// SPDX-License-Identifier: GPL-2.0-only /* Copyright (C) 2023 Intel Corporation */ #include "idpf.h" #include "idpf_virtchnl.h" static const struct net_device_ops idpf_netdev_ops_splitq; static const struct net_device_ops idpf_netdev_ops_singleq; /** * idpf_init_vector_stack - Fill the MSIX vector stack with vector index * @adapter: private data struct * * Return 0 on success, error on failure */ static int idpf_init_vector_stack(struct idpf_adapter *adapter) { struct idpf_vector_lifo *stack; u16 min_vec; u32 i; mutex_lock(&adapter->vector_lock); min_vec = adapter->num_msix_entries - adapter->num_avail_msix; stack = &adapter->vector_stack; stack->size = adapter->num_msix_entries; /* set the base and top to point at start of the 'free pool' to * distribute the unused vectors on-demand basis */ stack->base = min_vec; stack->top = min_vec; stack->vec_idx = kcalloc(stack->size, sizeof(u16), GFP_KERNEL); if (!stack->vec_idx) { mutex_unlock(&adapter->vector_lock); return -ENOMEM; } for (i = 0; i < stack->size; i++) stack->vec_idx[i] = i; mutex_unlock(&adapter->vector_lock); return 0; } /** * idpf_deinit_vector_stack - zero out the MSIX vector stack * @adapter: private data struct */ static void idpf_deinit_vector_stack(struct idpf_adapter *adapter) { struct idpf_vector_lifo *stack; mutex_lock(&adapter->vector_lock); stack = &adapter->vector_stack; kfree(stack->vec_idx); stack->vec_idx = NULL; mutex_unlock(&adapter->vector_lock); } /** * idpf_mb_intr_rel_irq - Free the IRQ association with the OS * @adapter: adapter structure * * This will also disable interrupt mode and queue up mailbox task. Mailbox * task will reschedule itself if not in interrupt mode. */ static void idpf_mb_intr_rel_irq(struct idpf_adapter *adapter) { clear_bit(IDPF_MB_INTR_MODE, adapter->flags); free_irq(adapter->msix_entries[0].vector, adapter); queue_delayed_work(adapter->mbx_wq, &adapter->mbx_task, 0); } /** * idpf_intr_rel - Release interrupt capabilities and free memory * @adapter: adapter to disable interrupts on */ void idpf_intr_rel(struct idpf_adapter *adapter) { if (!adapter->msix_entries) return; idpf_mb_intr_rel_irq(adapter); pci_free_irq_vectors(adapter->pdev); idpf_send_dealloc_vectors_msg(adapter); idpf_deinit_vector_stack(adapter); kfree(adapter->msix_entries); adapter->msix_entries = NULL; } /** * idpf_mb_intr_clean - Interrupt handler for the mailbox * @irq: interrupt number * @data: pointer to the adapter structure */ static irqreturn_t idpf_mb_intr_clean(int __always_unused irq, void *data) { struct idpf_adapter *adapter = (struct idpf_adapter *)data; queue_delayed_work(adapter->mbx_wq, &adapter->mbx_task, 0); return IRQ_HANDLED; } /** * idpf_mb_irq_enable - Enable MSIX interrupt for the mailbox * @adapter: adapter to get the hardware address for register write */ static void idpf_mb_irq_enable(struct idpf_adapter *adapter) { struct idpf_intr_reg *intr = &adapter->mb_vector.intr_reg; u32 val; val = intr->dyn_ctl_intena_m | intr->dyn_ctl_itridx_m; writel(val, intr->dyn_ctl); writel(intr->icr_ena_ctlq_m, intr->icr_ena); } /** * idpf_mb_intr_req_irq - Request irq for the mailbox interrupt * @adapter: adapter structure to pass to the mailbox irq handler */ static int idpf_mb_intr_req_irq(struct idpf_adapter *adapter) { struct idpf_q_vector *mb_vector = &adapter->mb_vector; int irq_num, mb_vidx = 0, err; irq_num = adapter->msix_entries[mb_vidx].vector; mb_vector->name = kasprintf(GFP_KERNEL, "%s-%s-%d", dev_driver_string(&adapter->pdev->dev), "Mailbox", mb_vidx); err = request_irq(irq_num, adapter->irq_mb_handler, 0, mb_vector->name, adapter); if (err) { dev_err(&adapter->pdev->dev, "IRQ request for mailbox failed, error: %d\n", err); return err; } set_bit(IDPF_MB_INTR_MODE, adapter->flags); return 0; } /** * idpf_set_mb_vec_id - Set vector index for mailbox * @adapter: adapter structure to access the vector chunks * * The first vector id in the requested vector chunks from the CP is for * the mailbox */ static void idpf_set_mb_vec_id(struct idpf_adapter *adapter) { if (adapter->req_vec_chunks) adapter->mb_vector.v_idx = le16_to_cpu(adapter->caps.mailbox_vector_id); else adapter->mb_vector.v_idx = 0; } /** * idpf_mb_intr_init - Initialize the mailbox interrupt * @adapter: adapter structure to store the mailbox vector */ static int idpf_mb_intr_init(struct idpf_adapter *adapter) { adapter->dev_ops.reg_ops.mb_intr_reg_init(adapter); adapter->irq_mb_handler = idpf_mb_intr_clean; return idpf_mb_intr_req_irq(adapter); } /** * idpf_vector_lifo_push - push MSIX vector index onto stack * @adapter: private data struct * @vec_idx: vector index to store */ static int idpf_vector_lifo_push(struct idpf_adapter *adapter, u16 vec_idx) { struct idpf_vector_lifo *stack = &adapter->vector_stack; lockdep_assert_held(&adapter->vector_lock); if (stack->top == stack->base) { dev_err(&adapter->pdev->dev, "Exceeded the vector stack limit: %d\n", stack->top); return -EINVAL; } stack->vec_idx[--stack->top] = vec_idx; return 0; } /** * idpf_vector_lifo_pop - pop MSIX vector index from stack * @adapter: private data struct */ static int idpf_vector_lifo_pop(struct idpf_adapter *adapter) { struct idpf_vector_lifo *stack = &adapter->vector_stack; lockdep_assert_held(&adapter->vector_lock); if (stack->top == stack->size) { dev_err(&adapter->pdev->dev, "No interrupt vectors are available to distribute!\n"); return -EINVAL; } return stack->vec_idx[stack->top++]; } /** * idpf_vector_stash - Store the vector indexes onto the stack * @adapter: private data struct * @q_vector_idxs: vector index array * @vec_info: info related to the number of vectors * * This function is a no-op if there are no vectors indexes to be stashed */ static void idpf_vector_stash(struct idpf_adapter *adapter, u16 *q_vector_idxs, struct idpf_vector_info *vec_info) { int i, base = 0; u16 vec_idx; lockdep_assert_held(&adapter->vector_lock); if (!vec_info->num_curr_vecs) return; /* For default vports, no need to stash vector allocated from the * default pool onto the stack */ if (vec_info->default_vport) base = IDPF_MIN_Q_VEC; for (i = vec_info->num_curr_vecs - 1; i >= base ; i--) { vec_idx = q_vector_idxs[i]; idpf_vector_lifo_push(adapter, vec_idx); adapter->num_avail_msix++; } } /** * idpf_req_rel_vector_indexes - Request or release MSIX vector indexes * @adapter: driver specific private structure * @q_vector_idxs: vector index array * @vec_info: info related to the number of vectors * * This is the core function to distribute the MSIX vectors acquired from the * OS. It expects the caller to pass the number of vectors required and * also previously allocated. First, it stashes previously allocated vector * indexes on to the stack and then figures out if it can allocate requested * vectors. It can wait on acquiring the mutex lock. If the caller passes 0 as * requested vectors, then this function just stashes the already allocated * vectors and returns 0. * * Returns actual number of vectors allocated on success, error value on failure * If 0 is returned, implies the stack has no vectors to allocate which is also * a failure case for the caller */ int idpf_req_rel_vector_indexes(struct idpf_adapter *adapter, u16 *q_vector_idxs, struct idpf_vector_info *vec_info) { u16 num_req_vecs, num_alloc_vecs = 0, max_vecs; struct idpf_vector_lifo *stack; int i, j, vecid; mutex_lock(&adapter->vector_lock); stack = &adapter->vector_stack; num_req_vecs = vec_info->num_req_vecs; /* Stash interrupt vector indexes onto the stack if required */ idpf_vector_stash(adapter, q_vector_idxs, vec_info); if (!num_req_vecs) goto rel_lock; if (vec_info->default_vport) { /* As IDPF_MIN_Q_VEC per default vport is put aside in the * default pool of the stack, use them for default vports */ j = vec_info->index * IDPF_MIN_Q_VEC + IDPF_MBX_Q_VEC; for (i = 0; i < IDPF_MIN_Q_VEC; i++) { q_vector_idxs[num_alloc_vecs++] = stack->vec_idx[j++]; num_req_vecs--; } } /* Find if stack has enough vector to allocate */ max_vecs = min(adapter->num_avail_msix, num_req_vecs); for (j = 0; j < max_vecs; j++) { vecid = idpf_vector_lifo_pop(adapter); q_vector_idxs[num_alloc_vecs++] = vecid; } adapter->num_avail_msix -= max_vecs; rel_lock: mutex_unlock(&adapter->vector_lock); return num_alloc_vecs; } /** * idpf_intr_req - Request interrupt capabilities * @adapter: adapter to enable interrupts on * * Returns 0 on success, negative on failure */ int idpf_intr_req(struct idpf_adapter *adapter) { u16 default_vports = idpf_get_default_vports(adapter); int num_q_vecs, total_vecs, num_vec_ids; int min_vectors, v_actual, err; unsigned int vector; u16 *vecids; total_vecs = idpf_get_reserved_vecs(adapter); num_q_vecs = total_vecs - IDPF_MBX_Q_VEC; err = idpf_send_alloc_vectors_msg(adapter, num_q_vecs); if (err) { dev_err(&adapter->pdev->dev, "Failed to allocate %d vectors: %d\n", num_q_vecs, err); return -EAGAIN; } min_vectors = IDPF_MBX_Q_VEC + IDPF_MIN_Q_VEC * default_vports; v_actual = pci_alloc_irq_vectors(adapter->pdev, min_vectors, total_vecs, PCI_IRQ_MSIX); if (v_actual < min_vectors) { dev_err(&adapter->pdev->dev, "Failed to allocate MSIX vectors: %d\n", v_actual); err = -EAGAIN; goto send_dealloc_vecs; } adapter->msix_entries = kcalloc(v_actual, sizeof(struct msix_entry), GFP_KERNEL); if (!adapter->msix_entries) { err = -ENOMEM; goto free_irq; } idpf_set_mb_vec_id(adapter); vecids = kcalloc(total_vecs, sizeof(u16), GFP_KERNEL); if (!vecids) { err = -ENOMEM; goto free_msix; } if (adapter->req_vec_chunks) { struct virtchnl2_vector_chunks *vchunks; struct virtchnl2_alloc_vectors *ac; ac = adapter->req_vec_chunks; vchunks = &ac->vchunks; num_vec_ids = idpf_get_vec_ids(adapter, vecids, total_vecs, vchunks); if (num_vec_ids < v_actual) { err = -EINVAL; goto free_vecids; } } else { int i; for (i = 0; i < v_actual; i++) vecids[i] = i; } for (vector = 0; vector < v_actual; vector++) { adapter->msix_entries[vector].entry = vecids[vector]; adapter->msix_entries[vector].vector = pci_irq_vector(adapter->pdev, vector); } adapter->num_req_msix = total_vecs; adapter->num_msix_entries = v_actual; /* 'num_avail_msix' is used to distribute excess vectors to the vports * after considering the minimum vectors required per each default * vport */ adapter->num_avail_msix = v_actual - min_vectors; /* Fill MSIX vector lifo stack with vector indexes */ err = idpf_init_vector_stack(adapter); if (err) goto free_vecids; err = idpf_mb_intr_init(adapter); if (err) goto deinit_vec_stack; idpf_mb_irq_enable(adapter); kfree(vecids); return 0; deinit_vec_stack: idpf_deinit_vector_stack(adapter); free_vecids: kfree(vecids); free_msix: kfree(adapter->msix_entries); adapter->msix_entries = NULL; free_irq: pci_free_irq_vectors(adapter->pdev); send_dealloc_vecs: idpf_send_dealloc_vectors_msg(adapter); return err; } /** * idpf_find_mac_filter - Search filter list for specific mac filter * @vconfig: Vport config structure * @macaddr: The MAC address * * Returns ptr to the filter object or NULL. Must be called while holding the * mac_filter_list_lock. **/ static struct idpf_mac_filter *idpf_find_mac_filter(struct idpf_vport_config *vconfig, const u8 *macaddr) { struct idpf_mac_filter *f; if (!macaddr) return NULL; list_for_each_entry(f, &vconfig->user_config.mac_filter_list, list) { if (ether_addr_equal(macaddr, f->macaddr)) return f; } return NULL; } /** * __idpf_del_mac_filter - Delete a MAC filter from the filter list * @vport_config: Vport config structure * @macaddr: The MAC address * * Returns 0 on success, error value on failure **/ static int __idpf_del_mac_filter(struct idpf_vport_config *vport_config, const u8 *macaddr) { struct idpf_mac_filter *f; spin_lock_bh(&vport_config->mac_filter_list_lock); f = idpf_find_mac_filter(vport_config, macaddr); if (f) { list_del(&f->list); kfree(f); } spin_unlock_bh(&vport_config->mac_filter_list_lock); return 0; } /** * idpf_del_mac_filter - Delete a MAC filter from the filter list * @vport: Main vport structure * @np: Netdev private structure * @macaddr: The MAC address * @async: Don't wait for return message * * Removes filter from list and if interface is up, tells hardware about the * removed filter. **/ static int idpf_del_mac_filter(struct idpf_vport *vport, struct idpf_netdev_priv *np, const u8 *macaddr, bool async) { struct idpf_vport_config *vport_config; struct idpf_mac_filter *f; vport_config = np->adapter->vport_config[np->vport_idx]; spin_lock_bh(&vport_config->mac_filter_list_lock); f = idpf_find_mac_filter(vport_config, macaddr); if (f) { f->remove = true; } else { spin_unlock_bh(&vport_config->mac_filter_list_lock); return -EINVAL; } spin_unlock_bh(&vport_config->mac_filter_list_lock); if (np->state == __IDPF_VPORT_UP) { int err; err = idpf_add_del_mac_filters(vport, np, false, async); if (err) return err; } return __idpf_del_mac_filter(vport_config, macaddr); } /** * __idpf_add_mac_filter - Add mac filter helper function * @vport_config: Vport config structure * @macaddr: Address to add * * Takes mac_filter_list_lock spinlock to add new filter to list. */ static int __idpf_add_mac_filter(struct idpf_vport_config *vport_config, const u8 *macaddr) { struct idpf_mac_filter *f; spin_lock_bh(&vport_config->mac_filter_list_lock); f = idpf_find_mac_filter(vport_config, macaddr); if (f) { f->remove = false; spin_unlock_bh(&vport_config->mac_filter_list_lock); return 0; } f = kzalloc(sizeof(*f), GFP_ATOMIC); if (!f) { spin_unlock_bh(&vport_config->mac_filter_list_lock); return -ENOMEM; } ether_addr_copy(f->macaddr, macaddr); list_add_tail(&f->list, &vport_config->user_config.mac_filter_list); f->add = true; spin_unlock_bh(&vport_config->mac_filter_list_lock); return 0; } /** * idpf_add_mac_filter - Add a mac filter to the filter list * @vport: Main vport structure * @np: Netdev private structure * @macaddr: The MAC address * @async: Don't wait for return message * * Returns 0 on success or error on failure. If interface is up, we'll also * send the virtchnl message to tell hardware about the filter. **/ static int idpf_add_mac_filter(struct idpf_vport *vport, struct idpf_netdev_priv *np, const u8 *macaddr, bool async) { struct idpf_vport_config *vport_config; int err; vport_config = np->adapter->vport_config[np->vport_idx]; err = __idpf_add_mac_filter(vport_config, macaddr); if (err) return err; if (np->state == __IDPF_VPORT_UP) err = idpf_add_del_mac_filters(vport, np, true, async); return err; } /** * idpf_del_all_mac_filters - Delete all MAC filters in list * @vport: main vport struct * * Takes mac_filter_list_lock spinlock. Deletes all filters */ static void idpf_del_all_mac_filters(struct idpf_vport *vport) { struct idpf_vport_config *vport_config; struct idpf_mac_filter *f, *ftmp; vport_config = vport->adapter->vport_config[vport->idx]; spin_lock_bh(&vport_config->mac_filter_list_lock); list_for_each_entry_safe(f, ftmp, &vport_config->user_config.mac_filter_list, list) { list_del(&f->list); kfree(f); } spin_unlock_bh(&vport_config->mac_filter_list_lock); } /** * idpf_restore_mac_filters - Re-add all MAC filters in list * @vport: main vport struct * * Takes mac_filter_list_lock spinlock. Sets add field to true for filters to * resync filters back to HW. */ static void idpf_restore_mac_filters(struct idpf_vport *vport) { struct idpf_vport_config *vport_config; struct idpf_mac_filter *f; vport_config = vport->adapter->vport_config[vport->idx]; spin_lock_bh(&vport_config->mac_filter_list_lock); list_for_each_entry(f, &vport_config->user_config.mac_filter_list, list) f->add = true; spin_unlock_bh(&vport_config->mac_filter_list_lock); idpf_add_del_mac_filters(vport, netdev_priv(vport->netdev), true, false); } /** * idpf_remove_mac_filters - Remove all MAC filters in list * @vport: main vport struct * * Takes mac_filter_list_lock spinlock. Sets remove field to true for filters * to remove filters in HW. */ static void idpf_remove_mac_filters(struct idpf_vport *vport) { struct idpf_vport_config *vport_config; struct idpf_mac_filter *f; vport_config = vport->adapter->vport_config[vport->idx]; spin_lock_bh(&vport_config->mac_filter_list_lock); list_for_each_entry(f, &vport_config->user_config.mac_filter_list, list) f->remove = true; spin_unlock_bh(&vport_config->mac_filter_list_lock); idpf_add_del_mac_filters(vport, netdev_priv(vport->netdev), false, false); } /** * idpf_deinit_mac_addr - deinitialize mac address for vport * @vport: main vport structure */ static void idpf_deinit_mac_addr(struct idpf_vport *vport) { struct idpf_vport_config *vport_config; struct idpf_mac_filter *f; vport_config = vport->adapter->vport_config[vport->idx]; spin_lock_bh(&vport_config->mac_filter_list_lock); f = idpf_find_mac_filter(vport_config, vport->default_mac_addr); if (f) { list_del(&f->list); kfree(f); } spin_unlock_bh(&vport_config->mac_filter_list_lock); } /** * idpf_init_mac_addr - initialize mac address for vport * @vport: main vport structure * @netdev: pointer to netdev struct associated with this vport */ static int idpf_init_mac_addr(struct idpf_vport *vport, struct net_device *netdev) { struct idpf_netdev_priv *np = netdev_priv(netdev); struct idpf_adapter *adapter = vport->adapter; int err; if (is_valid_ether_addr(vport->default_mac_addr)) { eth_hw_addr_set(netdev, vport->default_mac_addr); ether_addr_copy(netdev->perm_addr, vport->default_mac_addr); return idpf_add_mac_filter(vport, np, vport->default_mac_addr, false); } if (!idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_MACFILTER)) { dev_err(&adapter->pdev->dev, "MAC address is not provided and capability is not set\n"); return -EINVAL; } eth_hw_addr_random(netdev); err = idpf_add_mac_filter(vport, np, netdev->dev_addr, false); if (err) return err; dev_info(&adapter->pdev->dev, "Invalid MAC address %pM, using random %pM\n", vport->default_mac_addr, netdev->dev_addr); ether_addr_copy(vport->default_mac_addr, netdev->dev_addr); return 0; } /** * idpf_cfg_netdev - Allocate, configure and register a netdev * @vport: main vport structure * * Returns 0 on success, negative value on failure. */ static int idpf_cfg_netdev(struct idpf_vport *vport) { struct idpf_adapter *adapter = vport->adapter; struct idpf_vport_config *vport_config; netdev_features_t dflt_features; netdev_features_t offloads = 0; struct idpf_netdev_priv *np; struct net_device *netdev; u16 idx = vport->idx; int err; vport_config = adapter->vport_config[idx]; /* It's possible we already have a netdev allocated and registered for * this vport */ if (test_bit(IDPF_VPORT_REG_NETDEV, vport_config->flags)) { netdev = adapter->netdevs[idx]; np = netdev_priv(netdev); np->vport = vport; np->vport_idx = vport->idx; np->vport_id = vport->vport_id; vport->netdev = netdev; return idpf_init_mac_addr(vport, netdev); } netdev = alloc_etherdev_mqs(sizeof(struct idpf_netdev_priv), vport_config->max_q.max_txq, vport_config->max_q.max_rxq); if (!netdev) return -ENOMEM; vport->netdev = netdev; np = netdev_priv(netdev); np->vport = vport; np->adapter = adapter; np->vport_idx = vport->idx; np->vport_id = vport->vport_id; spin_lock_init(&np->stats_lock); err = idpf_init_mac_addr(vport, netdev); if (err) { free_netdev(vport->netdev); vport->netdev = NULL; return err; } /* assign netdev_ops */ if (idpf_is_queue_model_split(vport->txq_model)) netdev->netdev_ops = &idpf_netdev_ops_splitq; else netdev->netdev_ops = &idpf_netdev_ops_singleq; /* setup watchdog timeout value to be 5 second */ netdev->watchdog_timeo = 5 * HZ; netdev->dev_port = idx; /* configure default MTU size */ netdev->min_mtu = ETH_MIN_MTU; netdev->max_mtu = vport->max_mtu; dflt_features = NETIF_F_SG | NETIF_F_HIGHDMA; if (idpf_is_cap_ena_all(adapter, IDPF_RSS_CAPS, IDPF_CAP_RSS)) dflt_features |= NETIF_F_RXHASH; if (idpf_is_cap_ena_all(adapter, IDPF_CSUM_CAPS, IDPF_CAP_RX_CSUM_L4V4)) dflt_features |= NETIF_F_IP_CSUM; if (idpf_is_cap_ena_all(adapter, IDPF_CSUM_CAPS, IDPF_CAP_RX_CSUM_L4V6)) dflt_features |= NETIF_F_IPV6_CSUM; if (idpf_is_cap_ena(adapter, IDPF_CSUM_CAPS, IDPF_CAP_RX_CSUM)) dflt_features |= NETIF_F_RXCSUM; if (idpf_is_cap_ena_all(adapter, IDPF_CSUM_CAPS, IDPF_CAP_SCTP_CSUM)) dflt_features |= NETIF_F_SCTP_CRC; if (idpf_is_cap_ena(adapter, IDPF_SEG_CAPS, VIRTCHNL2_CAP_SEG_IPV4_TCP)) dflt_features |= NETIF_F_TSO; if (idpf_is_cap_ena(adapter, IDPF_SEG_CAPS, VIRTCHNL2_CAP_SEG_IPV6_TCP)) dflt_features |= NETIF_F_TSO6; if (idpf_is_cap_ena_all(adapter, IDPF_SEG_CAPS, VIRTCHNL2_CAP_SEG_IPV4_UDP | VIRTCHNL2_CAP_SEG_IPV6_UDP)) dflt_features |= NETIF_F_GSO_UDP_L4; if (idpf_is_cap_ena_all(adapter, IDPF_RSC_CAPS, IDPF_CAP_RSC)) offloads |= NETIF_F_GRO_HW; /* advertise to stack only if offloads for encapsulated packets is * supported */ if (idpf_is_cap_ena(vport->adapter, IDPF_SEG_CAPS, VIRTCHNL2_CAP_SEG_TX_SINGLE_TUNNEL)) { offloads |= NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_PARTIAL | NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_IPXIP6 | 0; if (!idpf_is_cap_ena_all(vport->adapter, IDPF_CSUM_CAPS, IDPF_CAP_TUNNEL_TX_CSUM)) netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM; netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; offloads |= NETIF_F_TSO_MANGLEID; } if (idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_LOOPBACK)) offloads |= NETIF_F_LOOPBACK; netdev->features |= dflt_features; netdev->hw_features |= dflt_features | offloads; netdev->hw_enc_features |= dflt_features | offloads; idpf_set_ethtool_ops(netdev); SET_NETDEV_DEV(netdev, &adapter->pdev->dev); /* carrier off on init to avoid Tx hangs */ netif_carrier_off(netdev); /* make sure transmit queues start off as stopped */ netif_tx_stop_all_queues(netdev); /* The vport can be arbitrarily released so we need to also track * netdevs in the adapter struct */ adapter->netdevs[idx] = netdev; return 0; } /** * idpf_get_free_slot - get the next non-NULL location index in array * @adapter: adapter in which to look for a free vport slot */ static int idpf_get_free_slot(struct idpf_adapter *adapter) { unsigned int i; for (i = 0; i < adapter->max_vports; i++) { if (!adapter->vports[i]) return i; } return IDPF_NO_FREE_SLOT; } /** * idpf_remove_features - Turn off feature configs * @vport: virtual port structure */ static void idpf_remove_features(struct idpf_vport *vport) { struct idpf_adapter *adapter = vport->adapter; if (idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_MACFILTER)) idpf_remove_mac_filters(vport); } /** * idpf_vport_stop - Disable a vport * @vport: vport to disable */ static void idpf_vport_stop(struct idpf_vport *vport) { struct idpf_netdev_priv *np = netdev_priv(vport->netdev); if (np->state <= __IDPF_VPORT_DOWN) return; netif_carrier_off(vport->netdev); netif_tx_disable(vport->netdev); idpf_send_disable_vport_msg(vport); idpf_send_disable_queues_msg(vport); idpf_send_map_unmap_queue_vector_msg(vport, false); /* Normally we ask for queues in create_vport, but if the number of * initially requested queues have changed, for example via ethtool * set channels, we do delete queues and then add the queues back * instead of deleting and reallocating the vport. */ if (test_and_clear_bit(IDPF_VPORT_DEL_QUEUES, vport->flags)) idpf_send_delete_queues_msg(vport); idpf_remove_features(vport); vport->link_up = false; idpf_vport_intr_deinit(vport); idpf_vport_intr_rel(vport); idpf_vport_queues_rel(vport); np->state = __IDPF_VPORT_DOWN; } /** * idpf_stop - Disables a network interface * @netdev: network interface device structure * * The stop entry point is called when an interface is de-activated by the OS, * and the netdevice enters the DOWN state. The hardware is still under the * driver's control, but the netdev interface is disabled. * * Returns success only - not allowed to fail */ static int idpf_stop(struct net_device *netdev) { struct idpf_netdev_priv *np = netdev_priv(netdev); struct idpf_vport *vport; if (test_bit(IDPF_REMOVE_IN_PROG, np->adapter->flags)) return 0; idpf_vport_ctrl_lock(netdev); vport = idpf_netdev_to_vport(netdev); idpf_vport_stop(vport); idpf_vport_ctrl_unlock(netdev); return 0; } /** * idpf_decfg_netdev - Unregister the netdev * @vport: vport for which netdev to be unregistered */ static void idpf_decfg_netdev(struct idpf_vport *vport) { struct idpf_adapter *adapter = vport->adapter; unregister_netdev(vport->netdev); free_netdev(vport->netdev); vport->netdev = NULL; adapter->netdevs[vport->idx] = NULL; } /** * idpf_vport_rel - Delete a vport and free its resources * @vport: the vport being removed */ static void idpf_vport_rel(struct idpf_vport *vport) { struct idpf_adapter *adapter = vport->adapter; struct idpf_vport_config *vport_config; struct idpf_vector_info vec_info; struct idpf_rss_data *rss_data; struct idpf_vport_max_q max_q; u16 idx = vport->idx; vport_config = adapter->vport_config[vport->idx]; idpf_deinit_rss(vport); rss_data = &vport_config->user_config.rss_data; kfree(rss_data->rss_key); rss_data->rss_key = NULL; idpf_send_destroy_vport_msg(vport); /* Release all max queues allocated to the adapter's pool */ max_q.max_rxq = vport_config->max_q.max_rxq; max_q.max_txq = vport_config->max_q.max_txq; max_q.max_bufq = vport_config->max_q.max_bufq; max_q.max_complq = vport_config->max_q.max_complq; idpf_vport_dealloc_max_qs(adapter, &max_q); /* Release all the allocated vectors on the stack */ vec_info.num_req_vecs = 0; vec_info.num_curr_vecs = vport->num_q_vectors; vec_info.default_vport = vport->default_vport; idpf_req_rel_vector_indexes(adapter, vport->q_vector_idxs, &vec_info); kfree(vport->q_vector_idxs); vport->q_vector_idxs = NULL; kfree(adapter->vport_params_recvd[idx]); adapter->vport_params_recvd[idx] = NULL; kfree(adapter->vport_params_reqd[idx]); adapter->vport_params_reqd[idx] = NULL; if (adapter->vport_config[idx]) { kfree(adapter->vport_config[idx]->req_qs_chunks); adapter->vport_config[idx]->req_qs_chunks = NULL; } kfree(vport); adapter->num_alloc_vports--; } /** * idpf_vport_dealloc - cleanup and release a given vport * @vport: pointer to idpf vport structure * * returns nothing */ static void idpf_vport_dealloc(struct idpf_vport *vport) { struct idpf_adapter *adapter = vport->adapter; unsigned int i = vport->idx; idpf_deinit_mac_addr(vport); idpf_vport_stop(vport); if (!test_bit(IDPF_HR_RESET_IN_PROG, adapter->flags)) idpf_decfg_netdev(vport); if (test_bit(IDPF_REMOVE_IN_PROG, adapter->flags)) idpf_del_all_mac_filters(vport); if (adapter->netdevs[i]) { struct idpf_netdev_priv *np = netdev_priv(adapter->netdevs[i]); np->vport = NULL; } idpf_vport_rel(vport); adapter->vports[i] = NULL; adapter->next_vport = idpf_get_free_slot(adapter); } /** * idpf_is_hsplit_supported - check whether the header split is supported * @vport: virtual port to check the capability for * * Return: true if it's supported by the HW/FW, false if not. */ static bool idpf_is_hsplit_supported(const struct idpf_vport *vport) { return idpf_is_queue_model_split(vport->rxq_model) && idpf_is_cap_ena_all(vport->adapter, IDPF_HSPLIT_CAPS, IDPF_CAP_HSPLIT); } /** * idpf_vport_get_hsplit - get the current header split feature state * @vport: virtual port to query the state for * * Return: ``ETHTOOL_TCP_DATA_SPLIT_UNKNOWN`` if not supported, * ``ETHTOOL_TCP_DATA_SPLIT_DISABLED`` if disabled, * ``ETHTOOL_TCP_DATA_SPLIT_ENABLED`` if active. */ u8 idpf_vport_get_hsplit(const struct idpf_vport *vport) { const struct idpf_vport_user_config_data *config; if (!idpf_is_hsplit_supported(vport)) return ETHTOOL_TCP_DATA_SPLIT_UNKNOWN; config = &vport->adapter->vport_config[vport->idx]->user_config; return test_bit(__IDPF_USER_FLAG_HSPLIT, config->user_flags) ? ETHTOOL_TCP_DATA_SPLIT_ENABLED : ETHTOOL_TCP_DATA_SPLIT_DISABLED; } /** * idpf_vport_set_hsplit - enable or disable header split on a given vport * @vport: virtual port to configure * @val: Ethtool flag controlling the header split state * * Return: true on success, false if not supported by the HW. */ bool idpf_vport_set_hsplit(const struct idpf_vport *vport, u8 val) { struct idpf_vport_user_config_data *config; if (!idpf_is_hsplit_supported(vport)) return val == ETHTOOL_TCP_DATA_SPLIT_UNKNOWN; config = &vport->adapter->vport_config[vport->idx]->user_config; switch (val) { case ETHTOOL_TCP_DATA_SPLIT_UNKNOWN: /* Default is to enable */ case ETHTOOL_TCP_DATA_SPLIT_ENABLED: __set_bit(__IDPF_USER_FLAG_HSPLIT, config->user_flags); return true; case ETHTOOL_TCP_DATA_SPLIT_DISABLED: __clear_bit(__IDPF_USER_FLAG_HSPLIT, config->user_flags); return true; default: return false; } } /** * idpf_vport_alloc - Allocates the next available struct vport in the adapter * @adapter: board private structure * @max_q: vport max queue info * * returns a pointer to a vport on success, NULL on failure. */ static struct idpf_vport *idpf_vport_alloc(struct idpf_adapter *adapter, struct idpf_vport_max_q *max_q) { struct idpf_rss_data *rss_data; u16 idx = adapter->next_vport; struct idpf_vport *vport; u16 num_max_q; if (idx == IDPF_NO_FREE_SLOT) return NULL; vport = kzalloc(sizeof(*vport), GFP_KERNEL); if (!vport) return vport; if (!adapter->vport_config[idx]) { struct idpf_vport_config *vport_config; vport_config = kzalloc(sizeof(*vport_config), GFP_KERNEL); if (!vport_config) { kfree(vport); return NULL; } adapter->vport_config[idx] = vport_config; } vport->idx = idx; vport->adapter = adapter; vport->compln_clean_budget = IDPF_TX_COMPLQ_CLEAN_BUDGET; vport->default_vport = adapter->num_alloc_vports < idpf_get_default_vports(adapter); num_max_q = max(max_q->max_txq, max_q->max_rxq); vport->q_vector_idxs = kcalloc(num_max_q, sizeof(u16), GFP_KERNEL); if (!vport->q_vector_idxs) { kfree(vport); return NULL; } idpf_vport_init(vport, max_q); /* This alloc is done separate from the LUT because it's not strictly * dependent on how many queues we have. If we change number of queues * and soft reset we'll need a new LUT but the key can remain the same * for as long as the vport exists. */ rss_data = &adapter->vport_config[idx]->user_config.rss_data; rss_data->rss_key = kzalloc(rss_data->rss_key_size, GFP_KERNEL); if (!rss_data->rss_key) { kfree(vport); return NULL; } /* Initialize default rss key */ netdev_rss_key_fill((void *)rss_data->rss_key, rss_data->rss_key_size); /* fill vport slot in the adapter struct */ adapter->vports[idx] = vport; adapter->vport_ids[idx] = idpf_get_vport_id(vport); adapter->num_alloc_vports++; /* prepare adapter->next_vport for next use */ adapter->next_vport = idpf_get_free_slot(adapter); return vport; } /** * idpf_get_stats64 - get statistics for network device structure * @netdev: network interface device structure * @stats: main device statistics structure */ static void idpf_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) { struct idpf_netdev_priv *np = netdev_priv(netdev); spin_lock_bh(&np->stats_lock); *stats = np->netstats; spin_unlock_bh(&np->stats_lock); } /** * idpf_statistics_task - Delayed task to get statistics over mailbox * @work: work_struct handle to our data */ void idpf_statistics_task(struct work_struct *work) { struct idpf_adapter *adapter; int i; adapter = container_of(work, struct idpf_adapter, stats_task.work); for (i = 0; i < adapter->max_vports; i++) { struct idpf_vport *vport = adapter->vports[i]; if (vport && !test_bit(IDPF_HR_RESET_IN_PROG, adapter->flags)) idpf_send_get_stats_msg(vport); } queue_delayed_work(adapter->stats_wq, &adapter->stats_task, msecs_to_jiffies(10000)); } /** * idpf_mbx_task - Delayed task to handle mailbox responses * @work: work_struct handle */ void idpf_mbx_task(struct work_struct *work) { struct idpf_adapter *adapter; adapter = container_of(work, struct idpf_adapter, mbx_task.work); if (test_bit(IDPF_MB_INTR_MODE, adapter->flags)) idpf_mb_irq_enable(adapter); else queue_delayed_work(adapter->mbx_wq, &adapter->mbx_task, msecs_to_jiffies(300)); idpf_recv_mb_msg(adapter); } /** * idpf_service_task - Delayed task for handling mailbox responses * @work: work_struct handle to our data * */ void idpf_service_task(struct work_struct *work) { struct idpf_adapter *adapter; adapter = container_of(work, struct idpf_adapter, serv_task.work); if (idpf_is_reset_detected(adapter) && !idpf_is_reset_in_prog(adapter) && !test_bit(IDPF_REMOVE_IN_PROG, adapter->flags)) { dev_info(&adapter->pdev->dev, "HW reset detected\n"); set_bit(IDPF_HR_FUNC_RESET, adapter->flags); queue_delayed_work(adapter->vc_event_wq, &adapter->vc_event_task, msecs_to_jiffies(10)); } queue_delayed_work(adapter->serv_wq, &adapter->serv_task, msecs_to_jiffies(300)); } /** * idpf_restore_features - Restore feature configs * @vport: virtual port structure */ static void idpf_restore_features(struct idpf_vport *vport) { struct idpf_adapter *adapter = vport->adapter; if (idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_MACFILTER)) idpf_restore_mac_filters(vport); } /** * idpf_set_real_num_queues - set number of queues for netdev * @vport: virtual port structure * * Returns 0 on success, negative on failure. */ static int idpf_set_real_num_queues(struct idpf_vport *vport) { int err; err = netif_set_real_num_rx_queues(vport->netdev, vport->num_rxq); if (err) return err; return netif_set_real_num_tx_queues(vport->netdev, vport->num_txq); } /** * idpf_up_complete - Complete interface up sequence * @vport: virtual port structure * * Returns 0 on success, negative on failure. */ static int idpf_up_complete(struct idpf_vport *vport) { struct idpf_netdev_priv *np = netdev_priv(vport->netdev); if (vport->link_up && !netif_carrier_ok(vport->netdev)) { netif_carrier_on(vport->netdev); netif_tx_start_all_queues(vport->netdev); } np->state = __IDPF_VPORT_UP; return 0; } /** * idpf_rx_init_buf_tail - Write initial buffer ring tail value * @vport: virtual port struct */ static void idpf_rx_init_buf_tail(struct idpf_vport *vport) { int i, j; for (i = 0; i < vport->num_rxq_grp; i++) { struct idpf_rxq_group *grp = &vport->rxq_grps[i]; if (idpf_is_queue_model_split(vport->rxq_model)) { for (j = 0; j < vport->num_bufqs_per_qgrp; j++) { struct idpf_queue *q = &grp->splitq.bufq_sets[j].bufq; writel(q->next_to_alloc, q->tail); } } else { for (j = 0; j < grp->singleq.num_rxq; j++) { struct idpf_queue *q = grp->singleq.rxqs[j]; writel(q->next_to_alloc, q->tail); } } } } /** * idpf_vport_open - Bring up a vport * @vport: vport to bring up * @alloc_res: allocate queue resources */ static int idpf_vport_open(struct idpf_vport *vport, bool alloc_res) { struct idpf_netdev_priv *np = netdev_priv(vport->netdev); struct idpf_adapter *adapter = vport->adapter; struct idpf_vport_config *vport_config; int err; if (np->state != __IDPF_VPORT_DOWN) return -EBUSY; /* we do not allow interface up just yet */ netif_carrier_off(vport->netdev); if (alloc_res) { err = idpf_vport_queues_alloc(vport); if (err) return err; } err = idpf_vport_intr_alloc(vport); if (err) { dev_err(&adapter->pdev->dev, "Failed to allocate interrupts for vport %u: %d\n", vport->vport_id, err); goto queues_rel; } err = idpf_vport_queue_ids_init(vport); if (err) { dev_err(&adapter->pdev->dev, "Failed to initialize queue ids for vport %u: %d\n", vport->vport_id, err); goto intr_rel; } err = idpf_vport_intr_init(vport); if (err) { dev_err(&adapter->pdev->dev, "Failed to initialize interrupts for vport %u: %d\n", vport->vport_id, err); goto intr_rel; } err = idpf_rx_bufs_init_all(vport); if (err) { dev_err(&adapter->pdev->dev, "Failed to initialize RX buffers for vport %u: %d\n", vport->vport_id, err); goto intr_rel; } err = idpf_queue_reg_init(vport); if (err) { dev_err(&adapter->pdev->dev, "Failed to initialize queue registers for vport %u: %d\n", vport->vport_id, err); goto intr_rel; } idpf_rx_init_buf_tail(vport); err = idpf_send_config_queues_msg(vport); if (err) { dev_err(&adapter->pdev->dev, "Failed to configure queues for vport %u, %d\n", vport->vport_id, err); goto intr_deinit; } err = idpf_send_map_unmap_queue_vector_msg(vport, true); if (err) { dev_err(&adapter->pdev->dev, "Failed to map queue vectors for vport %u: %d\n", vport->vport_id, err); goto intr_deinit; } err = idpf_send_enable_queues_msg(vport); if (err) { dev_err(&adapter->pdev->dev, "Failed to enable queues for vport %u: %d\n", vport->vport_id, err); goto unmap_queue_vectors; } err = idpf_send_enable_vport_msg(vport); if (err) { dev_err(&adapter->pdev->dev, "Failed to enable vport %u: %d\n", vport->vport_id, err); err = -EAGAIN; goto disable_queues; } idpf_restore_features(vport); vport_config = adapter->vport_config[vport->idx]; if (vport_config->user_config.rss_data.rss_lut) err = idpf_config_rss(vport); else err = idpf_init_rss(vport); if (err) { dev_err(&adapter->pdev->dev, "Failed to initialize RSS for vport %u: %d\n", vport->vport_id, err); goto disable_vport; } err = idpf_up_complete(vport); if (err) { dev_err(&adapter->pdev->dev, "Failed to complete interface up for vport %u: %d\n", vport->vport_id, err); goto deinit_rss; } return 0; deinit_rss: idpf_deinit_rss(vport); disable_vport: idpf_send_disable_vport_msg(vport); disable_queues: idpf_send_disable_queues_msg(vport); unmap_queue_vectors: idpf_send_map_unmap_queue_vector_msg(vport, false); intr_deinit: idpf_vport_intr_deinit(vport); intr_rel: idpf_vport_intr_rel(vport); queues_rel: idpf_vport_queues_rel(vport); return err; } /** * idpf_init_task - Delayed initialization task * @work: work_struct handle to our data * * Init task finishes up pending work started in probe. Due to the asynchronous * nature in which the device communicates with hardware, we may have to wait * several milliseconds to get a response. Instead of busy polling in probe, * pulling it out into a delayed work task prevents us from bogging down the * whole system waiting for a response from hardware. */ void idpf_init_task(struct work_struct *work) { struct idpf_vport_config *vport_config; struct idpf_vport_max_q max_q; struct idpf_adapter *adapter; struct idpf_netdev_priv *np; struct idpf_vport *vport; u16 num_default_vports; struct pci_dev *pdev; bool default_vport; int index, err; adapter = container_of(work, struct idpf_adapter, init_task.work); num_default_vports = idpf_get_default_vports(adapter); if (adapter->num_alloc_vports < num_default_vports) default_vport = true; else default_vport = false; err = idpf_vport_alloc_max_qs(adapter, &max_q); if (err) goto unwind_vports; err = idpf_send_create_vport_msg(adapter, &max_q); if (err) { idpf_vport_dealloc_max_qs(adapter, &max_q); goto unwind_vports; } pdev = adapter->pdev; vport = idpf_vport_alloc(adapter, &max_q); if (!vport) { err = -EFAULT; dev_err(&pdev->dev, "failed to allocate vport: %d\n", err); idpf_vport_dealloc_max_qs(adapter, &max_q); goto unwind_vports; } index = vport->idx; vport_config = adapter->vport_config[index]; init_waitqueue_head(&vport->sw_marker_wq); spin_lock_init(&vport_config->mac_filter_list_lock); INIT_LIST_HEAD(&vport_config->user_config.mac_filter_list); err = idpf_check_supported_desc_ids(vport); if (err) { dev_err(&pdev->dev, "failed to get required descriptor ids\n"); goto cfg_netdev_err; } if (idpf_cfg_netdev(vport)) goto cfg_netdev_err; err = idpf_send_get_rx_ptype_msg(vport); if (err) goto handle_err; /* Once state is put into DOWN, driver is ready for dev_open */ np = netdev_priv(vport->netdev); np->state = __IDPF_VPORT_DOWN; if (test_and_clear_bit(IDPF_VPORT_UP_REQUESTED, vport_config->flags)) idpf_vport_open(vport, true); /* Spawn and return 'idpf_init_task' work queue until all the * default vports are created */ if (adapter->num_alloc_vports < num_default_vports) { queue_delayed_work(adapter->init_wq, &adapter->init_task, msecs_to_jiffies(5 * (adapter->pdev->devfn & 0x07))); return; } for (index = 0; index < adapter->max_vports; index++) { if (adapter->netdevs[index] && !test_bit(IDPF_VPORT_REG_NETDEV, adapter->vport_config[index]->flags)) { register_netdev(adapter->netdevs[index]); set_bit(IDPF_VPORT_REG_NETDEV, adapter->vport_config[index]->flags); } } /* As all the required vports are created, clear the reset flag * unconditionally here in case we were in reset and the link was down. */ clear_bit(IDPF_HR_RESET_IN_PROG, adapter->flags); /* Start the statistics task now */ queue_delayed_work(adapter->stats_wq, &adapter->stats_task, msecs_to_jiffies(10 * (pdev->devfn & 0x07))); return; handle_err: idpf_decfg_netdev(vport); cfg_netdev_err: idpf_vport_rel(vport); adapter->vports[index] = NULL; unwind_vports: if (default_vport) { for (index = 0; index < adapter->max_vports; index++) { if (adapter->vports[index]) idpf_vport_dealloc(adapter->vports[index]); } } clear_bit(IDPF_HR_RESET_IN_PROG, adapter->flags); } /** * idpf_sriov_ena - Enable or change number of VFs * @adapter: private data struct * @num_vfs: number of VFs to allocate */ static int idpf_sriov_ena(struct idpf_adapter *adapter, int num_vfs) { struct device *dev = &adapter->pdev->dev; int err; err = idpf_send_set_sriov_vfs_msg(adapter, num_vfs); if (err) { dev_err(dev, "Failed to allocate VFs: %d\n", err); return err; } err = pci_enable_sriov(adapter->pdev, num_vfs); if (err) { idpf_send_set_sriov_vfs_msg(adapter, 0); dev_err(dev, "Failed to enable SR-IOV: %d\n", err); return err; } adapter->num_vfs = num_vfs; return num_vfs; } /** * idpf_sriov_configure - Configure the requested VFs * @pdev: pointer to a pci_dev structure * @num_vfs: number of vfs to allocate * * Enable or change the number of VFs. Called when the user updates the number * of VFs in sysfs. **/ int idpf_sriov_configure(struct pci_dev *pdev, int num_vfs) { struct idpf_adapter *adapter = pci_get_drvdata(pdev); if (!idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_SRIOV)) { dev_info(&pdev->dev, "SR-IOV is not supported on this device\n"); return -EOPNOTSUPP; } if (num_vfs) return idpf_sriov_ena(adapter, num_vfs); if (pci_vfs_assigned(pdev)) { dev_warn(&pdev->dev, "Unable to free VFs because some are assigned to VMs\n"); return -EBUSY; } pci_disable_sriov(adapter->pdev); idpf_send_set_sriov_vfs_msg(adapter, 0); adapter->num_vfs = 0; return 0; } /** * idpf_deinit_task - Device deinit routine * @adapter: Driver specific private structure * * Extended remove logic which will be used for * hard reset as well */ void idpf_deinit_task(struct idpf_adapter *adapter) { unsigned int i; /* Wait until the init_task is done else this thread might release * the resources first and the other thread might end up in a bad state */ cancel_delayed_work_sync(&adapter->init_task); if (!adapter->vports) return; cancel_delayed_work_sync(&adapter->stats_task); for (i = 0; i < adapter->max_vports; i++) { if (adapter->vports[i]) idpf_vport_dealloc(adapter->vports[i]); } } /** * idpf_check_reset_complete - check that reset is complete * @hw: pointer to hw struct * @reset_reg: struct with reset registers * * Returns 0 if device is ready to use, or -EBUSY if it's in reset. **/ static int idpf_check_reset_complete(struct idpf_hw *hw, struct idpf_reset_reg *reset_reg) { struct idpf_adapter *adapter = hw->back; int i; for (i = 0; i < 2000; i++) { u32 reg_val = readl(reset_reg->rstat); /* 0xFFFFFFFF might be read if other side hasn't cleared the * register for us yet and 0xFFFFFFFF is not a valid value for * the register, so treat that as invalid. */ if (reg_val != 0xFFFFFFFF && (reg_val & reset_reg->rstat_m)) return 0; usleep_range(5000, 10000); } dev_warn(&adapter->pdev->dev, "Device reset timeout!\n"); /* Clear the reset flag unconditionally here since the reset * technically isn't in progress anymore from the driver's perspective */ clear_bit(IDPF_HR_RESET_IN_PROG, adapter->flags); return -EBUSY; } /** * idpf_set_vport_state - Set the vport state to be after the reset * @adapter: Driver specific private structure */ static void idpf_set_vport_state(struct idpf_adapter *adapter) { u16 i; for (i = 0; i < adapter->max_vports; i++) { struct idpf_netdev_priv *np; if (!adapter->netdevs[i]) continue; np = netdev_priv(adapter->netdevs[i]); if (np->state == __IDPF_VPORT_UP) set_bit(IDPF_VPORT_UP_REQUESTED, adapter->vport_config[i]->flags); } } /** * idpf_init_hard_reset - Initiate a hardware reset * @adapter: Driver specific private structure * * Deallocate the vports and all the resources associated with them and * reallocate. Also reinitialize the mailbox. Return 0 on success, * negative on failure. */ static int idpf_init_hard_reset(struct idpf_adapter *adapter) { struct idpf_reg_ops *reg_ops = &adapter->dev_ops.reg_ops; struct device *dev = &adapter->pdev->dev; struct net_device *netdev; int err; u16 i; mutex_lock(&adapter->vport_ctrl_lock); dev_info(dev, "Device HW Reset initiated\n"); /* Avoid TX hangs on reset */ for (i = 0; i < adapter->max_vports; i++) { netdev = adapter->netdevs[i]; if (!netdev) continue; netif_carrier_off(netdev); netif_tx_disable(netdev); } /* Prepare for reset */ if (test_and_clear_bit(IDPF_HR_DRV_LOAD, adapter->flags)) { reg_ops->trigger_reset(adapter, IDPF_HR_DRV_LOAD); } else if (test_and_clear_bit(IDPF_HR_FUNC_RESET, adapter->flags)) { bool is_reset = idpf_is_reset_detected(adapter); idpf_set_vport_state(adapter); idpf_vc_core_deinit(adapter); if (!is_reset) reg_ops->trigger_reset(adapter, IDPF_HR_FUNC_RESET); idpf_deinit_dflt_mbx(adapter); } else { dev_err(dev, "Unhandled hard reset cause\n"); err = -EBADRQC; goto unlock_mutex; } /* Wait for reset to complete */ err = idpf_check_reset_complete(&adapter->hw, &adapter->reset_reg); if (err) { dev_err(dev, "The driver was unable to contact the device's firmware. Check that the FW is running. Driver state= 0x%x\n", adapter->state); goto unlock_mutex; } /* Reset is complete and so start building the driver resources again */ err = idpf_init_dflt_mbx(adapter); if (err) { dev_err(dev, "Failed to initialize default mailbox: %d\n", err); goto unlock_mutex; } queue_delayed_work(adapter->mbx_wq, &adapter->mbx_task, 0); /* Initialize the state machine, also allocate memory and request * resources */ err = idpf_vc_core_init(adapter); if (err) { idpf_deinit_dflt_mbx(adapter); goto unlock_mutex; } /* Wait till all the vports are initialized to release the reset lock, * else user space callbacks may access uninitialized vports */ while (test_bit(IDPF_HR_RESET_IN_PROG, adapter->flags)) msleep(100); unlock_mutex: mutex_unlock(&adapter->vport_ctrl_lock); return err; } /** * idpf_vc_event_task - Handle virtchannel event logic * @work: work queue struct */ void idpf_vc_event_task(struct work_struct *work) { struct idpf_adapter *adapter; adapter = container_of(work, struct idpf_adapter, vc_event_task.work); if (test_bit(IDPF_REMOVE_IN_PROG, adapter->flags)) return; if (test_bit(IDPF_HR_FUNC_RESET, adapter->flags) || test_bit(IDPF_HR_DRV_LOAD, adapter->flags)) { set_bit(IDPF_HR_RESET_IN_PROG, adapter->flags); idpf_init_hard_reset(adapter); } } /** * idpf_initiate_soft_reset - Initiate a software reset * @vport: virtual port data struct * @reset_cause: reason for the soft reset * * Soft reset only reallocs vport queue resources. Returns 0 on success, * negative on failure. */ int idpf_initiate_soft_reset(struct idpf_vport *vport, enum idpf_vport_reset_cause reset_cause) { struct idpf_netdev_priv *np = netdev_priv(vport->netdev); enum idpf_vport_state current_state = np->state; struct idpf_adapter *adapter = vport->adapter; struct idpf_vport *new_vport; int err, i; /* If the system is low on memory, we can end up in bad state if we * free all the memory for queue resources and try to allocate them * again. Instead, we can pre-allocate the new resources before doing * anything and bailing if the alloc fails. * * Make a clone of the existing vport to mimic its current * configuration, then modify the new structure with any requested * changes. Once the allocation of the new resources is done, stop the * existing vport and copy the configuration to the main vport. If an * error occurred, the existing vport will be untouched. * */ new_vport = kzalloc(sizeof(*vport), GFP_KERNEL); if (!new_vport) return -ENOMEM; /* This purposely avoids copying the end of the struct because it * contains wait_queues and mutexes and other stuff we don't want to * mess with. Nothing below should use those variables from new_vport * and should instead always refer to them in vport if they need to. */ memcpy(new_vport, vport, offsetof(struct idpf_vport, link_speed_mbps)); /* Adjust resource parameters prior to reallocating resources */ switch (reset_cause) { case IDPF_SR_Q_CHANGE: err = idpf_vport_adjust_qs(new_vport); if (err) goto free_vport; break; case IDPF_SR_Q_DESC_CHANGE: /* Update queue parameters before allocating resources */ idpf_vport_calc_num_q_desc(new_vport); break; case IDPF_SR_MTU_CHANGE: case IDPF_SR_RSC_CHANGE: break; default: dev_err(&adapter->pdev->dev, "Unhandled soft reset cause\n"); err = -EINVAL; goto free_vport; } err = idpf_vport_queues_alloc(new_vport); if (err) goto free_vport; if (current_state <= __IDPF_VPORT_DOWN) { idpf_send_delete_queues_msg(vport); } else { set_bit(IDPF_VPORT_DEL_QUEUES, vport->flags); idpf_vport_stop(vport); } idpf_deinit_rss(vport); /* We're passing in vport here because we need its wait_queue * to send a message and it should be getting all the vport * config data out of the adapter but we need to be careful not * to add code to add_queues to change the vport config within * vport itself as it will be wiped with a memcpy later. */ err = idpf_send_add_queues_msg(vport, new_vport->num_txq, new_vport->num_complq, new_vport->num_rxq, new_vport->num_bufq); if (err) goto err_reset; /* Same comment as above regarding avoiding copying the wait_queues and * mutexes applies here. We do not want to mess with those if possible. */ memcpy(vport, new_vport, offsetof(struct idpf_vport, link_speed_mbps)); /* Since idpf_vport_queues_alloc was called with new_port, the queue * back pointers are currently pointing to the local new_vport. Reset * the backpointers to the original vport here */ for (i = 0; i < vport->num_txq_grp; i++) { struct idpf_txq_group *tx_qgrp = &vport->txq_grps[i]; int j; tx_qgrp->vport = vport; for (j = 0; j < tx_qgrp->num_txq; j++) tx_qgrp->txqs[j]->vport = vport; if (idpf_is_queue_model_split(vport->txq_model)) tx_qgrp->complq->vport = vport; } for (i = 0; i < vport->num_rxq_grp; i++) { struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i]; struct idpf_queue *q; u16 num_rxq; int j; rx_qgrp->vport = vport; for (j = 0; j < vport->num_bufqs_per_qgrp; j++) rx_qgrp->splitq.bufq_sets[j].bufq.vport = vport; if (idpf_is_queue_model_split(vport->rxq_model)) num_rxq = rx_qgrp->splitq.num_rxq_sets; else num_rxq = rx_qgrp->singleq.num_rxq; for (j = 0; j < num_rxq; j++) { if (idpf_is_queue_model_split(vport->rxq_model)) q = &rx_qgrp->splitq.rxq_sets[j]->rxq; else q = rx_qgrp->singleq.rxqs[j]; q->vport = vport; } } if (reset_cause == IDPF_SR_Q_CHANGE) idpf_vport_alloc_vec_indexes(vport); err = idpf_set_real_num_queues(vport); if (err) goto err_reset; if (current_state == __IDPF_VPORT_UP) err = idpf_vport_open(vport, false); kfree(new_vport); return err; err_reset: idpf_vport_queues_rel(new_vport); free_vport: kfree(new_vport); return err; } /** * idpf_addr_sync - Callback for dev_(mc|uc)_sync to add address * @netdev: the netdevice * @addr: address to add * * Called by __dev_(mc|uc)_sync when an address needs to be added. We call * __dev_(uc|mc)_sync from .set_rx_mode. Kernel takes addr_list_lock spinlock * meaning we cannot sleep in this context. Due to this, we have to add the * filter and send the virtchnl message asynchronously without waiting for the * response from the other side. We won't know whether or not the operation * actually succeeded until we get the message back. Returns 0 on success, * negative on failure. */ static int idpf_addr_sync(struct net_device *netdev, const u8 *addr) { struct idpf_netdev_priv *np = netdev_priv(netdev); return idpf_add_mac_filter(np->vport, np, addr, true); } /** * idpf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address * @netdev: the netdevice * @addr: address to add * * Called by __dev_(mc|uc)_sync when an address needs to be added. We call * __dev_(uc|mc)_sync from .set_rx_mode. Kernel takes addr_list_lock spinlock * meaning we cannot sleep in this context. Due to this we have to delete the * filter and send the virtchnl message asynchronously without waiting for the * return from the other side. We won't know whether or not the operation * actually succeeded until we get the message back. Returns 0 on success, * negative on failure. */ static int idpf_addr_unsync(struct net_device *netdev, const u8 *addr) { struct idpf_netdev_priv *np = netdev_priv(netdev); /* Under some circumstances, we might receive a request to delete * our own device address from our uc list. Because we store the * device address in the VSI's MAC filter list, we need to ignore * such requests and not delete our device address from this list. */ if (ether_addr_equal(addr, netdev->dev_addr)) return 0; idpf_del_mac_filter(np->vport, np, addr, true); return 0; } /** * idpf_set_rx_mode - NDO callback to set the netdev filters * @netdev: network interface device structure * * Stack takes addr_list_lock spinlock before calling our .set_rx_mode. We * cannot sleep in this context. */ static void idpf_set_rx_mode(struct net_device *netdev) { struct idpf_netdev_priv *np = netdev_priv(netdev); struct idpf_vport_user_config_data *config_data; struct idpf_adapter *adapter; bool changed = false; struct device *dev; int err; adapter = np->adapter; dev = &adapter->pdev->dev; if (idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_MACFILTER)) { __dev_uc_sync(netdev, idpf_addr_sync, idpf_addr_unsync); __dev_mc_sync(netdev, idpf_addr_sync, idpf_addr_unsync); } if (!idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_PROMISC)) return; config_data = &adapter->vport_config[np->vport_idx]->user_config; /* IFF_PROMISC enables both unicast and multicast promiscuous, * while IFF_ALLMULTI only enables multicast such that: * * promisc + allmulti = unicast | multicast * promisc + !allmulti = unicast | multicast * !promisc + allmulti = multicast */ if ((netdev->flags & IFF_PROMISC) && !test_and_set_bit(__IDPF_PROMISC_UC, config_data->user_flags)) { changed = true; dev_info(&adapter->pdev->dev, "Entering promiscuous mode\n"); if (!test_and_set_bit(__IDPF_PROMISC_MC, adapter->flags)) dev_info(dev, "Entering multicast promiscuous mode\n"); } if (!(netdev->flags & IFF_PROMISC) && test_and_clear_bit(__IDPF_PROMISC_UC, config_data->user_flags)) { changed = true; dev_info(dev, "Leaving promiscuous mode\n"); } if (netdev->flags & IFF_ALLMULTI && !test_and_set_bit(__IDPF_PROMISC_MC, config_data->user_flags)) { changed = true; dev_info(dev, "Entering multicast promiscuous mode\n"); } if (!(netdev->flags & (IFF_ALLMULTI | IFF_PROMISC)) && test_and_clear_bit(__IDPF_PROMISC_MC, config_data->user_flags)) { changed = true; dev_info(dev, "Leaving multicast promiscuous mode\n"); } if (!changed) return; err = idpf_set_promiscuous(adapter, config_data, np->vport_id); if (err) dev_err(dev, "Failed to set promiscuous mode: %d\n", err); } /** * idpf_vport_manage_rss_lut - disable/enable RSS * @vport: the vport being changed * * In the event of disable request for RSS, this function will zero out RSS * LUT, while in the event of enable request for RSS, it will reconfigure RSS * LUT with the default LUT configuration. */ static int idpf_vport_manage_rss_lut(struct idpf_vport *vport) { bool ena = idpf_is_feature_ena(vport, NETIF_F_RXHASH); struct idpf_rss_data *rss_data; u16 idx = vport->idx; int lut_size; rss_data = &vport->adapter->vport_config[idx]->user_config.rss_data; lut_size = rss_data->rss_lut_size * sizeof(u32); if (ena) { /* This will contain the default or user configured LUT */ memcpy(rss_data->rss_lut, rss_data->cached_lut, lut_size); } else { /* Save a copy of the current LUT to be restored later if * requested. */ memcpy(rss_data->cached_lut, rss_data->rss_lut, lut_size); /* Zero out the current LUT to disable */ memset(rss_data->rss_lut, 0, lut_size); } return idpf_config_rss(vport); } /** * idpf_set_features - set the netdev feature flags * @netdev: ptr to the netdev being adjusted * @features: the feature set that the stack is suggesting */ static int idpf_set_features(struct net_device *netdev, netdev_features_t features) { netdev_features_t changed = netdev->features ^ features; struct idpf_adapter *adapter; struct idpf_vport *vport; int err = 0; idpf_vport_ctrl_lock(netdev); vport = idpf_netdev_to_vport(netdev); adapter = vport->adapter; if (idpf_is_reset_in_prog(adapter)) { dev_err(&adapter->pdev->dev, "Device is resetting, changing netdev features temporarily unavailable.\n"); err = -EBUSY; goto unlock_mutex; } if (changed & NETIF_F_RXHASH) { netdev->features ^= NETIF_F_RXHASH; err = idpf_vport_manage_rss_lut(vport); if (err) goto unlock_mutex; } if (changed & NETIF_F_GRO_HW) { netdev->features ^= NETIF_F_GRO_HW; err = idpf_initiate_soft_reset(vport, IDPF_SR_RSC_CHANGE); if (err) goto unlock_mutex; } if (changed & NETIF_F_LOOPBACK) { netdev->features ^= NETIF_F_LOOPBACK; err = idpf_send_ena_dis_loopback_msg(vport); } unlock_mutex: idpf_vport_ctrl_unlock(netdev); return err; } /** * idpf_open - Called when a network interface becomes active * @netdev: network interface device structure * * The open entry point is called when a network interface is made * active by the system (IFF_UP). At this point all resources needed * for transmit and receive operations are allocated, the interrupt * handler is registered with the OS, the netdev watchdog is enabled, * and the stack is notified that the interface is ready. * * Returns 0 on success, negative value on failure */ static int idpf_open(struct net_device *netdev) { struct idpf_vport *vport; int err; idpf_vport_ctrl_lock(netdev); vport = idpf_netdev_to_vport(netdev); err = idpf_vport_open(vport, true); idpf_vport_ctrl_unlock(netdev); return err; } /** * idpf_change_mtu - NDO callback to change the MTU * @netdev: network interface device structure * @new_mtu: new value for maximum frame size * * Returns 0 on success, negative on failure */ static int idpf_change_mtu(struct net_device *netdev, int new_mtu) { struct idpf_vport *vport; int err; idpf_vport_ctrl_lock(netdev); vport = idpf_netdev_to_vport(netdev); WRITE_ONCE(netdev->mtu, new_mtu); err = idpf_initiate_soft_reset(vport, IDPF_SR_MTU_CHANGE); idpf_vport_ctrl_unlock(netdev); return err; } /** * idpf_features_check - Validate packet conforms to limits * @skb: skb buffer * @netdev: This port's netdev * @features: Offload features that the stack believes apply */ static netdev_features_t idpf_features_check(struct sk_buff *skb, struct net_device *netdev, netdev_features_t features) { struct idpf_vport *vport = idpf_netdev_to_vport(netdev); struct idpf_adapter *adapter = vport->adapter; size_t len; /* No point in doing any of this if neither checksum nor GSO are * being requested for this frame. We can rule out both by just * checking for CHECKSUM_PARTIAL */ if (skb->ip_summed != CHECKSUM_PARTIAL) return features; /* We cannot support GSO if the MSS is going to be less than * 88 bytes. If it is then we need to drop support for GSO. */ if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < IDPF_TX_TSO_MIN_MSS)) features &= ~NETIF_F_GSO_MASK; /* Ensure MACLEN is <= 126 bytes (63 words) and not an odd size */ len = skb_network_offset(skb); if (unlikely(len & ~(126))) goto unsupported; len = skb_network_header_len(skb); if (unlikely(len > idpf_get_max_tx_hdr_size(adapter))) goto unsupported; if (!skb->encapsulation) return features; /* L4TUNLEN can support 127 words */ len = skb_inner_network_header(skb) - skb_transport_header(skb); if (unlikely(len & ~(127 * 2))) goto unsupported; /* IPLEN can support at most 127 dwords */ len = skb_inner_network_header_len(skb); if (unlikely(len > idpf_get_max_tx_hdr_size(adapter))) goto unsupported; /* No need to validate L4LEN as TCP is the only protocol with a * a flexible value and we support all possible values supported * by TCP, which is at most 15 dwords */ return features; unsupported: return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); } /** * idpf_set_mac - NDO callback to set port mac address * @netdev: network interface device structure * @p: pointer to an address structure * * Returns 0 on success, negative on failure **/ static int idpf_set_mac(struct net_device *netdev, void *p) { struct idpf_netdev_priv *np = netdev_priv(netdev); struct idpf_vport_config *vport_config; struct sockaddr *addr = p; struct idpf_vport *vport; int err = 0; idpf_vport_ctrl_lock(netdev); vport = idpf_netdev_to_vport(netdev); if (!idpf_is_cap_ena(vport->adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_MACFILTER)) { dev_info(&vport->adapter->pdev->dev, "Setting MAC address is not supported\n"); err = -EOPNOTSUPP; goto unlock_mutex; } if (!is_valid_ether_addr(addr->sa_data)) { dev_info(&vport->adapter->pdev->dev, "Invalid MAC address: %pM\n", addr->sa_data); err = -EADDRNOTAVAIL; goto unlock_mutex; } if (ether_addr_equal(netdev->dev_addr, addr->sa_data)) goto unlock_mutex; vport_config = vport->adapter->vport_config[vport->idx]; err = idpf_add_mac_filter(vport, np, addr->sa_data, false); if (err) { __idpf_del_mac_filter(vport_config, addr->sa_data); goto unlock_mutex; } if (is_valid_ether_addr(vport->default_mac_addr)) idpf_del_mac_filter(vport, np, vport->default_mac_addr, false); ether_addr_copy(vport->default_mac_addr, addr->sa_data); eth_hw_addr_set(netdev, addr->sa_data); unlock_mutex: idpf_vport_ctrl_unlock(netdev); return err; } /** * idpf_alloc_dma_mem - Allocate dma memory * @hw: pointer to hw struct * @mem: pointer to dma_mem struct * @size: size of the memory to allocate */ void *idpf_alloc_dma_mem(struct idpf_hw *hw, struct idpf_dma_mem *mem, u64 size) { struct idpf_adapter *adapter = hw->back; size_t sz = ALIGN(size, 4096); mem->va = dma_alloc_coherent(&adapter->pdev->dev, sz, &mem->pa, GFP_KERNEL); mem->size = sz; return mem->va; } /** * idpf_free_dma_mem - Free the allocated dma memory * @hw: pointer to hw struct * @mem: pointer to dma_mem struct */ void idpf_free_dma_mem(struct idpf_hw *hw, struct idpf_dma_mem *mem) { struct idpf_adapter *adapter = hw->back; dma_free_coherent(&adapter->pdev->dev, mem->size, mem->va, mem->pa); mem->size = 0; mem->va = NULL; mem->pa = 0; } static const struct net_device_ops idpf_netdev_ops_splitq = { .ndo_open = idpf_open, .ndo_stop = idpf_stop, .ndo_start_xmit = idpf_tx_splitq_start, .ndo_features_check = idpf_features_check, .ndo_set_rx_mode = idpf_set_rx_mode, .ndo_validate_addr = eth_validate_addr, .ndo_set_mac_address = idpf_set_mac, .ndo_change_mtu = idpf_change_mtu, .ndo_get_stats64 = idpf_get_stats64, .ndo_set_features = idpf_set_features, .ndo_tx_timeout = idpf_tx_timeout, }; static const struct net_device_ops idpf_netdev_ops_singleq = { .ndo_open = idpf_open, .ndo_stop = idpf_stop, .ndo_start_xmit = idpf_tx_singleq_start, .ndo_features_check = idpf_features_check, .ndo_set_rx_mode = idpf_set_rx_mode, .ndo_validate_addr = eth_validate_addr, .ndo_set_mac_address = idpf_set_mac, .ndo_change_mtu = idpf_change_mtu, .ndo_get_stats64 = idpf_get_stats64, .ndo_set_features = idpf_set_features, .ndo_tx_timeout = idpf_tx_timeout, };