// SPDX-License-Identifier: GPL-2.0 /* Texas Instruments K3 AM65 Ethernet QoS submodule * Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com/ * * quality of service module includes: * Enhanced Scheduler Traffic (EST - P802.1Qbv/D2.2) * Interspersed Express Traffic (IET - P802.3br/D2.0) */ #include #include #include #include #include #include #include "am65-cpsw-nuss.h" #include "am65-cpsw-qos.h" #include "am65-cpts.h" #include "cpsw_ale.h" #define TO_MBPS(x) DIV_ROUND_UP((x), BYTES_PER_MBIT) enum timer_act { TACT_PROG, /* need program timer */ TACT_NEED_STOP, /* need stop first */ TACT_SKIP_PROG, /* just buffer can be updated */ }; static void am65_cpsw_iet_change_preemptible_tcs(struct am65_cpsw_port *port, u8 preemptible_tcs); static u32 am65_cpsw_qos_tx_rate_calc(u32 rate_mbps, unsigned long bus_freq) { u32 ir; bus_freq /= 1000000; ir = DIV_ROUND_UP(((u64)rate_mbps * 32768), bus_freq); return ir; } static void am65_cpsw_tx_pn_shaper_reset(struct am65_cpsw_port *port) { int prio; for (prio = 0; prio < AM65_CPSW_PN_FIFO_PRIO_NUM; prio++) { writel(0, port->port_base + AM65_CPSW_PN_REG_PRI_CIR(prio)); writel(0, port->port_base + AM65_CPSW_PN_REG_PRI_EIR(prio)); } } static void am65_cpsw_tx_pn_shaper_apply(struct am65_cpsw_port *port) { struct am65_cpsw_mqprio *p_mqprio = &port->qos.mqprio; struct am65_cpsw_common *common = port->common; struct tc_mqprio_qopt_offload *mqprio; bool enable, shaper_susp = false; u32 rate_mbps; int tc, prio; mqprio = &p_mqprio->mqprio_hw; /* takes care of no link case as well */ if (p_mqprio->max_rate_total > port->qos.link_speed) shaper_susp = true; am65_cpsw_tx_pn_shaper_reset(port); enable = p_mqprio->shaper_en && !shaper_susp; if (!enable) return; /* Rate limit is specified per Traffic Class but * for CPSW, rate limit can be applied per priority * at port FIFO. * * We have assigned the same priority (TCn) to all queues * of a Traffic Class so they share the same shaper * bandwidth. */ for (tc = 0; tc < mqprio->qopt.num_tc; tc++) { prio = tc; rate_mbps = TO_MBPS(mqprio->min_rate[tc]); rate_mbps = am65_cpsw_qos_tx_rate_calc(rate_mbps, common->bus_freq); writel(rate_mbps, port->port_base + AM65_CPSW_PN_REG_PRI_CIR(prio)); rate_mbps = 0; if (mqprio->max_rate[tc]) { rate_mbps = mqprio->max_rate[tc] - mqprio->min_rate[tc]; rate_mbps = TO_MBPS(rate_mbps); rate_mbps = am65_cpsw_qos_tx_rate_calc(rate_mbps, common->bus_freq); } writel(rate_mbps, port->port_base + AM65_CPSW_PN_REG_PRI_EIR(prio)); } } static int am65_cpsw_mqprio_verify_shaper(struct am65_cpsw_port *port, struct tc_mqprio_qopt_offload *mqprio) { struct am65_cpsw_mqprio *p_mqprio = &port->qos.mqprio; struct netlink_ext_ack *extack = mqprio->extack; u64 min_rate_total = 0, max_rate_total = 0; u32 min_rate_msk = 0, max_rate_msk = 0; bool has_min_rate, has_max_rate; int num_tc, i; if (!(mqprio->flags & TC_MQPRIO_F_SHAPER)) return 0; if (mqprio->shaper != TC_MQPRIO_SHAPER_BW_RATE) return 0; has_min_rate = !!(mqprio->flags & TC_MQPRIO_F_MIN_RATE); has_max_rate = !!(mqprio->flags & TC_MQPRIO_F_MAX_RATE); if (!has_min_rate && has_max_rate) { NL_SET_ERR_MSG_MOD(extack, "min_rate is required with max_rate"); return -EOPNOTSUPP; } if (!has_min_rate) return 0; num_tc = mqprio->qopt.num_tc; for (i = num_tc - 1; i >= 0; i--) { u32 ch_msk; if (mqprio->min_rate[i]) min_rate_msk |= BIT(i); min_rate_total += mqprio->min_rate[i]; if (has_max_rate) { if (mqprio->max_rate[i]) max_rate_msk |= BIT(i); max_rate_total += mqprio->max_rate[i]; if (!mqprio->min_rate[i] && mqprio->max_rate[i]) { NL_SET_ERR_MSG_FMT_MOD(extack, "TX tc%d rate max>0 but min=0", i); return -EINVAL; } if (mqprio->max_rate[i] && mqprio->max_rate[i] < mqprio->min_rate[i]) { NL_SET_ERR_MSG_FMT_MOD(extack, "TX tc%d rate min(%llu)>max(%llu)", i, mqprio->min_rate[i], mqprio->max_rate[i]); return -EINVAL; } } ch_msk = GENMASK(num_tc - 1, i); if ((min_rate_msk & BIT(i)) && (min_rate_msk ^ ch_msk)) { NL_SET_ERR_MSG_FMT_MOD(extack, "Min rate must be set sequentially hi->lo tx_rate_msk%x", min_rate_msk); return -EINVAL; } if ((max_rate_msk & BIT(i)) && (max_rate_msk ^ ch_msk)) { NL_SET_ERR_MSG_FMT_MOD(extack, "Max rate must be set sequentially hi->lo tx_rate_msk%x", max_rate_msk); return -EINVAL; } } min_rate_total = TO_MBPS(min_rate_total); max_rate_total = TO_MBPS(max_rate_total); p_mqprio->shaper_en = true; p_mqprio->max_rate_total = max_t(u64, min_rate_total, max_rate_total); return 0; } static void am65_cpsw_reset_tc_mqprio(struct net_device *ndev) { struct am65_cpsw_port *port = am65_ndev_to_port(ndev); struct am65_cpsw_mqprio *p_mqprio = &port->qos.mqprio; p_mqprio->shaper_en = false; p_mqprio->max_rate_total = 0; am65_cpsw_tx_pn_shaper_reset(port); netdev_reset_tc(ndev); /* Reset all Queue priorities to 0 */ writel(0, port->port_base + AM65_CPSW_PN_REG_TX_PRI_MAP); am65_cpsw_iet_change_preemptible_tcs(port, 0); } static int am65_cpsw_setup_mqprio(struct net_device *ndev, void *type_data) { struct am65_cpsw_port *port = am65_ndev_to_port(ndev); struct am65_cpsw_mqprio *p_mqprio = &port->qos.mqprio; struct tc_mqprio_qopt_offload *mqprio = type_data; struct am65_cpsw_common *common = port->common; struct tc_mqprio_qopt *qopt = &mqprio->qopt; int i, tc, offset, count, prio, ret; u8 num_tc = qopt->num_tc; u32 tx_prio_map = 0; memcpy(&p_mqprio->mqprio_hw, mqprio, sizeof(*mqprio)); ret = pm_runtime_get_sync(common->dev); if (ret < 0) { pm_runtime_put_noidle(common->dev); return ret; } if (!num_tc) { am65_cpsw_reset_tc_mqprio(ndev); ret = 0; goto exit_put; } ret = am65_cpsw_mqprio_verify_shaper(port, mqprio); if (ret) goto exit_put; netdev_set_num_tc(ndev, num_tc); /* Multiple Linux priorities can map to a Traffic Class * A Traffic Class can have multiple contiguous Queues, * Queues get mapped to Channels (thread_id), * if not VLAN tagged, thread_id is used as packet_priority * if VLAN tagged. VLAN priority is used as packet_priority * packet_priority gets mapped to header_priority in p0_rx_pri_map, * header_priority gets mapped to switch_priority in pn_tx_pri_map. * As p0_rx_pri_map is left at defaults (0x76543210), we can * assume that Queue_n gets mapped to header_priority_n. We can then * set the switch priority in pn_tx_pri_map. */ for (tc = 0; tc < num_tc; tc++) { prio = tc; /* For simplicity we assign the same priority (TCn) to * all queues of a Traffic Class. */ for (i = qopt->offset[tc]; i < qopt->offset[tc] + qopt->count[tc]; i++) tx_prio_map |= prio << (4 * i); count = qopt->count[tc]; offset = qopt->offset[tc]; netdev_set_tc_queue(ndev, tc, count, offset); } writel(tx_prio_map, port->port_base + AM65_CPSW_PN_REG_TX_PRI_MAP); am65_cpsw_tx_pn_shaper_apply(port); am65_cpsw_iet_change_preemptible_tcs(port, mqprio->preemptible_tcs); exit_put: pm_runtime_put(common->dev); return ret; } static int am65_cpsw_iet_set_verify_timeout_count(struct am65_cpsw_port *port) { int verify_time_ms = port->qos.iet.verify_time_ms; u32 val; /* The number of wireside clocks contained in the verify * timeout counter. The default is 0x1312d0 * (10ms at 125Mhz in 1G mode). */ val = 125 * HZ_PER_MHZ; /* assuming 125MHz wireside clock */ val /= MILLIHZ_PER_HZ; /* count per ms timeout */ val *= verify_time_ms; /* count for timeout ms */ if (val > AM65_CPSW_PN_MAC_VERIFY_CNT_MASK) return -EINVAL; writel(val, port->port_base + AM65_CPSW_PN_REG_IET_VERIFY); return 0; } static int am65_cpsw_iet_verify_wait(struct am65_cpsw_port *port) { u32 ctrl, status; int try; try = 20; do { /* Reset the verify state machine by writing 1 * to LINKFAIL */ ctrl = readl(port->port_base + AM65_CPSW_PN_REG_IET_CTRL); ctrl |= AM65_CPSW_PN_IET_MAC_LINKFAIL; writel(ctrl, port->port_base + AM65_CPSW_PN_REG_IET_CTRL); /* Clear MAC_LINKFAIL bit to start Verify. */ ctrl = readl(port->port_base + AM65_CPSW_PN_REG_IET_CTRL); ctrl &= ~AM65_CPSW_PN_IET_MAC_LINKFAIL; writel(ctrl, port->port_base + AM65_CPSW_PN_REG_IET_CTRL); msleep(port->qos.iet.verify_time_ms); status = readl(port->port_base + AM65_CPSW_PN_REG_IET_STATUS); if (status & AM65_CPSW_PN_MAC_VERIFIED) return 0; if (status & AM65_CPSW_PN_MAC_VERIFY_FAIL) { netdev_dbg(port->ndev, "MAC Merge verify failed, trying again\n"); continue; } if (status & AM65_CPSW_PN_MAC_RESPOND_ERR) { netdev_dbg(port->ndev, "MAC Merge respond error\n"); return -ENODEV; } if (status & AM65_CPSW_PN_MAC_VERIFY_ERR) { netdev_dbg(port->ndev, "MAC Merge verify error\n"); return -ENODEV; } } while (try-- > 0); netdev_dbg(port->ndev, "MAC Merge verify timeout\n"); return -ETIMEDOUT; } static void am65_cpsw_iet_set_preempt_mask(struct am65_cpsw_port *port, u8 preemptible_tcs) { u32 val; val = readl(port->port_base + AM65_CPSW_PN_REG_IET_CTRL); val &= ~AM65_CPSW_PN_IET_MAC_PREMPT_MASK; val |= AM65_CPSW_PN_IET_MAC_SET_PREEMPT(preemptible_tcs); writel(val, port->port_base + AM65_CPSW_PN_REG_IET_CTRL); } /* enable common IET_ENABLE only if at least 1 port has rx IET enabled. * UAPI doesn't allow tx enable without rx enable. */ void am65_cpsw_iet_common_enable(struct am65_cpsw_common *common) { struct am65_cpsw_port *port; bool rx_enable = false; u32 val; int i; for (i = 0; i < common->port_num; i++) { port = &common->ports[i]; val = readl(port->port_base + AM65_CPSW_PN_REG_CTL); rx_enable = !!(val & AM65_CPSW_PN_CTL_IET_PORT_EN); if (rx_enable) break; } val = readl(common->cpsw_base + AM65_CPSW_REG_CTL); if (rx_enable) val |= AM65_CPSW_CTL_IET_EN; else val &= ~AM65_CPSW_CTL_IET_EN; writel(val, common->cpsw_base + AM65_CPSW_REG_CTL); common->iet_enabled = rx_enable; } /* CPSW does not have an IRQ to notify changes to the MAC Merge TX status * (active/inactive), but the preemptible traffic classes should only be * committed to hardware once TX is active. Resort to polling. */ void am65_cpsw_iet_commit_preemptible_tcs(struct am65_cpsw_port *port) { u8 preemptible_tcs; int err; u32 val; if (port->qos.link_speed == SPEED_UNKNOWN) return; val = readl(port->port_base + AM65_CPSW_PN_REG_CTL); if (!(val & AM65_CPSW_PN_CTL_IET_PORT_EN)) return; /* update common IET enable */ am65_cpsw_iet_common_enable(port->common); /* update verify count */ err = am65_cpsw_iet_set_verify_timeout_count(port); if (err) { netdev_err(port->ndev, "couldn't set verify count: %d\n", err); return; } val = readl(port->port_base + AM65_CPSW_PN_REG_IET_CTRL); if (!(val & AM65_CPSW_PN_IET_MAC_DISABLEVERIFY)) { err = am65_cpsw_iet_verify_wait(port); if (err) return; } preemptible_tcs = port->qos.iet.preemptible_tcs; am65_cpsw_iet_set_preempt_mask(port, preemptible_tcs); } static void am65_cpsw_iet_change_preemptible_tcs(struct am65_cpsw_port *port, u8 preemptible_tcs) { struct am65_cpsw_ndev_priv *priv = am65_ndev_to_priv(port->ndev); port->qos.iet.preemptible_tcs = preemptible_tcs; mutex_lock(&priv->mm_lock); am65_cpsw_iet_commit_preemptible_tcs(port); mutex_unlock(&priv->mm_lock); } static void am65_cpsw_iet_link_state_update(struct net_device *ndev) { struct am65_cpsw_ndev_priv *priv = am65_ndev_to_priv(ndev); struct am65_cpsw_port *port = am65_ndev_to_port(ndev); mutex_lock(&priv->mm_lock); am65_cpsw_iet_commit_preemptible_tcs(port); mutex_unlock(&priv->mm_lock); } static int am65_cpsw_port_est_enabled(struct am65_cpsw_port *port) { return port->qos.est_oper || port->qos.est_admin; } static void am65_cpsw_est_enable(struct am65_cpsw_common *common, int enable) { u32 val; val = readl(common->cpsw_base + AM65_CPSW_REG_CTL); if (enable) val |= AM65_CPSW_CTL_EST_EN; else val &= ~AM65_CPSW_CTL_EST_EN; writel(val, common->cpsw_base + AM65_CPSW_REG_CTL); common->est_enabled = enable; } static void am65_cpsw_port_est_enable(struct am65_cpsw_port *port, int enable) { u32 val; val = readl(port->port_base + AM65_CPSW_PN_REG_CTL); if (enable) val |= AM65_CPSW_PN_CTL_EST_PORT_EN; else val &= ~AM65_CPSW_PN_CTL_EST_PORT_EN; writel(val, port->port_base + AM65_CPSW_PN_REG_CTL); } /* target new EST RAM buffer, actual toggle happens after cycle completion */ static void am65_cpsw_port_est_assign_buf_num(struct net_device *ndev, int buf_num) { struct am65_cpsw_port *port = am65_ndev_to_port(ndev); u32 val; val = readl(port->port_base + AM65_CPSW_PN_REG_EST_CTL); if (buf_num) val |= AM65_CPSW_PN_EST_BUFSEL; else val &= ~AM65_CPSW_PN_EST_BUFSEL; writel(val, port->port_base + AM65_CPSW_PN_REG_EST_CTL); } /* am65_cpsw_port_est_is_swapped() - Indicate if h/w is transitioned * admin -> oper or not * * Return true if already transitioned. i.e oper is equal to admin and buf * numbers match (est_oper->buf match with est_admin->buf). * false if before transition. i.e oper is not equal to admin, (i.e a * previous admin command is waiting to be transitioned to oper state * and est_oper->buf not match with est_oper->buf). */ static int am65_cpsw_port_est_is_swapped(struct net_device *ndev, int *oper, int *admin) { struct am65_cpsw_port *port = am65_ndev_to_port(ndev); u32 val; val = readl(port->port_base + AM65_CPSW_PN_REG_FIFO_STATUS); *oper = !!(val & AM65_CPSW_PN_FST_EST_BUFACT); val = readl(port->port_base + AM65_CPSW_PN_REG_EST_CTL); *admin = !!(val & AM65_CPSW_PN_EST_BUFSEL); return *admin == *oper; } /* am65_cpsw_port_est_get_free_buf_num() - Get free buffer number for * Admin to program the new schedule. * * Logic as follows:- * If oper is same as admin, return the other buffer (!oper) as the admin * buffer. If oper is not the same, driver let the current oper to continue * as it is in the process of transitioning from admin -> oper. So keep the * oper by selecting the same oper buffer by writing to EST_BUFSEL bit in * EST CTL register. In the second iteration they will match and code returns. * The actual buffer to write command is selected later before it is ready * to update the schedule. */ static int am65_cpsw_port_est_get_free_buf_num(struct net_device *ndev) { int oper, admin; int roll = 2; while (roll--) { if (am65_cpsw_port_est_is_swapped(ndev, &oper, &admin)) return !oper; /* admin is not set, so hinder transition as it's not allowed * to touch memory in-flight, by targeting same oper buf. */ am65_cpsw_port_est_assign_buf_num(ndev, oper); dev_info(&ndev->dev, "Prev. EST admin cycle is in transit %d -> %d\n", oper, admin); } return admin; } static void am65_cpsw_admin_to_oper(struct net_device *ndev) { struct am65_cpsw_port *port = am65_ndev_to_port(ndev); devm_kfree(&ndev->dev, port->qos.est_oper); port->qos.est_oper = port->qos.est_admin; port->qos.est_admin = NULL; } static void am65_cpsw_port_est_get_buf_num(struct net_device *ndev, struct am65_cpsw_est *est_new) { struct am65_cpsw_port *port = am65_ndev_to_port(ndev); u32 val; val = readl(port->port_base + AM65_CPSW_PN_REG_EST_CTL); val &= ~AM65_CPSW_PN_EST_ONEBUF; writel(val, port->port_base + AM65_CPSW_PN_REG_EST_CTL); est_new->buf = am65_cpsw_port_est_get_free_buf_num(ndev); /* rolled buf num means changed buf while configuring */ if (port->qos.est_oper && port->qos.est_admin && est_new->buf == port->qos.est_oper->buf) am65_cpsw_admin_to_oper(ndev); } static void am65_cpsw_est_set(struct net_device *ndev, int enable) { struct am65_cpsw_port *port = am65_ndev_to_port(ndev); struct am65_cpsw_common *common = port->common; int common_enable = 0; int i; am65_cpsw_port_est_enable(port, enable); for (i = 0; i < common->port_num; i++) common_enable |= am65_cpsw_port_est_enabled(&common->ports[i]); common_enable |= enable; am65_cpsw_est_enable(common, common_enable); } /* This update is supposed to be used in any routine before getting real state * of admin -> oper transition, particularly it's supposed to be used in some * generic routine for providing real state to Taprio Qdisc. */ static void am65_cpsw_est_update_state(struct net_device *ndev) { struct am65_cpsw_port *port = am65_ndev_to_port(ndev); int oper, admin; if (!port->qos.est_admin) return; if (!am65_cpsw_port_est_is_swapped(ndev, &oper, &admin)) return; am65_cpsw_admin_to_oper(ndev); } /* Fetch command count it's number of bytes in Gigabit mode or nibbles in * 10/100Mb mode. So, having speed and time in ns, recalculate ns to number of * bytes/nibbles that can be sent while transmission on given speed. */ static int am65_est_cmd_ns_to_cnt(u64 ns, int link_speed) { u64 temp; temp = ns * link_speed; if (link_speed < SPEED_1000) temp <<= 1; return DIV_ROUND_UP(temp, 8 * 1000); } static void __iomem *am65_cpsw_est_set_sched_cmds(void __iomem *addr, int fetch_cnt, int fetch_allow) { u32 prio_mask, cmd_fetch_cnt, cmd; do { if (fetch_cnt > AM65_CPSW_FETCH_CNT_MAX) { fetch_cnt -= AM65_CPSW_FETCH_CNT_MAX; cmd_fetch_cnt = AM65_CPSW_FETCH_CNT_MAX; } else { cmd_fetch_cnt = fetch_cnt; /* fetch count can't be less than 16? */ if (cmd_fetch_cnt && cmd_fetch_cnt < 16) cmd_fetch_cnt = 16; fetch_cnt = 0; } prio_mask = fetch_allow & AM65_CPSW_FETCH_ALLOW_MSK; cmd = (cmd_fetch_cnt << AM65_CPSW_FETCH_CNT_OFFSET) | prio_mask; writel(cmd, addr); addr += 4; } while (fetch_cnt); return addr; } static int am65_cpsw_est_calc_cmd_num(struct net_device *ndev, struct tc_taprio_qopt_offload *taprio, int link_speed) { int i, cmd_cnt, cmd_sum = 0; u32 fetch_cnt; for (i = 0; i < taprio->num_entries; i++) { if (taprio->entries[i].command != TC_TAPRIO_CMD_SET_GATES) { dev_err(&ndev->dev, "Only SET command is supported"); return -EINVAL; } fetch_cnt = am65_est_cmd_ns_to_cnt(taprio->entries[i].interval, link_speed); cmd_cnt = DIV_ROUND_UP(fetch_cnt, AM65_CPSW_FETCH_CNT_MAX); if (!cmd_cnt) cmd_cnt++; cmd_sum += cmd_cnt; if (!fetch_cnt) break; } return cmd_sum; } static int am65_cpsw_est_check_scheds(struct net_device *ndev, struct am65_cpsw_est *est_new) { struct am65_cpsw_port *port = am65_ndev_to_port(ndev); int cmd_num; cmd_num = am65_cpsw_est_calc_cmd_num(ndev, &est_new->taprio, port->qos.link_speed); if (cmd_num < 0) return cmd_num; if (cmd_num > AM65_CPSW_FETCH_RAM_CMD_NUM / 2) { dev_err(&ndev->dev, "No fetch RAM"); return -ENOMEM; } return 0; } static void am65_cpsw_est_set_sched_list(struct net_device *ndev, struct am65_cpsw_est *est_new) { struct am65_cpsw_port *port = am65_ndev_to_port(ndev); u32 fetch_cnt, fetch_allow, all_fetch_allow = 0; void __iomem *ram_addr, *max_ram_addr; struct tc_taprio_sched_entry *entry; int i, ram_size; ram_addr = port->fetch_ram_base; ram_size = AM65_CPSW_FETCH_RAM_CMD_NUM * 2; ram_addr += est_new->buf * ram_size; max_ram_addr = ram_size + ram_addr; for (i = 0; i < est_new->taprio.num_entries; i++) { entry = &est_new->taprio.entries[i]; fetch_cnt = am65_est_cmd_ns_to_cnt(entry->interval, port->qos.link_speed); fetch_allow = entry->gate_mask; if (fetch_allow > AM65_CPSW_FETCH_ALLOW_MAX) dev_dbg(&ndev->dev, "fetch_allow > 8 bits: %d\n", fetch_allow); ram_addr = am65_cpsw_est_set_sched_cmds(ram_addr, fetch_cnt, fetch_allow); if (!fetch_cnt && i < est_new->taprio.num_entries - 1) { dev_info(&ndev->dev, "next scheds after %d have no impact", i + 1); break; } all_fetch_allow |= fetch_allow; } /* end cmd, enabling non-timed queues for potential over cycle time */ if (ram_addr < max_ram_addr) writel(~all_fetch_allow & AM65_CPSW_FETCH_ALLOW_MSK, ram_addr); } /* * Enable ESTf periodic output, set cycle start time and interval. */ static int am65_cpsw_timer_set(struct net_device *ndev, struct am65_cpsw_est *est_new) { struct am65_cpsw_port *port = am65_ndev_to_port(ndev); struct am65_cpsw_common *common = port->common; struct am65_cpts *cpts = common->cpts; struct am65_cpts_estf_cfg cfg; cfg.ns_period = est_new->taprio.cycle_time; cfg.ns_start = est_new->taprio.base_time; return am65_cpts_estf_enable(cpts, port->port_id - 1, &cfg); } static void am65_cpsw_timer_stop(struct net_device *ndev) { struct am65_cpsw_port *port = am65_ndev_to_port(ndev); struct am65_cpts *cpts = port->common->cpts; am65_cpts_estf_disable(cpts, port->port_id - 1); } static enum timer_act am65_cpsw_timer_act(struct net_device *ndev, struct am65_cpsw_est *est_new) { struct tc_taprio_qopt_offload *taprio_oper, *taprio_new; struct am65_cpsw_port *port = am65_ndev_to_port(ndev); struct am65_cpts *cpts = port->common->cpts; u64 cur_time; s64 diff; if (!port->qos.est_oper) return TACT_PROG; taprio_new = &est_new->taprio; taprio_oper = &port->qos.est_oper->taprio; if (taprio_new->cycle_time != taprio_oper->cycle_time) return TACT_NEED_STOP; /* in order to avoid timer reset get base_time form oper taprio */ if (!taprio_new->base_time && taprio_oper) taprio_new->base_time = taprio_oper->base_time; if (taprio_new->base_time == taprio_oper->base_time) return TACT_SKIP_PROG; /* base times are cycle synchronized */ diff = taprio_new->base_time - taprio_oper->base_time; diff = diff < 0 ? -diff : diff; if (diff % taprio_new->cycle_time) return TACT_NEED_STOP; cur_time = am65_cpts_ns_gettime(cpts); if (taprio_new->base_time <= cur_time + taprio_new->cycle_time) return TACT_SKIP_PROG; /* TODO: Admin schedule at future time is not currently supported */ return TACT_NEED_STOP; } static void am65_cpsw_stop_est(struct net_device *ndev) { am65_cpsw_est_set(ndev, 0); am65_cpsw_timer_stop(ndev); } static void am65_cpsw_taprio_destroy(struct net_device *ndev) { struct am65_cpsw_port *port = am65_ndev_to_port(ndev); am65_cpsw_stop_est(ndev); devm_kfree(&ndev->dev, port->qos.est_admin); devm_kfree(&ndev->dev, port->qos.est_oper); port->qos.est_oper = NULL; port->qos.est_admin = NULL; am65_cpsw_reset_tc_mqprio(ndev); } static void am65_cpsw_cp_taprio(struct tc_taprio_qopt_offload *from, struct tc_taprio_qopt_offload *to) { int i; *to = *from; for (i = 0; i < from->num_entries; i++) to->entries[i] = from->entries[i]; } static int am65_cpsw_taprio_replace(struct net_device *ndev, struct tc_taprio_qopt_offload *taprio) { struct am65_cpsw_common *common = am65_ndev_to_common(ndev); struct netlink_ext_ack *extack = taprio->mqprio.extack; struct am65_cpsw_port *port = am65_ndev_to_port(ndev); struct am65_cpts *cpts = common->cpts; struct am65_cpsw_est *est_new; u64 cur_time, n; int ret, tact; if (!netif_running(ndev)) { NL_SET_ERR_MSG_MOD(extack, "interface is down, link speed unknown"); return -ENETDOWN; } if (common->pf_p0_rx_ptype_rrobin) { NL_SET_ERR_MSG_MOD(extack, "p0-rx-ptype-rrobin flag conflicts with taprio qdisc"); return -EINVAL; } if (port->qos.link_speed == SPEED_UNKNOWN) return -ENOLINK; if (taprio->cycle_time_extension) { NL_SET_ERR_MSG_MOD(extack, "cycle time extension not supported"); return -EOPNOTSUPP; } est_new = devm_kzalloc(&ndev->dev, struct_size(est_new, taprio.entries, taprio->num_entries), GFP_KERNEL); if (!est_new) return -ENOMEM; ret = am65_cpsw_setup_mqprio(ndev, &taprio->mqprio); if (ret) return ret; am65_cpsw_cp_taprio(taprio, &est_new->taprio); am65_cpsw_est_update_state(ndev); ret = am65_cpsw_est_check_scheds(ndev, est_new); if (ret < 0) goto fail; tact = am65_cpsw_timer_act(ndev, est_new); if (tact == TACT_NEED_STOP) { NL_SET_ERR_MSG_MOD(extack, "Can't toggle estf timer, stop taprio first"); ret = -EINVAL; goto fail; } if (tact == TACT_PROG) am65_cpsw_timer_stop(ndev); am65_cpsw_port_est_get_buf_num(ndev, est_new); am65_cpsw_est_set_sched_list(ndev, est_new); am65_cpsw_port_est_assign_buf_num(ndev, est_new->buf); /* If the base-time is in the past, start schedule from the time: * base_time + (N*cycle_time) * where N is the smallest possible integer such that the above * time is in the future. */ cur_time = am65_cpts_ns_gettime(cpts); if (est_new->taprio.base_time < cur_time) { n = div64_u64(cur_time - est_new->taprio.base_time, est_new->taprio.cycle_time); est_new->taprio.base_time += (n + 1) * est_new->taprio.cycle_time; } am65_cpsw_est_set(ndev, 1); if (tact == TACT_PROG) { ret = am65_cpsw_timer_set(ndev, est_new); if (ret) { NL_SET_ERR_MSG_MOD(extack, "Failed to set cycle time"); goto fail; } } devm_kfree(&ndev->dev, port->qos.est_admin); port->qos.est_admin = est_new; am65_cpsw_iet_change_preemptible_tcs(port, taprio->mqprio.preemptible_tcs); return 0; fail: am65_cpsw_reset_tc_mqprio(ndev); devm_kfree(&ndev->dev, est_new); return ret; } static void am65_cpsw_est_link_up(struct net_device *ndev, int link_speed) { struct am65_cpsw_port *port = am65_ndev_to_port(ndev); ktime_t cur_time; s64 delta; if (!am65_cpsw_port_est_enabled(port)) return; if (port->qos.link_down_time) { cur_time = ktime_get(); delta = ktime_us_delta(cur_time, port->qos.link_down_time); if (delta > USEC_PER_SEC) { dev_err(&ndev->dev, "Link has been lost too long, stopping TAS"); goto purge_est; } } return; purge_est: am65_cpsw_taprio_destroy(ndev); } static int am65_cpsw_setup_taprio(struct net_device *ndev, void *type_data) { struct tc_taprio_qopt_offload *taprio = type_data; int err = 0; switch (taprio->cmd) { case TAPRIO_CMD_REPLACE: err = am65_cpsw_taprio_replace(ndev, taprio); break; case TAPRIO_CMD_DESTROY: am65_cpsw_taprio_destroy(ndev); break; default: err = -EOPNOTSUPP; } return err; } static int am65_cpsw_tc_query_caps(struct net_device *ndev, void *type_data) { struct tc_query_caps_base *base = type_data; switch (base->type) { case TC_SETUP_QDISC_MQPRIO: { struct tc_mqprio_caps *caps = base->caps; caps->validate_queue_counts = true; return 0; } case TC_SETUP_QDISC_TAPRIO: { struct tc_taprio_caps *caps = base->caps; caps->gate_mask_per_txq = true; return 0; } default: return -EOPNOTSUPP; } } static int am65_cpsw_qos_clsflower_add_policer(struct am65_cpsw_port *port, struct netlink_ext_ack *extack, struct flow_cls_offload *cls, u64 rate_pkt_ps) { struct flow_rule *rule = flow_cls_offload_flow_rule(cls); struct flow_dissector *dissector = rule->match.dissector; static const u8 mc_mac[] = {0x01, 0x00, 0x00, 0x00, 0x00, 0x00}; struct am65_cpsw_qos *qos = &port->qos; struct flow_match_eth_addrs match; int ret; if (dissector->used_keys & ~(BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) | BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) | BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS))) { NL_SET_ERR_MSG_MOD(extack, "Unsupported keys used"); return -EOPNOTSUPP; } if (flow_rule_match_has_control_flags(rule, extack)) return -EOPNOTSUPP; if (!flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { NL_SET_ERR_MSG_MOD(extack, "Not matching on eth address"); return -EOPNOTSUPP; } flow_rule_match_eth_addrs(rule, &match); if (!is_zero_ether_addr(match.mask->src)) { NL_SET_ERR_MSG_MOD(extack, "Matching on source MAC not supported"); return -EOPNOTSUPP; } if (is_broadcast_ether_addr(match.key->dst) && is_broadcast_ether_addr(match.mask->dst)) { ret = cpsw_ale_rx_ratelimit_bc(port->common->ale, port->port_id, rate_pkt_ps); if (ret) return ret; qos->ale_bc_ratelimit.cookie = cls->cookie; qos->ale_bc_ratelimit.rate_packet_ps = rate_pkt_ps; } else if (ether_addr_equal_unaligned(match.key->dst, mc_mac) && ether_addr_equal_unaligned(match.mask->dst, mc_mac)) { ret = cpsw_ale_rx_ratelimit_mc(port->common->ale, port->port_id, rate_pkt_ps); if (ret) return ret; qos->ale_mc_ratelimit.cookie = cls->cookie; qos->ale_mc_ratelimit.rate_packet_ps = rate_pkt_ps; } else { NL_SET_ERR_MSG_MOD(extack, "Not supported matching key"); return -EOPNOTSUPP; } return 0; } static int am65_cpsw_qos_clsflower_policer_validate(const struct flow_action *action, const struct flow_action_entry *act, struct netlink_ext_ack *extack) { if (act->police.exceed.act_id != FLOW_ACTION_DROP) { NL_SET_ERR_MSG_MOD(extack, "Offload not supported when exceed action is not drop"); return -EOPNOTSUPP; } if (act->police.notexceed.act_id != FLOW_ACTION_PIPE && act->police.notexceed.act_id != FLOW_ACTION_ACCEPT) { NL_SET_ERR_MSG_MOD(extack, "Offload not supported when conform action is not pipe or ok"); return -EOPNOTSUPP; } if (act->police.notexceed.act_id == FLOW_ACTION_ACCEPT && !flow_action_is_last_entry(action, act)) { NL_SET_ERR_MSG_MOD(extack, "Offload not supported when conform action is ok, but action is not last"); return -EOPNOTSUPP; } if (act->police.rate_bytes_ps || act->police.peakrate_bytes_ps || act->police.avrate || act->police.overhead) { NL_SET_ERR_MSG_MOD(extack, "Offload not supported when bytes per second/peakrate/avrate/overhead is configured"); return -EOPNOTSUPP; } return 0; } static int am65_cpsw_qos_configure_clsflower(struct am65_cpsw_port *port, struct flow_cls_offload *cls) { struct flow_rule *rule = flow_cls_offload_flow_rule(cls); struct netlink_ext_ack *extack = cls->common.extack; const struct flow_action_entry *act; int i, ret; flow_action_for_each(i, act, &rule->action) { switch (act->id) { case FLOW_ACTION_POLICE: ret = am65_cpsw_qos_clsflower_policer_validate(&rule->action, act, extack); if (ret) return ret; return am65_cpsw_qos_clsflower_add_policer(port, extack, cls, act->police.rate_pkt_ps); default: NL_SET_ERR_MSG_MOD(extack, "Action not supported"); return -EOPNOTSUPP; } } return -EOPNOTSUPP; } static int am65_cpsw_qos_delete_clsflower(struct am65_cpsw_port *port, struct flow_cls_offload *cls) { struct am65_cpsw_qos *qos = &port->qos; if (cls->cookie == qos->ale_bc_ratelimit.cookie) { qos->ale_bc_ratelimit.cookie = 0; qos->ale_bc_ratelimit.rate_packet_ps = 0; cpsw_ale_rx_ratelimit_bc(port->common->ale, port->port_id, 0); } if (cls->cookie == qos->ale_mc_ratelimit.cookie) { qos->ale_mc_ratelimit.cookie = 0; qos->ale_mc_ratelimit.rate_packet_ps = 0; cpsw_ale_rx_ratelimit_mc(port->common->ale, port->port_id, 0); } return 0; } static int am65_cpsw_qos_setup_tc_clsflower(struct am65_cpsw_port *port, struct flow_cls_offload *cls_flower) { switch (cls_flower->command) { case FLOW_CLS_REPLACE: return am65_cpsw_qos_configure_clsflower(port, cls_flower); case FLOW_CLS_DESTROY: return am65_cpsw_qos_delete_clsflower(port, cls_flower); default: return -EOPNOTSUPP; } } static int am65_cpsw_qos_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) { struct am65_cpsw_port *port = cb_priv; if (!tc_cls_can_offload_and_chain0(port->ndev, type_data)) return -EOPNOTSUPP; switch (type) { case TC_SETUP_CLSFLOWER: return am65_cpsw_qos_setup_tc_clsflower(port, type_data); default: return -EOPNOTSUPP; } } static LIST_HEAD(am65_cpsw_qos_block_cb_list); static int am65_cpsw_qos_setup_tc_block(struct net_device *ndev, struct flow_block_offload *f) { struct am65_cpsw_port *port = am65_ndev_to_port(ndev); return flow_block_cb_setup_simple(f, &am65_cpsw_qos_block_cb_list, am65_cpsw_qos_setup_tc_block_cb, port, port, true); } static void am65_cpsw_qos_tx_p0_rate_apply(struct am65_cpsw_common *common, int tx_ch, u32 rate_mbps) { struct am65_cpsw_host *host = am65_common_get_host(common); u32 ch_cir; int i; ch_cir = am65_cpsw_qos_tx_rate_calc(rate_mbps, common->bus_freq); writel(ch_cir, host->port_base + AM65_CPSW_PN_REG_PRI_CIR(tx_ch)); /* update rates for every port tx queues */ for (i = 0; i < common->port_num; i++) { struct net_device *ndev = common->ports[i].ndev; if (!ndev) continue; netdev_get_tx_queue(ndev, tx_ch)->tx_maxrate = rate_mbps; } } int am65_cpsw_qos_ndo_tx_p0_set_maxrate(struct net_device *ndev, int queue, u32 rate_mbps) { struct am65_cpsw_port *port = am65_ndev_to_port(ndev); struct am65_cpsw_common *common = port->common; struct am65_cpsw_tx_chn *tx_chn; u32 ch_rate, tx_ch_rate_msk_new; u32 ch_msk = 0; int ret; dev_dbg(common->dev, "apply TX%d rate limiting %uMbps tx_rate_msk%x\n", queue, rate_mbps, common->tx_ch_rate_msk); if (common->pf_p0_rx_ptype_rrobin) { dev_err(common->dev, "TX Rate Limiting failed - rrobin mode\n"); return -EINVAL; } ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate; if (ch_rate == rate_mbps) return 0; ret = pm_runtime_get_sync(common->dev); if (ret < 0) { pm_runtime_put_noidle(common->dev); return ret; } ret = 0; tx_ch_rate_msk_new = common->tx_ch_rate_msk; if (rate_mbps && !(tx_ch_rate_msk_new & BIT(queue))) { tx_ch_rate_msk_new |= BIT(queue); ch_msk = GENMASK(common->tx_ch_num - 1, queue); ch_msk = tx_ch_rate_msk_new ^ ch_msk; } else if (!rate_mbps) { tx_ch_rate_msk_new &= ~BIT(queue); ch_msk = queue ? GENMASK(queue - 1, 0) : 0; ch_msk = tx_ch_rate_msk_new & ch_msk; } if (ch_msk) { dev_err(common->dev, "TX rate limiting has to be enabled sequentially hi->lo tx_rate_msk:%x tx_rate_msk_new:%x\n", common->tx_ch_rate_msk, tx_ch_rate_msk_new); ret = -EINVAL; goto exit_put; } tx_chn = &common->tx_chns[queue]; tx_chn->rate_mbps = rate_mbps; common->tx_ch_rate_msk = tx_ch_rate_msk_new; if (!common->usage_count) /* will be applied on next netif up */ goto exit_put; am65_cpsw_qos_tx_p0_rate_apply(common, queue, rate_mbps); exit_put: pm_runtime_put(common->dev); return ret; } void am65_cpsw_qos_tx_p0_rate_init(struct am65_cpsw_common *common) { struct am65_cpsw_host *host = am65_common_get_host(common); int tx_ch; for (tx_ch = 0; tx_ch < common->tx_ch_num; tx_ch++) { struct am65_cpsw_tx_chn *tx_chn = &common->tx_chns[tx_ch]; u32 ch_cir; if (!tx_chn->rate_mbps) continue; ch_cir = am65_cpsw_qos_tx_rate_calc(tx_chn->rate_mbps, common->bus_freq); writel(ch_cir, host->port_base + AM65_CPSW_PN_REG_PRI_CIR(tx_ch)); } } int am65_cpsw_qos_ndo_setup_tc(struct net_device *ndev, enum tc_setup_type type, void *type_data) { switch (type) { case TC_QUERY_CAPS: return am65_cpsw_tc_query_caps(ndev, type_data); case TC_SETUP_QDISC_TAPRIO: return am65_cpsw_setup_taprio(ndev, type_data); case TC_SETUP_QDISC_MQPRIO: return am65_cpsw_setup_mqprio(ndev, type_data); case TC_SETUP_BLOCK: return am65_cpsw_qos_setup_tc_block(ndev, type_data); default: return -EOPNOTSUPP; } } void am65_cpsw_qos_link_up(struct net_device *ndev, int link_speed) { struct am65_cpsw_port *port = am65_ndev_to_port(ndev); port->qos.link_speed = link_speed; am65_cpsw_tx_pn_shaper_apply(port); am65_cpsw_iet_link_state_update(ndev); am65_cpsw_est_link_up(ndev, link_speed); port->qos.link_down_time = 0; } void am65_cpsw_qos_link_down(struct net_device *ndev) { struct am65_cpsw_port *port = am65_ndev_to_port(ndev); port->qos.link_speed = SPEED_UNKNOWN; am65_cpsw_tx_pn_shaper_apply(port); am65_cpsw_iet_link_state_update(ndev); if (!port->qos.link_down_time) port->qos.link_down_time = ktime_get(); }