// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2021 pureLiFi */ #include #include #include #include #include #include #include "chip.h" #include "mac.h" #include "usb.h" static const struct ieee80211_rate plfxlc_rates[] = { { .bitrate = 10, .hw_value = PURELIFI_CCK_RATE_1M, .flags = 0 }, { .bitrate = 20, .hw_value = PURELIFI_CCK_RATE_2M, .hw_value_short = PURELIFI_CCK_RATE_2M | PURELIFI_CCK_PREA_SHORT, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, { .bitrate = 55, .hw_value = PURELIFI_CCK_RATE_5_5M, .hw_value_short = PURELIFI_CCK_RATE_5_5M | PURELIFI_CCK_PREA_SHORT, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, { .bitrate = 110, .hw_value = PURELIFI_CCK_RATE_11M, .hw_value_short = PURELIFI_CCK_RATE_11M | PURELIFI_CCK_PREA_SHORT, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, { .bitrate = 60, .hw_value = PURELIFI_OFDM_RATE_6M, .flags = 0 }, { .bitrate = 90, .hw_value = PURELIFI_OFDM_RATE_9M, .flags = 0 }, { .bitrate = 120, .hw_value = PURELIFI_OFDM_RATE_12M, .flags = 0 }, { .bitrate = 180, .hw_value = PURELIFI_OFDM_RATE_18M, .flags = 0 }, { .bitrate = 240, .hw_value = PURELIFI_OFDM_RATE_24M, .flags = 0 }, { .bitrate = 360, .hw_value = PURELIFI_OFDM_RATE_36M, .flags = 0 }, { .bitrate = 480, .hw_value = PURELIFI_OFDM_RATE_48M, .flags = 0 }, { .bitrate = 540, .hw_value = PURELIFI_OFDM_RATE_54M, .flags = 0 } }; static const struct ieee80211_channel plfxlc_channels[] = { { .center_freq = 2412, .hw_value = 1 }, { .center_freq = 2417, .hw_value = 2 }, { .center_freq = 2422, .hw_value = 3 }, { .center_freq = 2427, .hw_value = 4 }, { .center_freq = 2432, .hw_value = 5 }, { .center_freq = 2437, .hw_value = 6 }, { .center_freq = 2442, .hw_value = 7 }, { .center_freq = 2447, .hw_value = 8 }, { .center_freq = 2452, .hw_value = 9 }, { .center_freq = 2457, .hw_value = 10 }, { .center_freq = 2462, .hw_value = 11 }, { .center_freq = 2467, .hw_value = 12 }, { .center_freq = 2472, .hw_value = 13 }, { .center_freq = 2484, .hw_value = 14 }, }; int plfxlc_mac_preinit_hw(struct ieee80211_hw *hw, const u8 *hw_address) { SET_IEEE80211_PERM_ADDR(hw, hw_address); return 0; } int plfxlc_mac_init_hw(struct ieee80211_hw *hw) { struct plfxlc_mac *mac = plfxlc_hw_mac(hw); struct plfxlc_chip *chip = &mac->chip; int r; r = plfxlc_chip_init_hw(chip); if (r) { dev_warn(plfxlc_mac_dev(mac), "init hw failed (%d)\n", r); return r; } dev_dbg(plfxlc_mac_dev(mac), "irq_disabled (%d)\n", irqs_disabled()); regulatory_hint(hw->wiphy, "00"); return r; } void plfxlc_mac_release(struct plfxlc_mac *mac) { plfxlc_chip_release(&mac->chip); lockdep_assert_held(&mac->lock); } int plfxlc_op_start(struct ieee80211_hw *hw) { plfxlc_hw_mac(hw)->chip.usb.initialized = 1; return 0; } void plfxlc_op_stop(struct ieee80211_hw *hw) { struct plfxlc_mac *mac = plfxlc_hw_mac(hw); clear_bit(PURELIFI_DEVICE_RUNNING, &mac->flags); } int plfxlc_restore_settings(struct plfxlc_mac *mac) { int beacon_interval, beacon_period; struct sk_buff *beacon; spin_lock_irq(&mac->lock); beacon_interval = mac->beacon.interval; beacon_period = mac->beacon.period; spin_unlock_irq(&mac->lock); if (mac->type != NL80211_IFTYPE_ADHOC) return 0; if (mac->vif) { beacon = ieee80211_beacon_get(mac->hw, mac->vif, 0); if (beacon) { /*beacon is hardcoded in firmware */ kfree_skb(beacon); /* Returned skb is used only once and lowlevel * driver is responsible for freeing it. */ } } plfxlc_set_beacon_interval(&mac->chip, beacon_interval, beacon_period, mac->type); spin_lock_irq(&mac->lock); mac->beacon.last_update = jiffies; spin_unlock_irq(&mac->lock); return 0; } static void plfxlc_mac_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb, int ackssi, struct tx_status *tx_status) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); int success = 1; ieee80211_tx_info_clear_status(info); if (tx_status) success = !tx_status->failure; if (success) info->flags |= IEEE80211_TX_STAT_ACK; else info->flags &= ~IEEE80211_TX_STAT_ACK; info->status.ack_signal = 50; ieee80211_tx_status_irqsafe(hw, skb); } void plfxlc_mac_tx_to_dev(struct sk_buff *skb, int error) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_hw *hw = info->rate_driver_data[0]; struct plfxlc_mac *mac = plfxlc_hw_mac(hw); struct sk_buff_head *q = NULL; ieee80211_tx_info_clear_status(info); skb_pull(skb, sizeof(struct plfxlc_ctrlset)); if (unlikely(error || (info->flags & IEEE80211_TX_CTL_NO_ACK))) { ieee80211_tx_status_irqsafe(hw, skb); return; } q = &mac->ack_wait_queue; skb_queue_tail(q, skb); while (skb_queue_len(q)/* > PURELIFI_MAC_MAX_ACK_WAITERS*/) { plfxlc_mac_tx_status(hw, skb_dequeue(q), mac->ack_pending ? mac->ack_signal : 0, NULL); mac->ack_pending = 0; } } static int plfxlc_fill_ctrlset(struct plfxlc_mac *mac, struct sk_buff *skb) { unsigned int frag_len = skb->len; struct plfxlc_ctrlset *cs; u32 temp_payload_len = 0; unsigned int tmp; u32 temp_len = 0; if (skb_headroom(skb) < sizeof(struct plfxlc_ctrlset)) { dev_dbg(plfxlc_mac_dev(mac), "Not enough hroom(1)\n"); return 1; } cs = (void *)skb_push(skb, sizeof(struct plfxlc_ctrlset)); temp_payload_len = frag_len; temp_len = temp_payload_len + sizeof(struct plfxlc_ctrlset) - sizeof(cs->id) - sizeof(cs->len); /* Data packet lengths must be multiple of four bytes and must * not be a multiple of 512 bytes. First, it is attempted to * append the data packet in the tailroom of the skb. In rare * occasions, the tailroom is too small. In this case, the * content of the packet is shifted into the headroom of the skb * by memcpy. Headroom is allocated at startup (below in this * file). Therefore, there will be always enough headroom. The * call skb_headroom is an additional safety which might be * dropped. */ /* check if 32 bit aligned and align data */ tmp = skb->len & 3; if (tmp) { if (skb_tailroom(skb) < (3 - tmp)) { if (skb_headroom(skb) >= 4 - tmp) { u8 len; u8 *src_pt; u8 *dest_pt; len = skb->len; src_pt = skb->data; dest_pt = skb_push(skb, 4 - tmp); memmove(dest_pt, src_pt, len); } else { return -ENOBUFS; } } else { skb_put(skb, 4 - tmp); } temp_len += 4 - tmp; } /* check if not multiple of 512 and align data */ tmp = skb->len & 0x1ff; if (!tmp) { if (skb_tailroom(skb) < 4) { if (skb_headroom(skb) >= 4) { u8 len = skb->len; u8 *src_pt = skb->data; u8 *dest_pt = skb_push(skb, 4); memmove(dest_pt, src_pt, len); } else { /* should never happen because * sufficient headroom was reserved */ return -ENOBUFS; } } else { skb_put(skb, 4); } temp_len += 4; } cs->id = cpu_to_be32(USB_REQ_DATA_TX); cs->len = cpu_to_be32(temp_len); cs->payload_len_nw = cpu_to_be32(temp_payload_len); return 0; } static void plfxlc_op_tx(struct ieee80211_hw *hw, struct ieee80211_tx_control *control, struct sk_buff *skb) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct plfxlc_header *plhdr = (void *)skb->data; struct plfxlc_mac *mac = plfxlc_hw_mac(hw); struct plfxlc_usb *usb = &mac->chip.usb; unsigned long flags; int r; r = plfxlc_fill_ctrlset(mac, skb); if (r) goto fail; info->rate_driver_data[0] = hw; if (plhdr->frametype == IEEE80211_FTYPE_DATA) { u8 *dst_mac = plhdr->dmac; u8 sidx; bool found = false; struct plfxlc_usb_tx *tx = &usb->tx; for (sidx = 0; sidx < MAX_STA_NUM; sidx++) { if (!(tx->station[sidx].flag & STATION_CONNECTED_FLAG)) continue; if (memcmp(tx->station[sidx].mac, dst_mac, ETH_ALEN)) continue; found = true; break; } /* Default to broadcast address for unknown MACs */ if (!found) sidx = STA_BROADCAST_INDEX; /* Stop OS from sending packets, if the queue is half full */ if (skb_queue_len(&tx->station[sidx].data_list) > 60) ieee80211_stop_queues(plfxlc_usb_to_hw(usb)); /* Schedule packet for transmission if queue is not full */ if (skb_queue_len(&tx->station[sidx].data_list) > 256) goto fail; skb_queue_tail(&tx->station[sidx].data_list, skb); plfxlc_send_packet_from_data_queue(usb); } else { spin_lock_irqsave(&usb->tx.lock, flags); r = plfxlc_usb_wreq_async(&mac->chip.usb, skb->data, skb->len, USB_REQ_DATA_TX, plfxlc_tx_urb_complete, skb); spin_unlock_irqrestore(&usb->tx.lock, flags); if (r) goto fail; } return; fail: dev_kfree_skb(skb); } static int plfxlc_filter_ack(struct ieee80211_hw *hw, struct ieee80211_hdr *rx_hdr, struct ieee80211_rx_status *stats) { struct plfxlc_mac *mac = plfxlc_hw_mac(hw); struct sk_buff_head *q; int i, position = 0; unsigned long flags; struct sk_buff *skb; bool found = false; if (!ieee80211_is_ack(rx_hdr->frame_control)) return 0; dev_dbg(plfxlc_mac_dev(mac), "ACK Received\n"); /* code based on zy driver, this logic may need fix */ q = &mac->ack_wait_queue; spin_lock_irqsave(&q->lock, flags); skb_queue_walk(q, skb) { struct ieee80211_hdr *tx_hdr; position++; if (mac->ack_pending && skb_queue_is_first(q, skb)) continue; if (mac->ack_pending == 0) break; tx_hdr = (struct ieee80211_hdr *)skb->data; if (likely(ether_addr_equal(tx_hdr->addr2, rx_hdr->addr1))) { found = 1; break; } } if (found) { for (i = 1; i < position; i++) skb = __skb_dequeue(q); if (i == position) { plfxlc_mac_tx_status(hw, skb, mac->ack_pending ? mac->ack_signal : 0, NULL); mac->ack_pending = 0; } mac->ack_pending = skb_queue_len(q) ? 1 : 0; mac->ack_signal = stats->signal; } spin_unlock_irqrestore(&q->lock, flags); return 1; } int plfxlc_mac_rx(struct ieee80211_hw *hw, const u8 *buffer, unsigned int length) { struct plfxlc_mac *mac = plfxlc_hw_mac(hw); struct ieee80211_rx_status stats; const struct rx_status *status; unsigned int payload_length; struct plfxlc_usb_tx *tx; struct sk_buff *skb; int need_padding; __le16 fc; int sidx; /* Packet blockade during disabled interface. */ if (!mac->vif) return 0; status = (struct rx_status *)buffer; memset(&stats, 0, sizeof(stats)); stats.flag = 0; stats.freq = 2412; stats.band = NL80211_BAND_LC; mac->rssi = -15 * be16_to_cpu(status->rssi) / 10; stats.signal = mac->rssi; if (status->rate_idx > 7) stats.rate_idx = 0; else stats.rate_idx = status->rate_idx; mac->crc_errors = be64_to_cpu(status->crc_error_count); /* TODO bad frame check for CRC error*/ if (plfxlc_filter_ack(hw, (struct ieee80211_hdr *)buffer, &stats) && !mac->pass_ctrl) return 0; buffer += sizeof(struct rx_status); payload_length = get_unaligned_be32(buffer); if (payload_length > 1560) { dev_err(plfxlc_mac_dev(mac), " > MTU %u\n", payload_length); return 0; } buffer += sizeof(u32); fc = get_unaligned((__le16 *)buffer); need_padding = ieee80211_is_data_qos(fc) ^ ieee80211_has_a4(fc); tx = &mac->chip.usb.tx; for (sidx = 0; sidx < MAX_STA_NUM - 1; sidx++) { if (memcmp(&buffer[10], tx->station[sidx].mac, ETH_ALEN)) continue; if (tx->station[sidx].flag & STATION_CONNECTED_FLAG) { tx->station[sidx].flag |= STATION_HEARTBEAT_FLAG; break; } } if (sidx == MAX_STA_NUM - 1) { for (sidx = 0; sidx < MAX_STA_NUM - 1; sidx++) { if (tx->station[sidx].flag & STATION_CONNECTED_FLAG) continue; memcpy(tx->station[sidx].mac, &buffer[10], ETH_ALEN); tx->station[sidx].flag |= STATION_CONNECTED_FLAG; tx->station[sidx].flag |= STATION_HEARTBEAT_FLAG; break; } } switch (buffer[0]) { case IEEE80211_STYPE_PROBE_REQ: dev_dbg(plfxlc_mac_dev(mac), "Probe request\n"); break; case IEEE80211_STYPE_ASSOC_REQ: dev_dbg(plfxlc_mac_dev(mac), "Association request\n"); break; case IEEE80211_STYPE_AUTH: dev_dbg(plfxlc_mac_dev(mac), "Authentication req\n"); break; case IEEE80211_FTYPE_DATA: dev_dbg(plfxlc_mac_dev(mac), "802.11 data frame\n"); break; } skb = dev_alloc_skb(payload_length + (need_padding ? 2 : 0)); if (!skb) return -ENOMEM; if (need_padding) /* Make sure that the payload data is 4 byte aligned. */ skb_reserve(skb, 2); skb_put_data(skb, buffer, payload_length); memcpy(IEEE80211_SKB_RXCB(skb), &stats, sizeof(stats)); ieee80211_rx_irqsafe(hw, skb); return 0; } static int plfxlc_op_add_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct plfxlc_mac *mac = plfxlc_hw_mac(hw); static const char * const iftype80211[] = { [NL80211_IFTYPE_STATION] = "Station", [NL80211_IFTYPE_ADHOC] = "Adhoc" }; if (mac->type != NL80211_IFTYPE_UNSPECIFIED) return -EOPNOTSUPP; if (vif->type == NL80211_IFTYPE_ADHOC || vif->type == NL80211_IFTYPE_STATION) { dev_dbg(plfxlc_mac_dev(mac), "%s %s\n", __func__, iftype80211[vif->type]); mac->type = vif->type; mac->vif = vif; return 0; } dev_dbg(plfxlc_mac_dev(mac), "unsupported iftype\n"); return -EOPNOTSUPP; } static void plfxlc_op_remove_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct plfxlc_mac *mac = plfxlc_hw_mac(hw); mac->type = NL80211_IFTYPE_UNSPECIFIED; mac->vif = NULL; } static int plfxlc_op_config(struct ieee80211_hw *hw, u32 changed) { return 0; } #define SUPPORTED_FIF_FLAGS \ (FIF_ALLMULTI | FIF_FCSFAIL | FIF_CONTROL | \ FIF_OTHER_BSS | FIF_BCN_PRBRESP_PROMISC) static void plfxlc_op_configure_filter(struct ieee80211_hw *hw, unsigned int changed_flags, unsigned int *new_flags, u64 multicast) { struct plfxlc_mc_hash hash = { .low = multicast, .high = multicast >> 32, }; struct plfxlc_mac *mac = plfxlc_hw_mac(hw); unsigned long flags; /* Only deal with supported flags */ *new_flags &= SUPPORTED_FIF_FLAGS; /* If multicast parameter * (as returned by plfxlc_op_prepare_multicast) * has changed, no bit in changed_flags is set. To handle this * situation, we do not return if changed_flags is 0. If we do so, * we will have some issue with IPv6 which uses multicast for link * layer address resolution. */ if (*new_flags & (FIF_ALLMULTI)) plfxlc_mc_add_all(&hash); spin_lock_irqsave(&mac->lock, flags); mac->pass_failed_fcs = !!(*new_flags & FIF_FCSFAIL); mac->pass_ctrl = !!(*new_flags & FIF_CONTROL); mac->multicast_hash = hash; spin_unlock_irqrestore(&mac->lock, flags); /* no handling required for FIF_OTHER_BSS as we don't currently * do BSSID filtering */ /* FIXME: in future it would be nice to enable the probe response * filter (so that the driver doesn't see them) until * FIF_BCN_PRBRESP_PROMISC is set. however due to atomicity here, we'd * have to schedule work to enable prbresp reception, which might * happen too late. For now we'll just listen and forward them all the * time. */ } static void plfxlc_op_bss_info_changed(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_bss_conf *bss_conf, u64 changes) { struct plfxlc_mac *mac = plfxlc_hw_mac(hw); int associated; dev_dbg(plfxlc_mac_dev(mac), "changes: %llx\n", changes); if (mac->type != NL80211_IFTYPE_ADHOC) { /* for STATION */ associated = is_valid_ether_addr(bss_conf->bssid); goto exit_all; } /* for ADHOC */ associated = true; if (changes & BSS_CHANGED_BEACON) { struct sk_buff *beacon = ieee80211_beacon_get(hw, vif, 0); if (beacon) { /*beacon is hardcoded in firmware */ kfree_skb(beacon); /*Returned skb is used only once and * low-level driver is * responsible for freeing it. */ } } if (changes & BSS_CHANGED_BEACON_ENABLED) { u16 interval = 0; u8 period = 0; if (bss_conf->enable_beacon) { period = bss_conf->dtim_period; interval = bss_conf->beacon_int; } spin_lock_irq(&mac->lock); mac->beacon.period = period; mac->beacon.interval = interval; mac->beacon.last_update = jiffies; spin_unlock_irq(&mac->lock); plfxlc_set_beacon_interval(&mac->chip, interval, period, mac->type); } exit_all: spin_lock_irq(&mac->lock); mac->associated = associated; spin_unlock_irq(&mac->lock); } static int plfxlc_get_stats(struct ieee80211_hw *hw, struct ieee80211_low_level_stats *stats) { stats->dot11ACKFailureCount = 0; stats->dot11RTSFailureCount = 0; stats->dot11FCSErrorCount = 0; stats->dot11RTSSuccessCount = 0; return 0; } static const char et_strings[][ETH_GSTRING_LEN] = { "phy_rssi", "phy_rx_crc_err" }; static int plfxlc_get_et_sset_count(struct ieee80211_hw *hw, struct ieee80211_vif *vif, int sset) { if (sset == ETH_SS_STATS) return ARRAY_SIZE(et_strings); return 0; } static void plfxlc_get_et_strings(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u32 sset, u8 *data) { if (sset == ETH_SS_STATS) memcpy(data, et_strings, sizeof(et_strings)); } static void plfxlc_get_et_stats(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ethtool_stats *stats, u64 *data) { struct plfxlc_mac *mac = plfxlc_hw_mac(hw); data[0] = mac->rssi; data[1] = mac->crc_errors; } static int plfxlc_set_rts_threshold(struct ieee80211_hw *hw, u32 value) { return 0; } static const struct ieee80211_ops plfxlc_ops = { .add_chanctx = ieee80211_emulate_add_chanctx, .remove_chanctx = ieee80211_emulate_remove_chanctx, .change_chanctx = ieee80211_emulate_change_chanctx, .switch_vif_chanctx = ieee80211_emulate_switch_vif_chanctx, .tx = plfxlc_op_tx, .wake_tx_queue = ieee80211_handle_wake_tx_queue, .start = plfxlc_op_start, .stop = plfxlc_op_stop, .add_interface = plfxlc_op_add_interface, .remove_interface = plfxlc_op_remove_interface, .set_rts_threshold = plfxlc_set_rts_threshold, .config = plfxlc_op_config, .configure_filter = plfxlc_op_configure_filter, .bss_info_changed = plfxlc_op_bss_info_changed, .get_stats = plfxlc_get_stats, .get_et_sset_count = plfxlc_get_et_sset_count, .get_et_stats = plfxlc_get_et_stats, .get_et_strings = plfxlc_get_et_strings, }; struct ieee80211_hw *plfxlc_mac_alloc_hw(struct usb_interface *intf) { struct ieee80211_hw *hw; struct plfxlc_mac *mac; hw = ieee80211_alloc_hw(sizeof(struct plfxlc_mac), &plfxlc_ops); if (!hw) { dev_dbg(&intf->dev, "out of memory\n"); return NULL; } set_wiphy_dev(hw->wiphy, &intf->dev); mac = plfxlc_hw_mac(hw); memset(mac, 0, sizeof(*mac)); spin_lock_init(&mac->lock); mac->hw = hw; mac->type = NL80211_IFTYPE_UNSPECIFIED; memcpy(mac->channels, plfxlc_channels, sizeof(plfxlc_channels)); memcpy(mac->rates, plfxlc_rates, sizeof(plfxlc_rates)); mac->band.n_bitrates = ARRAY_SIZE(plfxlc_rates); mac->band.bitrates = mac->rates; mac->band.n_channels = ARRAY_SIZE(plfxlc_channels); mac->band.channels = mac->channels; hw->wiphy->bands[NL80211_BAND_LC] = &mac->band; hw->conf.chandef.width = NL80211_CHAN_WIDTH_20; ieee80211_hw_set(hw, RX_INCLUDES_FCS); ieee80211_hw_set(hw, SIGNAL_DBM); ieee80211_hw_set(hw, HOST_BROADCAST_PS_BUFFERING); ieee80211_hw_set(hw, MFP_CAPABLE); hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) | BIT(NL80211_IFTYPE_ADHOC); hw->max_signal = 100; hw->queues = 1; /* 4 for 32 bit alignment if no tailroom */ hw->extra_tx_headroom = sizeof(struct plfxlc_ctrlset) + 4; /* Tell mac80211 that we support multi rate retries */ hw->max_rates = IEEE80211_TX_MAX_RATES; hw->max_rate_tries = 18; /* 9 rates * 2 retries/rate */ skb_queue_head_init(&mac->ack_wait_queue); mac->ack_pending = 0; plfxlc_chip_init(&mac->chip, hw, intf); SET_IEEE80211_DEV(hw, &intf->dev); return hw; }