terminated SDIO RX thread\n", __func__); atomic_inc(&sdev->rx_thread.thread_done); kthread_complete_and_exit(&sdev->rx_thread.completion, 0); } /** * rsi_process_pkt() - This Function reads rx_blocks register and figures out * the size of the rx pkt. * @common: Pointer to the driver private structure. * * Return: 0 on success, -1 on failure. */ static int rsi_process_pkt(struct rsi_common *common) { struct rsi_hw *adapter = common->priv; struct rsi_91x_sdiodev *dev = adapter->rsi_dev; u8 num_blks = 0; u32 rcv_pkt_len = 0; int status = 0; u8 value = 0; num_blks = ((adapter->interrupt_status & 1) | ((adapter->interrupt_status >> RECV_NUM_BLOCKS) << 1)); if (!num_blks) { status = rsi_sdio_read_register(adapter, SDIO_RX_NUM_BLOCKS_REG, &value); if (status) { rsi_dbg(ERR_ZONE, "%s: Failed to read pkt length from the card:\n", __func__); return status; } num_blks = value & 0x1f; } if (dev->write_fail == 2) rsi_sdio_ack_intr(common->priv, (1 << MSDU_PKT_PENDING)); if (unlikely(!num_blks)) { dev->write_fail = 2; return -1; } rcv_pkt_len = (num_blks * 256); status = rsi_sdio_host_intf_read_pkt(adapter, dev->pktbuffer, rcv_pkt_len); if (status) { rsi_dbg(ERR_ZONE, "%s: Failed to read packet from card\n", __func__); return status; } status = rsi_read_pkt(common, dev->pktbuffer, rcv_pkt_len); if (status) { rsi_dbg(ERR_ZONE, "Failed to read the packet\n"); return status; } return 0; } /** * rsi_init_sdio_slave_regs() - This function does the actual initialization * of SDBUS slave registers. * @adapter: Pointer to the adapter structure. * * Return: status: 0 on success, -1 on failure. */ int rsi_init_sdio_slave_regs(struct rsi_hw *adapter) { struct rsi_91x_sdiodev *dev = adapter->rsi_dev; u8 function = 0; u8 byte; int status = 0; if (dev->next_read_delay) { byte = dev->next_read_delay; status = rsi_sdio_write_register(adapter, function, SDIO_NXT_RD_DELAY2, &byte); if (status) { rsi_dbg(ERR_ZONE, "%s: Failed to write SDIO_NXT_RD_DELAY2\n", __func__); return -1; } } if (dev->sdio_high_speed_enable) { rsi_dbg(INIT_ZONE, "%s: Enabling SDIO High speed\n", __func__); byte = 0x3; status = rsi_sdio_write_register(adapter, function, SDIO_REG_HIGH_SPEED, &byte); if (status) { rsi_dbg(ERR_ZONE, "%s: Failed to enable SDIO high speed\n", __func__); return -1; } } /* This tells SDIO FIFO when to start read to host */ rsi_dbg(INIT_ZONE, "%s: Initializing SDIO read start level\n", __func__); byte = 0x24; status = rsi_sdio_write_register(adapter, function, SDIO_READ_START_LVL, &byte); if (status) { rsi_dbg(ERR_ZONE, "%s: Failed to write SDIO_READ_START_LVL\n", __func__); return -1; } rsi_dbg(INIT_ZONE, "%s: Initializing FIFO ctrl registers\n", __func__); byte = (128 - 32); status = rsi_sdio_write_register(adapter, function, SDIO_READ_FIFO_CTL, &byte); if (status) { rsi_dbg(ERR_ZONE, "%s: Failed to write SDIO_READ_FIFO_CTL\n", __func__); return -1; } byte = 32; status = rsi_sdio_write_register(adapter, function, SDIO_WRITE_FIFO_CTL, &byte); if (status) { rsi_dbg(ERR_ZONE, "%s: Failed to write SDIO_WRITE_FIFO_CTL\n", __func__); return -1; } return 0; } /** * rsi_rx_handler() - Read and process SDIO interrupts. * @adapter: Pointer to the adapter structure. * * Return: None. */ static void rsi_rx_handler(struct rsi_hw *adapter) { struct rsi_common *common = adapter->priv; struct rsi_91x_sdiodev *dev = adapter->rsi_dev; int status; u8 isr_status = 0; u8 fw_status = 0; dev->rx_info.sdio_int_counter++; do { mutex_lock(&common->rx_lock); status = rsi_sdio_read_register(common->priv, RSI_FN1_INT_REGISTER, &isr_status); if (status) { rsi_dbg(ERR_ZONE, "%s: Failed to Read Intr Status Register\n", __func__); mutex_unlock(&common->rx_lock); return; } adapter->interrupt_status = isr_status; if (isr_status == 0) { rsi_set_event(&common->tx_thread.event); dev->rx_info.sdio_intr_status_zero++; mutex_unlock(&common->rx_lock); return; } rsi_dbg(ISR_ZONE, "%s: Intr_status = %x %d %d\n", __func__, isr_status, (1 << MSDU_PKT_PENDING), (1 << FW_ASSERT_IND)); if (isr_status & BIT(PKT_BUFF_AVAILABLE)) { status = rsi_sdio_check_buffer_status(adapter, 0); if (status < 0) rsi_dbg(ERR_ZONE, "%s: Failed to check buffer status\n", __func__); rsi_sdio_ack_intr(common->priv, BIT(PKT_BUFF_AVAILABLE)); rsi_set_event(&common->tx_thread.event); rsi_dbg(ISR_ZONE, "%s: ==> BUFFER_AVAILABLE <==\n", __func__); dev->buff_status_updated = true; isr_status &= ~BIT(PKT_BUFF_AVAILABLE); } if (isr_status & BIT(FW_ASSERT_IND)) { rsi_dbg(ERR_ZONE, "%s: ==> FIRMWARE Assert <==\n", __func__); status = rsi_sdio_read_register(common->priv, SDIO_FW_STATUS_REG, &fw_status); if (status) { rsi_dbg(ERR_ZONE, "%s: Failed to read f/w reg\n", __func__); } else { rsi_dbg(ERR_ZONE, "%s: Firmware Status is 0x%x\n", __func__, fw_status); rsi_sdio_ack_intr(common->priv, BIT(FW_ASSERT_IND)); } common->fsm_state = FSM_CARD_NOT_READY; isr_status &= ~BIT(FW_ASSERT_IND); } if (isr_status & BIT(MSDU_PKT_PENDING)) { rsi_dbg(ISR_ZONE, "Pkt pending interrupt\n"); dev->rx_info.total_sdio_msdu_pending_intr++; status = rsi_process_pkt(common); if (status) { rsi_dbg(ERR_ZONE, "%s: Failed to read pkt\n", __func__); mutex_unlock(&common->rx_lock); return; } isr_status &= ~BIT(MSDU_PKT_PENDING); } if (isr_status) { rsi_sdio_ack_intr(common->priv, isr_status); dev->rx_info.total_sdio_unknown_intr++; isr_status = 0; rsi_dbg(ISR_ZONE, "Unknown Interrupt %x\n", isr_status); } mutex_unlock(&common->rx_lock); } while (1); } /* This function is used to read buffer status register and * set relevant fields in rsi_91x_sdiodev struct. */ int rsi_sdio_check_buffer_status(struct rsi_hw *adapter, u8 q_num) { struct rsi_common *common = adapter->priv; struct rsi_91x_sdiodev *dev = adapter->rsi_dev; u8 buf_status = 0; int status = 0; static int counter = 4; if (!dev->buff_status_updated && counter) { counter--; goto out; } dev->buff_status_updated = false; status = rsi_sdio_read_register(common->priv, RSI_DEVICE_BUFFER_STATUS_REGISTER, &buf_status); if (status) { rsi_dbg(ERR_ZONE, "%s: Failed to read status register\n", __func__); return -1; } if (buf_status & (BIT(PKT_MGMT_BUFF_FULL))) { if (!dev->rx_info.mgmt_buffer_full) dev->rx_info.mgmt_buf_full_counter++; dev->rx_info.mgmt_buffer_full = true; } else { dev->rx_info.mgmt_buffer_full = false; } if (buf_status & (BIT(PKT_BUFF_FULL))) { if (!dev->rx_info.buffer_full) dev->rx_info.buf_full_counter++; dev->rx_info.buffer_full = true; } else { dev->rx_info.buffer_full = false; } if (buf_status & (BIT(PKT_BUFF_SEMI_FULL))) { if (!dev->rx_info.semi_buffer_full) dev->rx_info.buf_semi_full_counter++; dev->rx_info.semi_buffer_full = true; } else { dev->rx_info.semi_buffer_full = false; } if (dev->rx_info.mgmt_buffer_full || dev->rx_info.buf_full_counter) counter = 1; else counter = 4; out: if ((q_num == MGMT_SOFT_Q) && (dev->rx_info.mgmt_buffer_full)) return QUEUE_FULL; if ((q_num < MGMT_SOFT_Q) && (dev->rx_info.buffer_full)) return QUEUE_FULL; return QUEUE_NOT_FULL; } /** * rsi_sdio_determine_event_timeout() - This Function determines the event * timeout duration. * @adapter: Pointer to the adapter structure. * * Return: timeout duration is returned. */ int rsi_sdio_determine_event_timeout(struct rsi_hw *adapter) { struct rsi_91x_sdiodev *dev = adapter->rsi_dev; /* Once buffer full is seen, event timeout to occur every 2 msecs */ if (dev->rx_info.buffer_full) return 2; return EVENT_WAIT_FOREVER; }