// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause /* Copyright(c) 2023 Realtek Corporation */ #include "debug.h" #include "efuse.h" #include "mac.h" #include "reg.h" #define EFUSE_EXTERNALPN_ADDR_BE 0x1580 #define EFUSE_B1_MSSDEVTYPE_MASK GENMASK(3, 0) #define EFUSE_B1_MSSCUSTIDX0_MASK GENMASK(7, 4) #define EFUSE_SERIALNUM_ADDR_BE 0x1581 #define EFUSE_B2_MSSKEYNUM_MASK GENMASK(3, 0) #define EFUSE_B2_MSSCUSTIDX1_MASK BIT(6) #define EFUSE_SB_CRYP_SEL_ADDR 0x1582 #define EFUSE_SB_CRYP_SEL_SIZE 2 #define EFUSE_SB_CRYP_SEL_DEFAULT 0xFFFF #define SB_SEL_MGN_MAX_SIZE 2 #define EFUSE_SEC_BE_START 0x1580 #define EFUSE_SEC_BE_SIZE 4 enum rtw89_efuse_mss_dev_type { MSS_DEV_TYPE_FWSEC_DEF = 0xF, MSS_DEV_TYPE_FWSEC_WINLIN_INBOX = 0xC, MSS_DEV_TYPE_FWSEC_NONLIN_INBOX_NON_COB = 0xA, MSS_DEV_TYPE_FWSEC_NONLIN_INBOX_COB = 0x9, MSS_DEV_TYPE_FWSEC_NONWIN_INBOX = 0x6, }; static const u32 sb_sel_mgn[SB_SEL_MGN_MAX_SIZE] = { 0x8000100, 0xC000180 }; static void rtw89_enable_efuse_pwr_cut_ddv_be(struct rtw89_dev *rtwdev) { const struct rtw89_chip_info *chip = rtwdev->chip; struct rtw89_hal *hal = &rtwdev->hal; bool aphy_patch = true; if (chip->chip_id == RTL8922A && hal->cv == CHIP_CAV) aphy_patch = false; rtw89_write8_set(rtwdev, R_BE_PMC_DBG_CTRL2, B_BE_SYSON_DIS_PMCR_BE_WRMSK); if (aphy_patch) { rtw89_write16_set(rtwdev, R_BE_SYS_ISO_CTRL, B_BE_PWC_EV2EF_S); mdelay(1); rtw89_write16_set(rtwdev, R_BE_SYS_ISO_CTRL, B_BE_PWC_EV2EF_B); rtw89_write16_clr(rtwdev, R_BE_SYS_ISO_CTRL, B_BE_ISO_EB2CORE); } rtw89_write32_set(rtwdev, R_BE_EFUSE_CTRL_2_V1, B_BE_EF_BURST); } static void rtw89_disable_efuse_pwr_cut_ddv_be(struct rtw89_dev *rtwdev) { const struct rtw89_chip_info *chip = rtwdev->chip; struct rtw89_hal *hal = &rtwdev->hal; bool aphy_patch = true; if (chip->chip_id == RTL8922A && hal->cv == CHIP_CAV) aphy_patch = false; if (aphy_patch) { rtw89_write16_set(rtwdev, R_BE_SYS_ISO_CTRL, B_BE_ISO_EB2CORE); rtw89_write16_clr(rtwdev, R_BE_SYS_ISO_CTRL, B_BE_PWC_EV2EF_B); mdelay(1); rtw89_write16_clr(rtwdev, R_BE_SYS_ISO_CTRL, B_BE_PWC_EV2EF_S); } rtw89_write8_clr(rtwdev, R_BE_PMC_DBG_CTRL2, B_BE_SYSON_DIS_PMCR_BE_WRMSK); rtw89_write32_clr(rtwdev, R_BE_EFUSE_CTRL_2_V1, B_BE_EF_BURST); } static int rtw89_dump_physical_efuse_map_ddv_be(struct rtw89_dev *rtwdev, u8 *map, u32 dump_addr, u32 dump_size) { u32 efuse_ctl; u32 addr; u32 data; int ret; if (!IS_ALIGNED(dump_addr, 4) || !IS_ALIGNED(dump_size, 4)) { rtw89_err(rtwdev, "Efuse addr 0x%x or size 0x%x not aligned\n", dump_addr, dump_size); return -EINVAL; } rtw89_enable_efuse_pwr_cut_ddv_be(rtwdev); for (addr = dump_addr; addr < dump_addr + dump_size; addr += 4, map += 4) { efuse_ctl = u32_encode_bits(addr, B_BE_EF_ADDR_MASK); rtw89_write32(rtwdev, R_BE_EFUSE_CTRL, efuse_ctl & ~B_BE_EF_RDY); ret = read_poll_timeout_atomic(rtw89_read32, efuse_ctl, efuse_ctl & B_BE_EF_RDY, 1, 1000000, true, rtwdev, R_BE_EFUSE_CTRL); if (ret) return -EBUSY; data = rtw89_read32(rtwdev, R_BE_EFUSE_CTRL_1_V1); *((__le32 *)map) = cpu_to_le32(data); } rtw89_disable_efuse_pwr_cut_ddv_be(rtwdev); return 0; } static int rtw89_dump_physical_efuse_map_dav_be(struct rtw89_dev *rtwdev, u8 *map, u32 dump_addr, u32 dump_size) { u32 addr; u8 val8; int err; int ret; for (addr = dump_addr; addr < dump_addr + dump_size; addr++) { ret = rtw89_mac_write_xtal_si(rtwdev, XTAL_SI_CTRL, 0x40, FULL_BIT_MASK); if (ret) return ret; ret = rtw89_mac_write_xtal_si(rtwdev, XTAL_SI_LOW_ADDR, addr & 0xff, XTAL_SI_LOW_ADDR_MASK); if (ret) return ret; ret = rtw89_mac_write_xtal_si(rtwdev, XTAL_SI_CTRL, addr >> 8, XTAL_SI_HIGH_ADDR_MASK); if (ret) return ret; ret = rtw89_mac_write_xtal_si(rtwdev, XTAL_SI_CTRL, 0, XTAL_SI_MODE_SEL_MASK); if (ret) return ret; ret = read_poll_timeout_atomic(rtw89_mac_read_xtal_si, err, !err && (val8 & XTAL_SI_RDY), 1, 10000, false, rtwdev, XTAL_SI_CTRL, &val8); if (ret) { rtw89_warn(rtwdev, "failed to read dav efuse\n"); return ret; } ret = rtw89_mac_read_xtal_si(rtwdev, XTAL_SI_READ_VAL, &val8); if (ret) return ret; *map++ = val8; } return 0; } int rtw89_cnv_efuse_state_be(struct rtw89_dev *rtwdev, bool idle) { u32 val; int ret = 0; if (idle) { rtw89_write32_set(rtwdev, R_BE_WL_BT_PWR_CTRL, B_BE_BT_DISN_EN); } else { rtw89_write32_clr(rtwdev, R_BE_WL_BT_PWR_CTRL, B_BE_BT_DISN_EN); ret = read_poll_timeout(rtw89_read32_mask, val, val == MAC_AX_SYS_ACT, 50, 5000, false, rtwdev, R_BE_IC_PWR_STATE, B_BE_WHOLE_SYS_PWR_STE_MASK); if (ret) rtw89_warn(rtwdev, "failed to convert efuse state\n"); } return ret; } static int rtw89_dump_physical_efuse_map_be(struct rtw89_dev *rtwdev, u8 *map, u32 dump_addr, u32 dump_size, bool dav) { int ret; if (!map || dump_size == 0) return 0; rtw89_cnv_efuse_state_be(rtwdev, false); if (dav) { ret = rtw89_dump_physical_efuse_map_dav_be(rtwdev, map, dump_addr, dump_size); if (ret) return ret; rtw89_hex_dump(rtwdev, RTW89_DBG_FW, "phy_map dav: ", map, dump_size); } else { ret = rtw89_dump_physical_efuse_map_ddv_be(rtwdev, map, dump_addr, dump_size); if (ret) return ret; rtw89_hex_dump(rtwdev, RTW89_DBG_FW, "phy_map ddv: ", map, dump_size); } rtw89_cnv_efuse_state_be(rtwdev, true); return 0; } #define EFUSE_HDR_CONST_MASK GENMASK(23, 20) #define EFUSE_HDR_PAGE_MASK GENMASK(19, 17) #define EFUSE_HDR_OFFSET_MASK GENMASK(16, 4) #define EFUSE_HDR_OFFSET_DAV_MASK GENMASK(11, 4) #define EFUSE_HDR_WORD_EN_MASK GENMASK(3, 0) #define invalid_efuse_header_be(hdr1, hdr2, hdr3) \ ((hdr1) == 0xff || (hdr2) == 0xff || (hdr3) == 0xff) #define invalid_efuse_content_be(word_en, i) \ (((word_en) & BIT(i)) != 0x0) #define get_efuse_blk_idx_be(hdr1, hdr2, hdr3) \ (((hdr1) << 16) | ((hdr2) << 8) | (hdr3)) #define block_idx_to_logical_idx_be(blk_idx, i) \ (((blk_idx) << 3) + ((i) << 1)) #define invalid_efuse_header_dav_be(hdr1, hdr2) \ ((hdr1) == 0xff || (hdr2) == 0xff) #define get_efuse_blk_idx_dav_be(hdr1, hdr2) \ (((hdr1) << 8) | (hdr2)) static int rtw89_eeprom_parser_be(struct rtw89_dev *rtwdev, const u8 *phy_map, u32 phy_size, u8 *log_map, const struct rtw89_efuse_block_cfg *efuse_block) { const struct rtw89_chip_info *chip = rtwdev->chip; enum rtw89_efuse_block blk_page, page; u32 size = efuse_block->size; u32 phy_idx, log_idx; u32 hdr, page_offset; u8 hdr1, hdr2, hdr3; u8 i, val0, val1; u32 min, max; u16 blk_idx; u8 word_en; page = u32_get_bits(efuse_block->offset, RTW89_EFUSE_BLOCK_ID_MASK); page_offset = u32_get_bits(efuse_block->offset, RTW89_EFUSE_BLOCK_SIZE_MASK); min = ALIGN_DOWN(page_offset, 2); max = ALIGN(page_offset + size, 2); memset(log_map, 0xff, size); phy_idx = chip->sec_ctrl_efuse_size; do { if (page == RTW89_EFUSE_BLOCK_ADIE) { hdr1 = phy_map[phy_idx]; hdr2 = phy_map[phy_idx + 1]; if (invalid_efuse_header_dav_be(hdr1, hdr2)) break; phy_idx += 2; hdr = get_efuse_blk_idx_dav_be(hdr1, hdr2); blk_page = RTW89_EFUSE_BLOCK_ADIE; blk_idx = u32_get_bits(hdr, EFUSE_HDR_OFFSET_DAV_MASK); word_en = u32_get_bits(hdr, EFUSE_HDR_WORD_EN_MASK); } else { hdr1 = phy_map[phy_idx]; hdr2 = phy_map[phy_idx + 1]; hdr3 = phy_map[phy_idx + 2]; if (invalid_efuse_header_be(hdr1, hdr2, hdr3)) break; phy_idx += 3; hdr = get_efuse_blk_idx_be(hdr1, hdr2, hdr3); blk_page = u32_get_bits(hdr, EFUSE_HDR_PAGE_MASK); blk_idx = u32_get_bits(hdr, EFUSE_HDR_OFFSET_MASK); word_en = u32_get_bits(hdr, EFUSE_HDR_WORD_EN_MASK); } if (blk_idx >= RTW89_EFUSE_MAX_BLOCK_SIZE >> 3) { rtw89_err(rtwdev, "[ERR]efuse idx:0x%X\n", phy_idx - 3); rtw89_err(rtwdev, "[ERR]read hdr:0x%X\n", hdr); return -EINVAL; } for (i = 0; i < 4; i++) { if (invalid_efuse_content_be(word_en, i)) continue; if (phy_idx >= phy_size - 1) return -EINVAL; log_idx = block_idx_to_logical_idx_be(blk_idx, i); if (blk_page == page && log_idx >= min && log_idx < max) { val0 = phy_map[phy_idx]; val1 = phy_map[phy_idx + 1]; if (log_idx == min && page_offset > min) { log_map[log_idx - page_offset + 1] = val1; } else if (log_idx + 2 == max && page_offset + size < max) { log_map[log_idx - page_offset] = val0; } else { log_map[log_idx - page_offset] = val0; log_map[log_idx - page_offset + 1] = val1; } } phy_idx += 2; } } while (phy_idx < phy_size); return 0; } static int rtw89_parse_logical_efuse_block_be(struct rtw89_dev *rtwdev, const u8 *phy_map, u32 phy_size, enum rtw89_efuse_block block) { const struct rtw89_chip_info *chip = rtwdev->chip; const struct rtw89_efuse_block_cfg *efuse_block; u8 *log_map; int ret; efuse_block = &chip->efuse_blocks[block]; log_map = kmalloc(efuse_block->size, GFP_KERNEL); if (!log_map) return -ENOMEM; ret = rtw89_eeprom_parser_be(rtwdev, phy_map, phy_size, log_map, efuse_block); if (ret) { rtw89_warn(rtwdev, "failed to dump efuse logical block %d\n", block); goto out_free; } rtw89_hex_dump(rtwdev, RTW89_DBG_FW, "log_map: ", log_map, efuse_block->size); ret = rtwdev->chip->ops->read_efuse(rtwdev, log_map, block); if (ret) { rtw89_warn(rtwdev, "failed to read efuse map\n"); goto out_free; } out_free: kfree(log_map); return ret; } int rtw89_parse_efuse_map_be(struct rtw89_dev *rtwdev) { u32 phy_size = rtwdev->chip->physical_efuse_size; u32 dav_phy_size = rtwdev->chip->dav_phy_efuse_size; enum rtw89_efuse_block block; u8 *phy_map = NULL; u8 *dav_phy_map = NULL; int ret; if (rtw89_read16(rtwdev, R_BE_SYS_WL_EFUSE_CTRL) & B_BE_AUTOLOAD_SUS) rtwdev->efuse.valid = true; else rtw89_warn(rtwdev, "failed to check efuse autoload\n"); phy_map = kmalloc(phy_size, GFP_KERNEL); if (dav_phy_size) dav_phy_map = kmalloc(dav_phy_size, GFP_KERNEL); if (!phy_map || (dav_phy_size && !dav_phy_map)) { ret = -ENOMEM; goto out_free; } ret = rtw89_dump_physical_efuse_map_be(rtwdev, phy_map, 0, phy_size, false); if (ret) { rtw89_warn(rtwdev, "failed to dump efuse physical map\n"); goto out_free; } ret = rtw89_dump_physical_efuse_map_be(rtwdev, dav_phy_map, 0, dav_phy_size, true); if (ret) { rtw89_warn(rtwdev, "failed to dump efuse dav physical map\n"); goto out_free; } if (rtwdev->hci.type == RTW89_HCI_TYPE_USB) block = RTW89_EFUSE_BLOCK_HCI_DIG_USB; else block = RTW89_EFUSE_BLOCK_HCI_DIG_PCIE_SDIO; ret = rtw89_parse_logical_efuse_block_be(rtwdev, phy_map, phy_size, block); if (ret) { rtw89_warn(rtwdev, "failed to parse efuse logic block %d\n", RTW89_EFUSE_BLOCK_HCI_DIG_PCIE_SDIO); goto out_free; } ret = rtw89_parse_logical_efuse_block_be(rtwdev, phy_map, phy_size, RTW89_EFUSE_BLOCK_RF); if (ret) { rtw89_warn(rtwdev, "failed to parse efuse logic block %d\n", RTW89_EFUSE_BLOCK_RF); goto out_free; } out_free: kfree(dav_phy_map); kfree(phy_map); return ret; } int rtw89_parse_phycap_map_be(struct rtw89_dev *rtwdev) { u32 phycap_addr = rtwdev->chip->phycap_addr; u32 phycap_size = rtwdev->chip->phycap_size; u8 *phycap_map = NULL; int ret = 0; if (!phycap_size) return 0; phycap_map = kmalloc(phycap_size, GFP_KERNEL); if (!phycap_map) return -ENOMEM; ret = rtw89_dump_physical_efuse_map_be(rtwdev, phycap_map, phycap_addr, phycap_size, false); if (ret) { rtw89_warn(rtwdev, "failed to dump phycap map\n"); goto out_free; } ret = rtwdev->chip->ops->read_phycap(rtwdev, phycap_map); if (ret) { rtw89_warn(rtwdev, "failed to read phycap map\n"); goto out_free; } out_free: kfree(phycap_map); return ret; } static u16 get_sb_cryp_sel_idx(u16 sb_cryp_sel) { u8 low_bit, high_bit, cnt_zero = 0; u8 idx, sel_form_v, sel_idx_v; u16 sb_cryp_sel_v = 0x0; sel_form_v = u16_get_bits(sb_cryp_sel, MASKBYTE0); sel_idx_v = u16_get_bits(sb_cryp_sel, MASKBYTE1); for (idx = 0; idx < 4; idx++) { low_bit = !!(sel_form_v & BIT(idx)); high_bit = !!(sel_form_v & BIT(7 - idx)); if (low_bit != high_bit) return U16_MAX; if (low_bit) continue; cnt_zero++; if (cnt_zero == 1) sb_cryp_sel_v = idx * 16; else if (cnt_zero > 1) return U16_MAX; } low_bit = u8_get_bits(sel_idx_v, 0x0F); high_bit = u8_get_bits(sel_idx_v, 0xF0); if ((low_bit ^ high_bit) != 0xF) return U16_MAX; return sb_cryp_sel_v + low_bit; } static u8 get_mss_dev_type_idx(struct rtw89_dev *rtwdev, u8 mss_dev_type) { switch (mss_dev_type) { case MSS_DEV_TYPE_FWSEC_WINLIN_INBOX: mss_dev_type = 0x0; break; case MSS_DEV_TYPE_FWSEC_NONLIN_INBOX_NON_COB: mss_dev_type = 0x1; break; case MSS_DEV_TYPE_FWSEC_NONLIN_INBOX_COB: mss_dev_type = 0x2; break; case MSS_DEV_TYPE_FWSEC_NONWIN_INBOX: mss_dev_type = 0x3; break; case MSS_DEV_TYPE_FWSEC_DEF: mss_dev_type = RTW89_FW_MSS_DEV_TYPE_FWSEC_DEF; break; default: rtw89_warn(rtwdev, "unknown mss_dev_type %d", mss_dev_type); mss_dev_type = RTW89_FW_MSS_DEV_TYPE_FWSEC_INV; break; } return mss_dev_type; } int rtw89_efuse_read_fw_secure_be(struct rtw89_dev *rtwdev) { struct rtw89_fw_secure *sec = &rtwdev->fw.sec; u32 sec_addr = EFUSE_SEC_BE_START; u32 sec_size = EFUSE_SEC_BE_SIZE; u16 sb_cryp_sel, sb_cryp_sel_idx; u8 sec_map[EFUSE_SEC_BE_SIZE]; u8 mss_dev_type; u8 b1, b2; int ret; ret = rtw89_dump_physical_efuse_map_be(rtwdev, sec_map, sec_addr, sec_size, false); if (ret) { rtw89_warn(rtwdev, "failed to dump secsel map\n"); return ret; } sb_cryp_sel = sec_map[EFUSE_SB_CRYP_SEL_ADDR - sec_addr] | sec_map[EFUSE_SB_CRYP_SEL_ADDR - sec_addr + 1] << 8; if (sb_cryp_sel == EFUSE_SB_CRYP_SEL_DEFAULT) goto out; sb_cryp_sel_idx = get_sb_cryp_sel_idx(sb_cryp_sel); if (sb_cryp_sel_idx >= SB_SEL_MGN_MAX_SIZE) { rtw89_warn(rtwdev, "invalid SB cryp sel idx %d\n", sb_cryp_sel_idx); goto out; } sec->sb_sel_mgn = sb_sel_mgn[sb_cryp_sel_idx]; b1 = sec_map[EFUSE_EXTERNALPN_ADDR_BE - sec_addr]; b2 = sec_map[EFUSE_SERIALNUM_ADDR_BE - sec_addr]; mss_dev_type = u8_get_bits(b1, EFUSE_B1_MSSDEVTYPE_MASK); sec->mss_cust_idx = 0x1F - (u8_get_bits(b1, EFUSE_B1_MSSCUSTIDX0_MASK) | u8_get_bits(b2, EFUSE_B2_MSSCUSTIDX1_MASK) << 4); sec->mss_key_num = 0xF - u8_get_bits(b2, EFUSE_B2_MSSKEYNUM_MASK); sec->mss_dev_type = get_mss_dev_type_idx(rtwdev, mss_dev_type); if (sec->mss_dev_type == RTW89_FW_MSS_DEV_TYPE_FWSEC_INV) { rtw89_warn(rtwdev, "invalid mss_dev_type %d\n", mss_dev_type); goto out; } sec->secure_boot = true; out: rtw89_debug(rtwdev, RTW89_DBG_FW, "MSS secure_boot=%d dev_type=%d cust_idx=%d key_num=%d\n", sec->secure_boot, sec->mss_dev_type, sec->mss_cust_idx, sec->mss_key_num); return 0; } EXPORT_SYMBOL(rtw89_efuse_read_fw_secure_be);