// SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause) /* QLogic qed NIC Driver * Copyright (c) 2015-2017 QLogic Corporation * Copyright (c) 2019-2020 Marvell International Ltd. */ #include #include #include #include #include #include #include #include "qed.h" #include "qed_hsi.h" #include "qed_hw.h" #include "qed_init_ops.h" #include "qed_iro_hsi.h" #include "qed_reg_addr.h" #include "qed_sriov.h" #define QED_INIT_MAX_POLL_COUNT 100 #define QED_INIT_POLL_PERIOD_US 500 static u32 pxp_global_win[] = { 0, 0, 0x1c02, /* win 2: addr=0x1c02000, size=4096 bytes */ 0x1c80, /* win 3: addr=0x1c80000, size=4096 bytes */ 0x1d00, /* win 4: addr=0x1d00000, size=4096 bytes */ 0x1d01, /* win 5: addr=0x1d01000, size=4096 bytes */ 0x1d02, /* win 6: addr=0x1d02000, size=4096 bytes */ 0x1d80, /* win 7: addr=0x1d80000, size=4096 bytes */ 0x1d81, /* win 8: addr=0x1d81000, size=4096 bytes */ 0x1d82, /* win 9: addr=0x1d82000, size=4096 bytes */ 0x1e00, /* win 10: addr=0x1e00000, size=4096 bytes */ 0x1e01, /* win 11: addr=0x1e01000, size=4096 bytes */ 0x1e80, /* win 12: addr=0x1e80000, size=4096 bytes */ 0x1f00, /* win 13: addr=0x1f00000, size=4096 bytes */ 0x1c08, /* win 14: addr=0x1c08000, size=4096 bytes */ 0, 0, 0, 0, }; /* IRO Array */ static const u32 iro_arr[] = { 0x00000000, 0x00000000, 0x00080000, 0x00004478, 0x00000008, 0x00080000, 0x00003288, 0x00000088, 0x00880000, 0x000058a8, 0x00000020, 0x00200000, 0x00003188, 0x00000008, 0x00080000, 0x00000b00, 0x00000008, 0x00040000, 0x00000a80, 0x00000008, 0x00040000, 0x00000000, 0x00000008, 0x00020000, 0x00000080, 0x00000008, 0x00040000, 0x00000084, 0x00000008, 0x00020000, 0x00005798, 0x00000004, 0x00040000, 0x00004e50, 0x00000000, 0x00780000, 0x00003e40, 0x00000000, 0x00780000, 0x00004500, 0x00000000, 0x00780000, 0x00003210, 0x00000000, 0x00780000, 0x00003b50, 0x00000000, 0x00780000, 0x00007f58, 0x00000000, 0x00780000, 0x00005fd8, 0x00000000, 0x00080000, 0x00007100, 0x00000000, 0x00080000, 0x0000af20, 0x00000000, 0x00080000, 0x00004398, 0x00000000, 0x00080000, 0x0000a5a0, 0x00000000, 0x00080000, 0x0000bde8, 0x00000000, 0x00080000, 0x00000020, 0x00000004, 0x00040000, 0x00005688, 0x00000010, 0x00100000, 0x0000c210, 0x00000030, 0x00300000, 0x0000b108, 0x00000038, 0x00380000, 0x00003d20, 0x00000080, 0x00400000, 0x0000bf60, 0x00000000, 0x00040000, 0x00004560, 0x00040080, 0x00040000, 0x000001f8, 0x00000004, 0x00040000, 0x00003d60, 0x00000080, 0x00200000, 0x00008960, 0x00000040, 0x00300000, 0x0000e840, 0x00000060, 0x00600000, 0x00004698, 0x00000080, 0x00380000, 0x000107b8, 0x000000c0, 0x00c00000, 0x000001f8, 0x00000002, 0x00020000, 0x0000a260, 0x00000000, 0x01080000, 0x0000a368, 0x00000008, 0x00080000, 0x000001c0, 0x00000008, 0x00080000, 0x000001f8, 0x00000008, 0x00080000, 0x00000ac0, 0x00000008, 0x00080000, 0x00002578, 0x00000008, 0x00080000, 0x000024f8, 0x00000008, 0x00080000, 0x00000280, 0x00000008, 0x00080000, 0x00000680, 0x00080018, 0x00080000, 0x00000b78, 0x00080018, 0x00020000, 0x0000c600, 0x00000058, 0x003c0000, 0x00012038, 0x00000020, 0x00100000, 0x00011b00, 0x00000048, 0x00180000, 0x00009650, 0x00000050, 0x00200000, 0x00008b10, 0x00000040, 0x00280000, 0x000116c0, 0x00000018, 0x00100000, 0x0000c808, 0x00000048, 0x00380000, 0x00011790, 0x00000020, 0x00200000, 0x000046d0, 0x00000080, 0x00100000, 0x00003618, 0x00000010, 0x00100000, 0x0000a9e8, 0x00000008, 0x00010000, 0x000097a0, 0x00000008, 0x00010000, 0x00011a10, 0x00000008, 0x00010000, 0x0000e9f8, 0x00000008, 0x00010000, 0x00012648, 0x00000008, 0x00010000, 0x000121c8, 0x00000008, 0x00010000, 0x0000af08, 0x00000030, 0x00100000, 0x0000d748, 0x00000028, 0x00280000, 0x00009e68, 0x00000018, 0x00180000, 0x00009fe8, 0x00000008, 0x00080000, 0x00013ea8, 0x00000008, 0x00080000, 0x00012f18, 0x00000018, 0x00180000, 0x0000dfe8, 0x00500288, 0x00100000, 0x000131a0, 0x00000138, 0x00280000, }; void qed_init_iro_array(struct qed_dev *cdev) { cdev->iro_arr = iro_arr + E4_IRO_ARR_OFFSET; } void qed_init_store_rt_reg(struct qed_hwfn *p_hwfn, u32 rt_offset, u32 val) { if (rt_offset >= RUNTIME_ARRAY_SIZE) { DP_ERR(p_hwfn, "Avoid storing %u in rt_data at index %u!\n", val, rt_offset); return; } p_hwfn->rt_data.init_val[rt_offset] = val; p_hwfn->rt_data.b_valid[rt_offset] = true; } void qed_init_store_rt_agg(struct qed_hwfn *p_hwfn, u32 rt_offset, u32 *p_val, size_t size) { size_t i; if ((rt_offset + size - 1) >= RUNTIME_ARRAY_SIZE) { DP_ERR(p_hwfn, "Avoid storing values in rt_data at indices %u-%u!\n", rt_offset, (u32)(rt_offset + size - 1)); return; } for (i = 0; i < size / sizeof(u32); i++) { p_hwfn->rt_data.init_val[rt_offset + i] = p_val[i]; p_hwfn->rt_data.b_valid[rt_offset + i] = true; } } static int qed_init_rt(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u32 addr, u16 rt_offset, u16 size, bool b_must_dmae) { u32 *p_init_val = &p_hwfn->rt_data.init_val[rt_offset]; bool *p_valid = &p_hwfn->rt_data.b_valid[rt_offset]; u16 i, j, segment; int rc = 0; /* Since not all RT entries are initialized, go over the RT and * for each segment of initialized values use DMA. */ for (i = 0; i < size; i++) { if (!p_valid[i]) continue; /* In case there isn't any wide-bus configuration here, * simply write the data instead of using dmae. */ if (!b_must_dmae) { qed_wr(p_hwfn, p_ptt, addr + (i << 2), p_init_val[i]); p_valid[i] = false; continue; } /* Start of a new segment */ for (segment = 1; i + segment < size; segment++) if (!p_valid[i + segment]) break; rc = qed_dmae_host2grc(p_hwfn, p_ptt, (uintptr_t)(p_init_val + i), addr + (i << 2), segment, NULL); if (rc) return rc; /* invalidate after writing */ for (j = i; j < (u32)(i + segment); j++) p_valid[j] = false; /* Jump over the entire segment, including invalid entry */ i += segment; } return rc; } int qed_init_alloc(struct qed_hwfn *p_hwfn) { struct qed_rt_data *rt_data = &p_hwfn->rt_data; if (IS_VF(p_hwfn->cdev)) return 0; rt_data->b_valid = kcalloc(RUNTIME_ARRAY_SIZE, sizeof(bool), GFP_KERNEL); if (!rt_data->b_valid) return -ENOMEM; rt_data->init_val = kcalloc(RUNTIME_ARRAY_SIZE, sizeof(u32), GFP_KERNEL); if (!rt_data->init_val) { kfree(rt_data->b_valid); rt_data->b_valid = NULL; return -ENOMEM; } return 0; } void qed_init_free(struct qed_hwfn *p_hwfn) { kfree(p_hwfn->rt_data.init_val); p_hwfn->rt_data.init_val = NULL; kfree(p_hwfn->rt_data.b_valid); p_hwfn->rt_data.b_valid = NULL; } static int qed_init_array_dmae(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u32 addr, u32 dmae_data_offset, u32 size, const u32 *buf, bool b_must_dmae, bool b_can_dmae) { int rc = 0; /* Perform DMAE only for lengthy enough sections or for wide-bus */ if (!b_can_dmae || (!b_must_dmae && (size < 16))) { const u32 *data = buf + dmae_data_offset; u32 i; for (i = 0; i < size; i++) qed_wr(p_hwfn, p_ptt, addr + (i << 2), data[i]); } else { rc = qed_dmae_host2grc(p_hwfn, p_ptt, (uintptr_t)(buf + dmae_data_offset), addr, size, NULL); } return rc; } static int qed_init_fill_dmae(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u32 addr, u32 fill_count) { static u32 zero_buffer[DMAE_MAX_RW_SIZE]; struct qed_dmae_params params = {}; memset(zero_buffer, 0, sizeof(u32) * DMAE_MAX_RW_SIZE); /* invoke the DMAE virtual/physical buffer API with * 1. DMAE init channel * 2. addr, * 3. p_hwfb->temp_data, * 4. fill_count */ SET_FIELD(params.flags, QED_DMAE_PARAMS_RW_REPL_SRC, 0x1); return qed_dmae_host2grc(p_hwfn, p_ptt, (uintptr_t)(&zero_buffer[0]), addr, fill_count, ¶ms); } static void qed_init_fill(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u32 addr, u32 fill, u32 fill_count) { u32 i; for (i = 0; i < fill_count; i++, addr += sizeof(u32)) qed_wr(p_hwfn, p_ptt, addr, fill); } static int qed_init_cmd_array(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, struct init_write_op *cmd, bool b_must_dmae, bool b_can_dmae) { u32 dmae_array_offset = le32_to_cpu(cmd->args.array_offset); u32 data = le32_to_cpu(cmd->data); u32 addr = GET_FIELD(data, INIT_WRITE_OP_ADDRESS) << 2; u32 offset, output_len, input_len, max_size; struct qed_dev *cdev = p_hwfn->cdev; union init_array_hdr *hdr; const u32 *array_data; int rc = 0; u32 size; array_data = cdev->fw_data->arr_data; hdr = (union init_array_hdr *)(array_data + dmae_array_offset); data = le32_to_cpu(hdr->raw.data); switch (GET_FIELD(data, INIT_ARRAY_RAW_HDR_TYPE)) { case INIT_ARR_ZIPPED: offset = dmae_array_offset + 1; input_len = GET_FIELD(data, INIT_ARRAY_ZIPPED_HDR_ZIPPED_SIZE); max_size = MAX_ZIPPED_SIZE * 4; memset(p_hwfn->unzip_buf, 0, max_size); output_len = qed_unzip_data(p_hwfn, input_len, (u8 *)&array_data[offset], max_size, (u8 *)p_hwfn->unzip_buf); if (output_len) { rc = qed_init_array_dmae(p_hwfn, p_ptt, addr, 0, output_len, p_hwfn->unzip_buf, b_must_dmae, b_can_dmae); } else { DP_NOTICE(p_hwfn, "Failed to unzip dmae data\n"); rc = -EINVAL; } break; case INIT_ARR_PATTERN: { u32 repeats = GET_FIELD(data, INIT_ARRAY_PATTERN_HDR_REPETITIONS); u32 i; size = GET_FIELD(data, INIT_ARRAY_PATTERN_HDR_PATTERN_SIZE); for (i = 0; i < repeats; i++, addr += size << 2) { rc = qed_init_array_dmae(p_hwfn, p_ptt, addr, dmae_array_offset + 1, size, array_data, b_must_dmae, b_can_dmae); if (rc) break; } break; } case INIT_ARR_STANDARD: size = GET_FIELD(data, INIT_ARRAY_STANDARD_HDR_SIZE); rc = qed_init_array_dmae(p_hwfn, p_ptt, addr, dmae_array_offset + 1, size, array_data, b_must_dmae, b_can_dmae); break; } return rc; } /* init_ops write command */ static int qed_init_cmd_wr(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, struct init_write_op *p_cmd, bool b_can_dmae) { u32 data = le32_to_cpu(p_cmd->data); bool b_must_dmae = GET_FIELD(data, INIT_WRITE_OP_WIDE_BUS); u32 addr = GET_FIELD(data, INIT_WRITE_OP_ADDRESS) << 2; union init_write_args *arg = &p_cmd->args; int rc = 0; /* Sanitize */ if (b_must_dmae && !b_can_dmae) { DP_NOTICE(p_hwfn, "Need to write to %08x for Wide-bus but DMAE isn't allowed\n", addr); return -EINVAL; } switch (GET_FIELD(data, INIT_WRITE_OP_SOURCE)) { case INIT_SRC_INLINE: data = le32_to_cpu(p_cmd->args.inline_val); qed_wr(p_hwfn, p_ptt, addr, data); break; case INIT_SRC_ZEROS: data = le32_to_cpu(p_cmd->args.zeros_count); if (b_must_dmae || (b_can_dmae && (data >= 64))) rc = qed_init_fill_dmae(p_hwfn, p_ptt, addr, data); else qed_init_fill(p_hwfn, p_ptt, addr, 0, data); break; case INIT_SRC_ARRAY: rc = qed_init_cmd_array(p_hwfn, p_ptt, p_cmd, b_must_dmae, b_can_dmae); break; case INIT_SRC_RUNTIME: qed_init_rt(p_hwfn, p_ptt, addr, le16_to_cpu(arg->runtime.offset), le16_to_cpu(arg->runtime.size), b_must_dmae); break; } return rc; } static inline bool comp_eq(u32 val, u32 expected_val) { return val == expected_val; } static inline bool comp_and(u32 val, u32 expected_val) { return (val & expected_val) == expected_val; } static inline bool comp_or(u32 val, u32 expected_val) { return (val | expected_val) > 0; } /* init_ops read/poll commands */ static void qed_init_cmd_rd(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, struct init_read_op *cmd) { bool (*comp_check)(u32 val, u32 expected_val); u32 delay = QED_INIT_POLL_PERIOD_US, val; u32 data, addr, poll; int i; data = le32_to_cpu(cmd->op_data); addr = GET_FIELD(data, INIT_READ_OP_ADDRESS) << 2; poll = GET_FIELD(data, INIT_READ_OP_POLL_TYPE); val = qed_rd(p_hwfn, p_ptt, addr); if (poll == INIT_POLL_NONE) return; switch (poll) { case INIT_POLL_EQ: comp_check = comp_eq; break; case INIT_POLL_OR: comp_check = comp_or; break; case INIT_POLL_AND: comp_check = comp_and; break; default: DP_ERR(p_hwfn, "Invalid poll comparison type %08x\n", cmd->op_data); return; } data = le32_to_cpu(cmd->expected_val); for (i = 0; i < QED_INIT_MAX_POLL_COUNT && !comp_check(val, data); i++) { udelay(delay); val = qed_rd(p_hwfn, p_ptt, addr); } if (i == QED_INIT_MAX_POLL_COUNT) { DP_ERR(p_hwfn, "Timeout when polling reg: 0x%08x [ Waiting-for: %08x Got: %08x (comparison %08x)]\n", addr, le32_to_cpu(cmd->expected_val), val, le32_to_cpu(cmd->op_data)); } } /* init_ops callbacks entry point */ static int qed_init_cmd_cb(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, struct init_callback_op *p_cmd) { int rc; switch (p_cmd->callback_id) { case DMAE_READY_CB: rc = qed_dmae_sanity(p_hwfn, p_ptt, "engine_phase"); break; default: DP_NOTICE(p_hwfn, "Unexpected init op callback ID %d\n", p_cmd->callback_id); return -EINVAL; } return rc; } static u8 qed_init_cmd_mode_match(struct qed_hwfn *p_hwfn, u16 *p_offset, int modes) { struct qed_dev *cdev = p_hwfn->cdev; const u8 *modes_tree_buf; u8 arg1, arg2, tree_val; modes_tree_buf = cdev->fw_data->modes_tree_buf; tree_val = modes_tree_buf[(*p_offset)++]; switch (tree_val) { case INIT_MODE_OP_NOT: return qed_init_cmd_mode_match(p_hwfn, p_offset, modes) ^ 1; case INIT_MODE_OP_OR: arg1 = qed_init_cmd_mode_match(p_hwfn, p_offset, modes); arg2 = qed_init_cmd_mode_match(p_hwfn, p_offset, modes); return arg1 | arg2; case INIT_MODE_OP_AND: arg1 = qed_init_cmd_mode_match(p_hwfn, p_offset, modes); arg2 = qed_init_cmd_mode_match(p_hwfn, p_offset, modes); return arg1 & arg2; default: tree_val -= MAX_INIT_MODE_OPS; return (modes & BIT(tree_val)) ? 1 : 0; } } static u32 qed_init_cmd_mode(struct qed_hwfn *p_hwfn, struct init_if_mode_op *p_cmd, int modes) { u16 offset = le16_to_cpu(p_cmd->modes_buf_offset); if (qed_init_cmd_mode_match(p_hwfn, &offset, modes)) return 0; else return GET_FIELD(le32_to_cpu(p_cmd->op_data), INIT_IF_MODE_OP_CMD_OFFSET); } static u32 qed_init_cmd_phase(struct init_if_phase_op *p_cmd, u32 phase, u32 phase_id) { u32 data = le32_to_cpu(p_cmd->phase_data); u32 op_data = le32_to_cpu(p_cmd->op_data); if (!(GET_FIELD(data, INIT_IF_PHASE_OP_PHASE) == phase && (GET_FIELD(data, INIT_IF_PHASE_OP_PHASE_ID) == ANY_PHASE_ID || GET_FIELD(data, INIT_IF_PHASE_OP_PHASE_ID) == phase_id))) return GET_FIELD(op_data, INIT_IF_PHASE_OP_CMD_OFFSET); else return 0; } int qed_init_run(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, int phase, int phase_id, int modes) { bool b_dmae = (phase != PHASE_ENGINE); struct qed_dev *cdev = p_hwfn->cdev; u32 cmd_num, num_init_ops; union init_op *init_ops; int rc = 0; num_init_ops = cdev->fw_data->init_ops_size; init_ops = cdev->fw_data->init_ops; p_hwfn->unzip_buf = kzalloc(MAX_ZIPPED_SIZE * 4, GFP_ATOMIC); if (!p_hwfn->unzip_buf) return -ENOMEM; for (cmd_num = 0; cmd_num < num_init_ops; cmd_num++) { union init_op *cmd = &init_ops[cmd_num]; u32 data = le32_to_cpu(cmd->raw.op_data); switch (GET_FIELD(data, INIT_CALLBACK_OP_OP)) { case INIT_OP_WRITE: rc = qed_init_cmd_wr(p_hwfn, p_ptt, &cmd->write, b_dmae); break; case INIT_OP_READ: qed_init_cmd_rd(p_hwfn, p_ptt, &cmd->read); break; case INIT_OP_IF_MODE: cmd_num += qed_init_cmd_mode(p_hwfn, &cmd->if_mode, modes); break; case INIT_OP_IF_PHASE: cmd_num += qed_init_cmd_phase(&cmd->if_phase, phase, phase_id); break; case INIT_OP_DELAY: /* qed_init_run is always invoked from * sleep-able context */ udelay(le32_to_cpu(cmd->delay.delay)); break; case INIT_OP_CALLBACK: rc = qed_init_cmd_cb(p_hwfn, p_ptt, &cmd->callback); if (phase == PHASE_ENGINE && cmd->callback.callback_id == DMAE_READY_CB) b_dmae = true; break; } if (rc) break; } kfree(p_hwfn->unzip_buf); p_hwfn->unzip_buf = NULL; return rc; } void qed_gtt_init(struct qed_hwfn *p_hwfn) { u32 gtt_base; u32 i; /* Set the global windows */ gtt_base = PXP_PF_WINDOW_ADMIN_START + PXP_PF_WINDOW_ADMIN_GLOBAL_START; for (i = 0; i < ARRAY_SIZE(pxp_global_win); i++) if (pxp_global_win[i]) REG_WR(p_hwfn, gtt_base + i * PXP_GLOBAL_ENTRY_SIZE, pxp_global_win[i]); } int qed_init_fw_data(struct qed_dev *cdev, const u8 *data) { struct qed_fw_data *fw = cdev->fw_data; struct bin_buffer_hdr *buf_hdr; u32 offset, len; if (!data) { DP_NOTICE(cdev, "Invalid fw data\n"); return -EINVAL; } /* First Dword contains metadata and should be skipped */ buf_hdr = (struct bin_buffer_hdr *)data; offset = buf_hdr[BIN_BUF_INIT_FW_VER_INFO].offset; fw->fw_ver_info = (struct fw_ver_info *)(data + offset); offset = buf_hdr[BIN_BUF_INIT_CMD].offset; fw->init_ops = (union init_op *)(data + offset); offset = buf_hdr[BIN_BUF_INIT_VAL].offset; fw->arr_data = (u32 *)(data + offset); offset = buf_hdr[BIN_BUF_INIT_MODE_TREE].offset; fw->modes_tree_buf = (u8 *)(data + offset); len = buf_hdr[BIN_BUF_INIT_CMD].length; fw->init_ops_size = len / sizeof(struct init_raw_op); offset = buf_hdr[BIN_BUF_INIT_OVERLAYS].offset; fw->fw_overlays = (u32 *)(data + offset); len = buf_hdr[BIN_BUF_INIT_OVERLAYS].length; fw->fw_overlays_len = len; return 0; }