// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2012 - 2018 Microchip Technology Inc., and its subsidiaries. * All rights reserved. */ #include #include #include #include #include #include "netdev.h" #include "cfg80211.h" #define SPI_MODALIAS "wilc1000_spi" static bool enable_crc7; /* protect SPI commands with CRC7 */ module_param(enable_crc7, bool, 0644); MODULE_PARM_DESC(enable_crc7, "Enable CRC7 checksum to protect command transfers\n" "\t\t\tagainst corruption during the SPI transfer.\n" "\t\t\tCommand transfers are short and the CPU-cycle cost\n" "\t\t\tof enabling this is small."); static bool enable_crc16; /* protect SPI data with CRC16 */ module_param(enable_crc16, bool, 0644); MODULE_PARM_DESC(enable_crc16, "Enable CRC16 checksum to protect data transfers\n" "\t\t\tagainst corruption during the SPI transfer.\n" "\t\t\tData transfers can be large and the CPU-cycle cost\n" "\t\t\tof enabling this may be substantial."); /* * For CMD_SINGLE_READ and CMD_INTERNAL_READ, WILC may insert one or * more zero bytes between the command response and the DATA Start tag * (0xf3). This behavior appears to be undocumented in "ATWILC1000 * USER GUIDE" (https://tinyurl.com/4hhshdts) but we have observed 1-4 * zero bytes when the SPI bus operates at 48MHz and none when it * operates at 1MHz. */ #define WILC_SPI_RSP_HDR_EXTRA_DATA 8 struct wilc_spi { bool isinit; /* true if wilc_spi_init was successful */ bool probing_crc; /* true if we're probing chip's CRC config */ bool crc7_enabled; /* true if crc7 is currently enabled */ bool crc16_enabled; /* true if crc16 is currently enabled */ struct wilc_gpios { struct gpio_desc *enable; /* ENABLE GPIO or NULL */ struct gpio_desc *reset; /* RESET GPIO or NULL */ } gpios; }; static const struct wilc_hif_func wilc_hif_spi; static int wilc_spi_reset(struct wilc *wilc); static int wilc_spi_configure_bus_protocol(struct wilc *wilc); static int wilc_validate_chipid(struct wilc *wilc); /******************************************** * * Spi protocol Function * ********************************************/ #define CMD_DMA_WRITE 0xc1 #define CMD_DMA_READ 0xc2 #define CMD_INTERNAL_WRITE 0xc3 #define CMD_INTERNAL_READ 0xc4 #define CMD_TERMINATE 0xc5 #define CMD_REPEAT 0xc6 #define CMD_DMA_EXT_WRITE 0xc7 #define CMD_DMA_EXT_READ 0xc8 #define CMD_SINGLE_WRITE 0xc9 #define CMD_SINGLE_READ 0xca #define CMD_RESET 0xcf #define SPI_RETRY_MAX_LIMIT 10 #define SPI_ENABLE_VMM_RETRY_LIMIT 2 /* SPI response fields (section 11.1.2 in ATWILC1000 User Guide): */ #define RSP_START_FIELD GENMASK(7, 4) #define RSP_TYPE_FIELD GENMASK(3, 0) /* SPI response values for the response fields: */ #define RSP_START_TAG 0xc #define RSP_TYPE_FIRST_PACKET 0x1 #define RSP_TYPE_INNER_PACKET 0x2 #define RSP_TYPE_LAST_PACKET 0x3 #define RSP_STATE_NO_ERROR 0x00 #define PROTOCOL_REG_PKT_SZ_MASK GENMASK(6, 4) #define PROTOCOL_REG_CRC16_MASK GENMASK(3, 3) #define PROTOCOL_REG_CRC7_MASK GENMASK(2, 2) /* * The SPI data packet size may be any integer power of two in the * range from 256 to 8192 bytes. */ #define DATA_PKT_LOG_SZ_MIN 8 /* 256 B */ #define DATA_PKT_LOG_SZ_MAX 13 /* 8 KiB */ /* * Select the data packet size (log2 of number of bytes): Use the * maximum data packet size. We only retransmit complete packets, so * there is no benefit from using smaller data packets. */ #define DATA_PKT_LOG_SZ DATA_PKT_LOG_SZ_MAX #define DATA_PKT_SZ (1 << DATA_PKT_LOG_SZ) #define WILC_SPI_COMMAND_STAT_SUCCESS 0 #define WILC_GET_RESP_HDR_START(h) (((h) >> 4) & 0xf) struct wilc_spi_cmd { u8 cmd_type; union { struct { u8 addr[3]; u8 crc[]; } __packed simple_cmd; struct { u8 addr[3]; u8 size[2]; u8 crc[]; } __packed dma_cmd; struct { u8 addr[3]; u8 size[3]; u8 crc[]; } __packed dma_cmd_ext; struct { u8 addr[2]; __be32 data; u8 crc[]; } __packed internal_w_cmd; struct { u8 addr[3]; __be32 data; u8 crc[]; } __packed w_cmd; } u; } __packed; struct wilc_spi_read_rsp_data { u8 header; u8 data[4]; u8 crc[]; } __packed; struct wilc_spi_rsp_data { u8 rsp_cmd_type; u8 status; u8 data[]; } __packed; struct wilc_spi_special_cmd_rsp { u8 skip_byte; u8 rsp_cmd_type; u8 status; } __packed; static int wilc_parse_gpios(struct wilc *wilc) { struct spi_device *spi = to_spi_device(wilc->dev); struct wilc_spi *spi_priv = wilc->bus_data; struct wilc_gpios *gpios = &spi_priv->gpios; /* get ENABLE pin and deassert it (if it is defined): */ gpios->enable = devm_gpiod_get_optional(&spi->dev, "enable", GPIOD_OUT_LOW); /* get RESET pin and assert it (if it is defined): */ if (gpios->enable) { /* if enable pin exists, reset must exist as well */ gpios->reset = devm_gpiod_get(&spi->dev, "reset", GPIOD_OUT_HIGH); if (IS_ERR(gpios->reset)) { dev_err(&spi->dev, "missing reset gpio.\n"); return PTR_ERR(gpios->reset); } } else { gpios->reset = devm_gpiod_get_optional(&spi->dev, "reset", GPIOD_OUT_HIGH); } return 0; } static void wilc_wlan_power(struct wilc *wilc, bool on) { struct wilc_spi *spi_priv = wilc->bus_data; struct wilc_gpios *gpios = &spi_priv->gpios; if (on) { /* assert ENABLE: */ gpiod_set_value(gpios->enable, 1); mdelay(5); /* deassert RESET: */ gpiod_set_value(gpios->reset, 0); } else { /* assert RESET: */ gpiod_set_value(gpios->reset, 1); /* deassert ENABLE: */ gpiod_set_value(gpios->enable, 0); } } static int wilc_bus_probe(struct spi_device *spi) { int ret; struct wilc *wilc; struct wilc_spi *spi_priv; spi_priv = kzalloc(sizeof(*spi_priv), GFP_KERNEL); if (!spi_priv) return -ENOMEM; ret = wilc_cfg80211_init(&wilc, &spi->dev, WILC_HIF_SPI, &wilc_hif_spi); if (ret) goto free; spi_set_drvdata(spi, wilc); wilc->dev = &spi->dev; wilc->bus_data = spi_priv; wilc->dev_irq_num = spi->irq; ret = wilc_parse_gpios(wilc); if (ret < 0) goto netdev_cleanup; wilc->rtc_clk = devm_clk_get_optional(&spi->dev, "rtc"); if (IS_ERR(wilc->rtc_clk)) { ret = PTR_ERR(wilc->rtc_clk); goto netdev_cleanup; } clk_prepare_enable(wilc->rtc_clk); dev_info(&spi->dev, "Selected CRC config: crc7=%s, crc16=%s\n", enable_crc7 ? "on" : "off", enable_crc16 ? "on" : "off"); /* we need power to configure the bus protocol and to read the chip id: */ wilc_wlan_power(wilc, true); ret = wilc_spi_configure_bus_protocol(wilc); if (ret) goto power_down; ret = wilc_validate_chipid(wilc); if (ret) goto power_down; wilc_wlan_power(wilc, false); return 0; power_down: clk_disable_unprepare(wilc->rtc_clk); wilc_wlan_power(wilc, false); netdev_cleanup: wilc_netdev_cleanup(wilc); free: kfree(spi_priv); return ret; } static void wilc_bus_remove(struct spi_device *spi) { struct wilc *wilc = spi_get_drvdata(spi); struct wilc_spi *spi_priv = wilc->bus_data; clk_disable_unprepare(wilc->rtc_clk); wilc_netdev_cleanup(wilc); kfree(spi_priv); } static const struct of_device_id wilc_of_match[] = { { .compatible = "microchip,wilc1000", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, wilc_of_match); static const struct spi_device_id wilc_spi_id[] = { { "wilc1000", 0 }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(spi, wilc_spi_id); static struct spi_driver wilc_spi_driver = { .driver = { .name = SPI_MODALIAS, .of_match_table = wilc_of_match, }, .id_table = wilc_spi_id, .probe = wilc_bus_probe, .remove = wilc_bus_remove, }; module_spi_driver(wilc_spi_driver); MODULE_DESCRIPTION("Atmel WILC1000 SPI wireless driver"); MODULE_LICENSE("GPL"); static int wilc_spi_tx(struct wilc *wilc, u8 *b, u32 len) { struct spi_device *spi = to_spi_device(wilc->dev); int ret; struct spi_message msg; if (len > 0 && b) { struct spi_transfer tr = { .tx_buf = b, .len = len, .delay = { .value = 0, .unit = SPI_DELAY_UNIT_USECS }, }; char *r_buffer = kzalloc(len, GFP_KERNEL); if (!r_buffer) return -ENOMEM; tr.rx_buf = r_buffer; dev_dbg(&spi->dev, "Request writing %d bytes\n", len); memset(&msg, 0, sizeof(msg)); spi_message_init(&msg); spi_message_add_tail(&tr, &msg); ret = spi_sync(spi, &msg); if (ret < 0) dev_err(&spi->dev, "SPI transaction failed\n"); kfree(r_buffer); } else { dev_err(&spi->dev, "can't write data with the following length: %d\n", len); ret = -EINVAL; } return ret; } static int wilc_spi_rx(struct wilc *wilc, u8 *rb, u32 rlen) { struct spi_device *spi = to_spi_device(wilc->dev); int ret; if (rlen > 0) { struct spi_message msg; struct spi_transfer tr = { .rx_buf = rb, .len = rlen, .delay = { .value = 0, .unit = SPI_DELAY_UNIT_USECS }, }; char *t_buffer = kzalloc(rlen, GFP_KERNEL); if (!t_buffer) return -ENOMEM; tr.tx_buf = t_buffer; memset(&msg, 0, sizeof(msg)); spi_message_init(&msg); spi_message_add_tail(&tr, &msg); ret = spi_sync(spi, &msg); if (ret < 0) dev_err(&spi->dev, "SPI transaction failed\n"); kfree(t_buffer); } else { dev_err(&spi->dev, "can't read data with the following length: %u\n", rlen); ret = -EINVAL; } return ret; } static int wilc_spi_tx_rx(struct wilc *wilc, u8 *wb, u8 *rb, u32 rlen) { struct spi_device *spi = to_spi_device(wilc->dev); int ret; if (rlen > 0) { struct spi_message msg; struct spi_transfer tr = { .rx_buf = rb, .tx_buf = wb, .len = rlen, .bits_per_word = 8, .delay = { .value = 0, .unit = SPI_DELAY_UNIT_USECS }, }; memset(&msg, 0, sizeof(msg)); spi_message_init(&msg); spi_message_add_tail(&tr, &msg); ret = spi_sync(spi, &msg); if (ret < 0) dev_err(&spi->dev, "SPI transaction failed\n"); } else { dev_err(&spi->dev, "can't read data with the following length: %u\n", rlen); ret = -EINVAL; } return ret; } static int spi_data_write(struct wilc *wilc, u8 *b, u32 sz) { struct spi_device *spi = to_spi_device(wilc->dev); struct wilc_spi *spi_priv = wilc->bus_data; int ix, nbytes; int result = 0; u8 cmd, order, crc[2]; u16 crc_calc; /* * Data */ ix = 0; do { if (sz <= DATA_PKT_SZ) { nbytes = sz; order = 0x3; } else { nbytes = DATA_PKT_SZ; if (ix == 0) order = 0x1; else order = 0x02; } /* * Write command */ cmd = 0xf0; cmd |= order; if (wilc_spi_tx(wilc, &cmd, 1)) { dev_err(&spi->dev, "Failed data block cmd write, bus error...\n"); result = -EINVAL; break; } /* * Write data */ if (wilc_spi_tx(wilc, &b[ix], nbytes)) { dev_err(&spi->dev, "Failed data block write, bus error...\n"); result = -EINVAL; break; } /* * Write CRC */ if (spi_priv->crc16_enabled) { crc_calc = crc_itu_t(0xffff, &b[ix], nbytes); crc[0] = crc_calc >> 8; crc[1] = crc_calc; if (wilc_spi_tx(wilc, crc, 2)) { dev_err(&spi->dev, "Failed data block crc write, bus error...\n"); result = -EINVAL; break; } } /* * No need to wait for response */ ix += nbytes; sz -= nbytes; } while (sz); return result; } /******************************************** * * Spi Internal Read/Write Function * ********************************************/ static u8 wilc_get_crc7(u8 *buffer, u32 len) { return crc7_be(0xfe, buffer, len) | 0x01; } static int wilc_spi_single_read(struct wilc *wilc, u8 cmd, u32 adr, void *b, u8 clockless) { struct spi_device *spi = to_spi_device(wilc->dev); struct wilc_spi *spi_priv = wilc->bus_data; u8 wb[32], rb[32]; int cmd_len, resp_len, i; u16 crc_calc, crc_recv; struct wilc_spi_cmd *c; struct wilc_spi_rsp_data *r; struct wilc_spi_read_rsp_data *r_data; memset(wb, 0x0, sizeof(wb)); memset(rb, 0x0, sizeof(rb)); c = (struct wilc_spi_cmd *)wb; c->cmd_type = cmd; if (cmd == CMD_SINGLE_READ) { c->u.simple_cmd.addr[0] = adr >> 16; c->u.simple_cmd.addr[1] = adr >> 8; c->u.simple_cmd.addr[2] = adr; } else if (cmd == CMD_INTERNAL_READ) { c->u.simple_cmd.addr[0] = adr >> 8; if (clockless == 1) c->u.simple_cmd.addr[0] |= BIT(7); c->u.simple_cmd.addr[1] = adr; c->u.simple_cmd.addr[2] = 0x0; } else { dev_err(&spi->dev, "cmd [%x] not supported\n", cmd); return -EINVAL; } cmd_len = offsetof(struct wilc_spi_cmd, u.simple_cmd.crc); resp_len = sizeof(*r) + sizeof(*r_data) + WILC_SPI_RSP_HDR_EXTRA_DATA; if (spi_priv->crc7_enabled) { c->u.simple_cmd.crc[0] = wilc_get_crc7(wb, cmd_len); cmd_len += 1; resp_len += 2; } if (cmd_len + resp_len > ARRAY_SIZE(wb)) { dev_err(&spi->dev, "spi buffer size too small (%d) (%d) (%zu)\n", cmd_len, resp_len, ARRAY_SIZE(wb)); return -EINVAL; } if (wilc_spi_tx_rx(wilc, wb, rb, cmd_len + resp_len)) { dev_err(&spi->dev, "Failed cmd write, bus error...\n"); return -EINVAL; } r = (struct wilc_spi_rsp_data *)&rb[cmd_len]; if (r->rsp_cmd_type != cmd && !clockless) { if (!spi_priv->probing_crc) dev_err(&spi->dev, "Failed cmd, cmd (%02x), resp (%02x)\n", cmd, r->rsp_cmd_type); return -EINVAL; } if (r->status != WILC_SPI_COMMAND_STAT_SUCCESS && !clockless) { dev_err(&spi->dev, "Failed cmd state response state (%02x)\n", r->status); return -EINVAL; } for (i = 0; i < WILC_SPI_RSP_HDR_EXTRA_DATA; ++i) if (WILC_GET_RESP_HDR_START(r->data[i]) == 0xf) break; if (i >= WILC_SPI_RSP_HDR_EXTRA_DATA) { dev_err(&spi->dev, "Error, data start missing\n"); return -EINVAL; } r_data = (struct wilc_spi_read_rsp_data *)&r->data[i]; if (b) memcpy(b, r_data->data, 4); if (!clockless && spi_priv->crc16_enabled) { crc_recv = (r_data->crc[0] << 8) | r_data->crc[1]; crc_calc = crc_itu_t(0xffff, r_data->data, 4); if (crc_recv != crc_calc) { dev_err(&spi->dev, "%s: bad CRC 0x%04x " "(calculated 0x%04x)\n", __func__, crc_recv, crc_calc); return -EINVAL; } } return 0; } static int wilc_spi_write_cmd(struct wilc *wilc, u8 cmd, u32 adr, u32 data, u8 clockless) { struct spi_device *spi = to_spi_device(wilc->dev); struct wilc_spi *spi_priv = wilc->bus_data; u8 wb[32], rb[32]; int cmd_len, resp_len; struct wilc_spi_cmd *c; struct wilc_spi_rsp_data *r; memset(wb, 0x0, sizeof(wb)); memset(rb, 0x0, sizeof(rb)); c = (struct wilc_spi_cmd *)wb; c->cmd_type = cmd; if (cmd == CMD_INTERNAL_WRITE) { c->u.internal_w_cmd.addr[0] = adr >> 8; if (clockless == 1) c->u.internal_w_cmd.addr[0] |= BIT(7); c->u.internal_w_cmd.addr[1] = adr; c->u.internal_w_cmd.data = cpu_to_be32(data); cmd_len = offsetof(struct wilc_spi_cmd, u.internal_w_cmd.crc); if (spi_priv->crc7_enabled) c->u.internal_w_cmd.crc[0] = wilc_get_crc7(wb, cmd_len); } else if (cmd == CMD_SINGLE_WRITE) { c->u.w_cmd.addr[0] = adr >> 16; c->u.w_cmd.addr[1] = adr >> 8; c->u.w_cmd.addr[2] = adr; c->u.w_cmd.data = cpu_to_be32(data); cmd_len = offsetof(struct wilc_spi_cmd, u.w_cmd.crc); if (spi_priv->crc7_enabled) c->u.w_cmd.crc[0] = wilc_get_crc7(wb, cmd_len); } else { dev_err(&spi->dev, "write cmd [%x] not supported\n", cmd); return -EINVAL; } if (spi_priv->crc7_enabled) cmd_len += 1; resp_len = sizeof(*r); if (cmd_len + resp_len > ARRAY_SIZE(wb)) { dev_err(&spi->dev, "spi buffer size too small (%d) (%d) (%zu)\n", cmd_len, resp_len, ARRAY_SIZE(wb)); return -EINVAL; } if (wilc_spi_tx_rx(wilc, wb, rb, cmd_len + resp_len)) { dev_err(&spi->dev, "Failed cmd write, bus error...\n"); return -EINVAL; } r = (struct wilc_spi_rsp_data *)&rb[cmd_len]; /* * Clockless registers operations might return unexptected responses, * even if successful. */ if (r->rsp_cmd_type != cmd && !clockless) { dev_err(&spi->dev, "Failed cmd response, cmd (%02x), resp (%02x)\n", cmd, r->rsp_cmd_type); return -EINVAL; } if (r->status != WILC_SPI_COMMAND_STAT_SUCCESS && !clockless) { dev_err(&spi->dev, "Failed cmd state response state (%02x)\n", r->status); return -EINVAL; } return 0; } static int wilc_spi_dma_rw(struct wilc *wilc, u8 cmd, u32 adr, u8 *b, u32 sz) { struct spi_device *spi = to_spi_device(wilc->dev); struct wilc_spi *spi_priv = wilc->bus_data; u16 crc_recv, crc_calc; u8 wb[32], rb[32]; int cmd_len, resp_len; int retry, ix = 0; u8 crc[2]; struct wilc_spi_cmd *c; struct wilc_spi_rsp_data *r; memset(wb, 0x0, sizeof(wb)); memset(rb, 0x0, sizeof(rb)); c = (struct wilc_spi_cmd *)wb; c->cmd_type = cmd; if (cmd == CMD_DMA_WRITE || cmd == CMD_DMA_READ) { c->u.dma_cmd.addr[0] = adr >> 16; c->u.dma_cmd.addr[1] = adr >> 8; c->u.dma_cmd.addr[2] = adr; c->u.dma_cmd.size[0] = sz >> 8; c->u.dma_cmd.size[1] = sz; cmd_len = offsetof(struct wilc_spi_cmd, u.dma_cmd.crc); if (spi_priv->crc7_enabled) c->u.dma_cmd.crc[0] = wilc_get_crc7(wb, cmd_len); } else if (cmd == CMD_DMA_EXT_WRITE || cmd == CMD_DMA_EXT_READ) { c->u.dma_cmd_ext.addr[0] = adr >> 16; c->u.dma_cmd_ext.addr[1] = adr >> 8; c->u.dma_cmd_ext.addr[2] = adr; c->u.dma_cmd_ext.size[0] = sz >> 16; c->u.dma_cmd_ext.size[1] = sz >> 8; c->u.dma_cmd_ext.size[2] = sz; cmd_len = offsetof(struct wilc_spi_cmd, u.dma_cmd_ext.crc); if (spi_priv->crc7_enabled) c->u.dma_cmd_ext.crc[0] = wilc_get_crc7(wb, cmd_len); } else { dev_err(&spi->dev, "dma read write cmd [%x] not supported\n", cmd); return -EINVAL; } if (spi_priv->crc7_enabled) cmd_len += 1; resp_len = sizeof(*r); if (cmd_len + resp_len > ARRAY_SIZE(wb)) { dev_err(&spi->dev, "spi buffer size too small (%d)(%d) (%zu)\n", cmd_len, resp_len, ARRAY_SIZE(wb)); return -EINVAL; } if (wilc_spi_tx_rx(wilc, wb, rb, cmd_len + resp_len)) { dev_err(&spi->dev, "Failed cmd write, bus error...\n"); return -EINVAL; } r = (struct wilc_spi_rsp_data *)&rb[cmd_len]; if (r->rsp_cmd_type != cmd) { dev_err(&spi->dev, "Failed cmd response, cmd (%02x), resp (%02x)\n", cmd, r->rsp_cmd_type); return -EINVAL; } if (r->status != WILC_SPI_COMMAND_STAT_SUCCESS) { dev_err(&spi->dev, "Failed cmd state response state (%02x)\n", r->status); return -EINVAL; } if (cmd == CMD_DMA_WRITE || cmd == CMD_DMA_EXT_WRITE) return 0; while (sz > 0) { int nbytes; u8 rsp; nbytes = min_t(u32, sz, DATA_PKT_SZ); /* * Data Response header */ retry = 100; do { if (wilc_spi_rx(wilc, &rsp, 1)) { dev_err(&spi->dev, "Failed resp read, bus err\n"); return -EINVAL; } if (WILC_GET_RESP_HDR_START(rsp) == 0xf) break; } while (retry--); /* * Read bytes */ if (wilc_spi_rx(wilc, &b[ix], nbytes)) { dev_err(&spi->dev, "Failed block read, bus err\n"); return -EINVAL; } /* * Read CRC */ if (spi_priv->crc16_enabled) { if (wilc_spi_rx(wilc, crc, 2)) { dev_err(&spi->dev, "Failed block CRC read, bus err\n"); return -EINVAL; } crc_recv = (crc[0] << 8) | crc[1]; crc_calc = crc_itu_t(0xffff, &b[ix], nbytes); if (crc_recv != crc_calc) { dev_err(&spi->dev, "%s: bad CRC 0x%04x " "(calculated 0x%04x)\n", __func__, crc_recv, crc_calc); return -EINVAL; } } ix += nbytes; sz -= nbytes; } return 0; } static int wilc_spi_special_cmd(struct wilc *wilc, u8 cmd) { struct spi_device *spi = to_spi_device(wilc->dev); struct wilc_spi *spi_priv = wilc->bus_data; u8 wb[32], rb[32]; int cmd_len, resp_len = 0; struct wilc_spi_cmd *c; struct wilc_spi_special_cmd_rsp *r; if (cmd != CMD_TERMINATE && cmd != CMD_REPEAT && cmd != CMD_RESET) return -EINVAL; memset(wb, 0x0, sizeof(wb)); memset(rb, 0x0, sizeof(rb)); c = (struct wilc_spi_cmd *)wb; c->cmd_type = cmd; if (cmd == CMD_RESET) memset(c->u.simple_cmd.addr, 0xFF, 3); cmd_len = offsetof(struct wilc_spi_cmd, u.simple_cmd.crc); resp_len = sizeof(*r); if (spi_priv->crc7_enabled) { c->u.simple_cmd.crc[0] = wilc_get_crc7(wb, cmd_len); cmd_len += 1; } if (cmd_len + resp_len > ARRAY_SIZE(wb)) { dev_err(&spi->dev, "spi buffer size too small (%d) (%d) (%zu)\n", cmd_len, resp_len, ARRAY_SIZE(wb)); return -EINVAL; } if (wilc_spi_tx_rx(wilc, wb, rb, cmd_len + resp_len)) { dev_err(&spi->dev, "Failed cmd write, bus error...\n"); return -EINVAL; } r = (struct wilc_spi_special_cmd_rsp *)&rb[cmd_len]; if (r->rsp_cmd_type != cmd) { if (!spi_priv->probing_crc) dev_err(&spi->dev, "Failed cmd response, cmd (%02x), resp (%02x)\n", cmd, r->rsp_cmd_type); return -EINVAL; } if (r->status != WILC_SPI_COMMAND_STAT_SUCCESS) { dev_err(&spi->dev, "Failed cmd state response state (%02x)\n", r->status); return -EINVAL; } return 0; } static void wilc_spi_reset_cmd_sequence(struct wilc *wl, u8 attempt, u32 addr) { struct spi_device *spi = to_spi_device(wl->dev); struct wilc_spi *spi_priv = wl->bus_data; if (!spi_priv->probing_crc) dev_err(&spi->dev, "Reset and retry %d %x\n", attempt, addr); usleep_range(1000, 1100); wilc_spi_reset(wl); usleep_range(1000, 1100); } static int wilc_spi_read_reg(struct wilc *wilc, u32 addr, u32 *data) { struct spi_device *spi = to_spi_device(wilc->dev); int result; u8 cmd = CMD_SINGLE_READ; u8 clockless = 0; u8 i; if (addr <= WILC_SPI_CLOCKLESS_ADDR_LIMIT) { /* Clockless register */ cmd = CMD_INTERNAL_READ; clockless = 1; } for (i = 0; i < SPI_RETRY_MAX_LIMIT; i++) { result = wilc_spi_single_read(wilc, cmd, addr, data, clockless); if (!result) { le32_to_cpus(data); return 0; } /* retry is not applicable for clockless registers */ if (clockless) break; dev_err(&spi->dev, "Failed cmd, read reg (%08x)...\n", addr); wilc_spi_reset_cmd_sequence(wilc, i, addr); } return result; } static int wilc_spi_read(struct wilc *wilc, u32 addr, u8 *buf, u32 size) { struct spi_device *spi = to_spi_device(wilc->dev); int result; u8 i; if (size <= 4) return -EINVAL; for (i = 0; i < SPI_RETRY_MAX_LIMIT; i++) { result = wilc_spi_dma_rw(wilc, CMD_DMA_EXT_READ, addr, buf, size); if (!result) return 0; dev_err(&spi->dev, "Failed cmd, read block (%08x)...\n", addr); wilc_spi_reset_cmd_sequence(wilc, i, addr); } return result; } static int spi_internal_write(struct wilc *wilc, u32 adr, u32 dat) { struct spi_device *spi = to_spi_device(wilc->dev); int result; u8 i; for (i = 0; i < SPI_RETRY_MAX_LIMIT; i++) { result = wilc_spi_write_cmd(wilc, CMD_INTERNAL_WRITE, adr, dat, 0); if (!result) return 0; dev_err(&spi->dev, "Failed internal write cmd...\n"); wilc_spi_reset_cmd_sequence(wilc, i, adr); } return result; } static int spi_internal_read(struct wilc *wilc, u32 adr, u32 *data) { struct spi_device *spi = to_spi_device(wilc->dev); struct wilc_spi *spi_priv = wilc->bus_data; int result; u8 i; for (i = 0; i < SPI_RETRY_MAX_LIMIT; i++) { result = wilc_spi_single_read(wilc, CMD_INTERNAL_READ, adr, data, 0); if (!result) { le32_to_cpus(data); return 0; } if (!spi_priv->probing_crc) dev_err(&spi->dev, "Failed internal read cmd...\n"); wilc_spi_reset_cmd_sequence(wilc, i, adr); } return result; } /******************************************** * * Spi interfaces * ********************************************/ static int wilc_spi_write_reg(struct wilc *wilc, u32 addr, u32 data) { struct spi_device *spi = to_spi_device(wilc->dev); int result; u8 cmd = CMD_SINGLE_WRITE; u8 clockless = 0; u8 i; if (addr <= WILC_SPI_CLOCKLESS_ADDR_LIMIT) { /* Clockless register */ cmd = CMD_INTERNAL_WRITE; clockless = 1; } for (i = 0; i < SPI_RETRY_MAX_LIMIT; i++) { result = wilc_spi_write_cmd(wilc, cmd, addr, data, clockless); if (!result) return 0; dev_err(&spi->dev, "Failed cmd, write reg (%08x)...\n", addr); if (clockless) break; wilc_spi_reset_cmd_sequence(wilc, i, addr); } return result; } static int spi_data_rsp(struct wilc *wilc, u8 cmd) { struct spi_device *spi = to_spi_device(wilc->dev); int result, i; u8 rsp[4]; /* * The response to data packets is two bytes long. For * efficiency's sake, wilc_spi_write() wisely ignores the * responses for all packets but the final one. The downside * of that optimization is that when the final data packet is * short, we may receive (part of) the response to the * second-to-last packet before the one for the final packet. * To handle this, we always read 4 bytes and then search for * the last byte that contains the "Response Start" code (0xc * in the top 4 bits). We then know that this byte is the * first response byte of the final data packet. */ result = wilc_spi_rx(wilc, rsp, sizeof(rsp)); if (result) { dev_err(&spi->dev, "Failed bus error...\n"); return result; } for (i = sizeof(rsp) - 2; i >= 0; --i) if (FIELD_GET(RSP_START_FIELD, rsp[i]) == RSP_START_TAG) break; if (i < 0) { dev_err(&spi->dev, "Data packet response missing (%02x %02x %02x %02x)\n", rsp[0], rsp[1], rsp[2], rsp[3]); return -1; } /* rsp[i] is the last response start byte */ if (FIELD_GET(RSP_TYPE_FIELD, rsp[i]) != RSP_TYPE_LAST_PACKET || rsp[i + 1] != RSP_STATE_NO_ERROR) { dev_err(&spi->dev, "Data response error (%02x %02x)\n", rsp[i], rsp[i + 1]); return -1; } return 0; } static int wilc_spi_write(struct wilc *wilc, u32 addr, u8 *buf, u32 size) { struct spi_device *spi = to_spi_device(wilc->dev); int result; u8 i; /* * has to be greated than 4 */ if (size <= 4) return -EINVAL; for (i = 0; i < SPI_RETRY_MAX_LIMIT; i++) { result = wilc_spi_dma_rw(wilc, CMD_DMA_EXT_WRITE, addr, NULL, size); if (result) { dev_err(&spi->dev, "Failed cmd, write block (%08x)...\n", addr); wilc_spi_reset_cmd_sequence(wilc, i, addr); continue; } /* * Data */ result = spi_data_write(wilc, buf, size); if (result) { dev_err(&spi->dev, "Failed block data write...\n"); wilc_spi_reset_cmd_sequence(wilc, i, addr); continue; } /* * Data response */ result = spi_data_rsp(wilc, CMD_DMA_EXT_WRITE); if (result) { dev_err(&spi->dev, "Failed block data rsp...\n"); wilc_spi_reset_cmd_sequence(wilc, i, addr); continue; } break; } return result; } /******************************************** * * Bus interfaces * ********************************************/ static int wilc_spi_reset(struct wilc *wilc) { struct spi_device *spi = to_spi_device(wilc->dev); struct wilc_spi *spi_priv = wilc->bus_data; int result; result = wilc_spi_special_cmd(wilc, CMD_RESET); if (result && !spi_priv->probing_crc) dev_err(&spi->dev, "Failed cmd reset\n"); return result; } static bool wilc_spi_is_init(struct wilc *wilc) { struct wilc_spi *spi_priv = wilc->bus_data; return spi_priv->isinit; } static int wilc_spi_deinit(struct wilc *wilc) { struct wilc_spi *spi_priv = wilc->bus_data; spi_priv->isinit = false; wilc_wlan_power(wilc, false); return 0; } static int wilc_spi_init(struct wilc *wilc, bool resume) { struct wilc_spi *spi_priv = wilc->bus_data; int ret; if (spi_priv->isinit) { /* Confirm we can read chipid register without error: */ if (wilc_validate_chipid(wilc) == 0) return 0; } wilc_wlan_power(wilc, true); ret = wilc_spi_configure_bus_protocol(wilc); if (ret) { wilc_wlan_power(wilc, false); return ret; } spi_priv->isinit = true; return 0; } static int wilc_spi_configure_bus_protocol(struct wilc *wilc) { struct spi_device *spi = to_spi_device(wilc->dev); struct wilc_spi *spi_priv = wilc->bus_data; u32 reg; int ret, i; /* * Infer the CRC settings that are currently in effect. This * is necessary because we can't be sure that the chip has * been RESET (e.g, after module unload and reload). */ spi_priv->probing_crc = true; spi_priv->crc7_enabled = enable_crc7; spi_priv->crc16_enabled = false; /* don't check CRC16 during probing */ for (i = 0; i < 2; ++i) { ret = spi_internal_read(wilc, WILC_SPI_PROTOCOL_OFFSET, ®); if (ret == 0) break; spi_priv->crc7_enabled = !enable_crc7; } if (ret) { dev_err(&spi->dev, "Failed with CRC7 on and off.\n"); return ret; } /* set up the desired CRC configuration: */ reg &= ~(PROTOCOL_REG_CRC7_MASK | PROTOCOL_REG_CRC16_MASK); if (enable_crc7) reg |= PROTOCOL_REG_CRC7_MASK; if (enable_crc16) reg |= PROTOCOL_REG_CRC16_MASK; /* set up the data packet size: */ BUILD_BUG_ON(DATA_PKT_LOG_SZ < DATA_PKT_LOG_SZ_MIN || DATA_PKT_LOG_SZ > DATA_PKT_LOG_SZ_MAX); reg &= ~PROTOCOL_REG_PKT_SZ_MASK; reg |= FIELD_PREP(PROTOCOL_REG_PKT_SZ_MASK, DATA_PKT_LOG_SZ - DATA_PKT_LOG_SZ_MIN); /* establish the new setup: */ ret = spi_internal_write(wilc, WILC_SPI_PROTOCOL_OFFSET, reg); if (ret) { dev_err(&spi->dev, "[wilc spi %d]: Failed internal write reg\n", __LINE__); return ret; } /* update our state to match new protocol settings: */ spi_priv->crc7_enabled = enable_crc7; spi_priv->crc16_enabled = enable_crc16; /* re-read to make sure new settings are in effect: */ spi_internal_read(wilc, WILC_SPI_PROTOCOL_OFFSET, ®); spi_priv->probing_crc = false; return 0; } static int wilc_validate_chipid(struct wilc *wilc) { struct spi_device *spi = to_spi_device(wilc->dev); u32 chipid; int ret; /* * make sure can read chip id without protocol error */ ret = wilc_spi_read_reg(wilc, WILC_CHIPID, &chipid); if (ret) { dev_err(&spi->dev, "Fail cmd read chip id...\n"); return ret; } if (!is_wilc1000(chipid)) { dev_err(&spi->dev, "Unknown chip id 0x%x\n", chipid); return -ENODEV; } return 0; } static int wilc_spi_read_size(struct wilc *wilc, u32 *size) { int ret; ret = spi_internal_read(wilc, WILC_SPI_INT_STATUS - WILC_SPI_REG_BASE, size); *size = FIELD_GET(IRQ_DMA_WD_CNT_MASK, *size); return ret; } static int wilc_spi_read_int(struct wilc *wilc, u32 *int_status) { return spi_internal_read(wilc, WILC_SPI_INT_STATUS - WILC_SPI_REG_BASE, int_status); } static int wilc_spi_clear_int_ext(struct wilc *wilc, u32 val) { int ret; int retry = SPI_ENABLE_VMM_RETRY_LIMIT; u32 check; while (retry) { ret = spi_internal_write(wilc, WILC_SPI_INT_CLEAR - WILC_SPI_REG_BASE, val); if (ret) break; ret = spi_internal_read(wilc, WILC_SPI_INT_CLEAR - WILC_SPI_REG_BASE, &check); if (ret || ((check & EN_VMM) == (val & EN_VMM))) break; retry--; } return ret; } static int wilc_spi_sync_ext(struct wilc *wilc, int nint) { struct spi_device *spi = to_spi_device(wilc->dev); u32 reg; int ret, i; if (nint > MAX_NUM_INT) { dev_err(&spi->dev, "Too many interrupts (%d)...\n", nint); return -EINVAL; } /* * interrupt pin mux select */ ret = wilc_spi_read_reg(wilc, WILC_PIN_MUX_0, ®); if (ret) { dev_err(&spi->dev, "Failed read reg (%08x)...\n", WILC_PIN_MUX_0); return ret; } reg |= BIT(8); ret = wilc_spi_write_reg(wilc, WILC_PIN_MUX_0, reg); if (ret) { dev_err(&spi->dev, "Failed write reg (%08x)...\n", WILC_PIN_MUX_0); return ret; } /* * interrupt enable */ ret = wilc_spi_read_reg(wilc, WILC_INTR_ENABLE, ®); if (ret) { dev_err(&spi->dev, "Failed read reg (%08x)...\n", WILC_INTR_ENABLE); return ret; } for (i = 0; (i < 5) && (nint > 0); i++, nint--) reg |= (BIT((27 + i))); ret = wilc_spi_write_reg(wilc, WILC_INTR_ENABLE, reg); if (ret) { dev_err(&spi->dev, "Failed write reg (%08x)...\n", WILC_INTR_ENABLE); return ret; } if (nint) { ret = wilc_spi_read_reg(wilc, WILC_INTR2_ENABLE, ®); if (ret) { dev_err(&spi->dev, "Failed read reg (%08x)...\n", WILC_INTR2_ENABLE); return ret; } for (i = 0; (i < 3) && (nint > 0); i++, nint--) reg |= BIT(i); ret = wilc_spi_write_reg(wilc, WILC_INTR2_ENABLE, reg); if (ret) { dev_err(&spi->dev, "Failed write reg (%08x)...\n", WILC_INTR2_ENABLE); return ret; } } return 0; } /* Global spi HIF function table */ static const struct wilc_hif_func wilc_hif_spi = { .hif_init = wilc_spi_init, .hif_deinit = wilc_spi_deinit, .hif_read_reg = wilc_spi_read_reg, .hif_write_reg = wilc_spi_write_reg, .hif_block_rx = wilc_spi_read, .hif_block_tx = wilc_spi_write, .hif_read_int = wilc_spi_read_int, .hif_clear_int_ext = wilc_spi_clear_int_ext, .hif_read_size = wilc_spi_read_size, .hif_block_tx_ext = wilc_spi_write, .hif_block_rx_ext = wilc_spi_read, .hif_sync_ext = wilc_spi_sync_ext, .hif_reset = wilc_spi_reset, .hif_is_init = wilc_spi_is_init, };