// SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause) #include #include #include #include #include #include #include "funeth.h" #include "funeth_ktls.h" #include "funeth_txrx.h" #include "funeth_trace.h" #include "fun_queue.h" #define FUN_XDP_CLEAN_THRES 32 #define FUN_XDP_CLEAN_BATCH 16 /* DMA-map a packet and return the (length, DMA_address) pairs for its * segments. If a mapping error occurs -ENOMEM is returned. The packet * consists of an skb_shared_info and one additional address/length pair. */ static int fun_map_pkt(struct device *dev, const struct skb_shared_info *si, void *data, unsigned int data_len, dma_addr_t *addr, unsigned int *len) { const skb_frag_t *fp, *end; *len = data_len; *addr = dma_map_single(dev, data, *len, DMA_TO_DEVICE); if (dma_mapping_error(dev, *addr)) return -ENOMEM; if (!si) return 0; for (fp = si->frags, end = fp + si->nr_frags; fp < end; fp++) { *++len = skb_frag_size(fp); *++addr = skb_frag_dma_map(dev, fp, 0, *len, DMA_TO_DEVICE); if (dma_mapping_error(dev, *addr)) goto unwind; } return 0; unwind: while (fp-- > si->frags) dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE); dma_unmap_single(dev, addr[-1], data_len, DMA_TO_DEVICE); return -ENOMEM; } /* Return the address just past the end of a Tx queue's descriptor ring. * It exploits the fact that the HW writeback area is just after the end * of the descriptor ring. */ static void *txq_end(const struct funeth_txq *q) { return (void *)q->hw_wb; } /* Return the amount of space within a Tx ring from the given address to the * end. */ static unsigned int txq_to_end(const struct funeth_txq *q, void *p) { return txq_end(q) - p; } /* Return the number of Tx descriptors occupied by a Tx request. */ static unsigned int tx_req_ndesc(const struct fun_eth_tx_req *req) { return DIV_ROUND_UP(req->len8, FUNETH_SQE_SIZE / 8); } /* Write a gather list to the Tx descriptor at @req from @ngle address/length * pairs. */ static struct fun_dataop_gl *fun_write_gl(const struct funeth_txq *q, struct fun_eth_tx_req *req, const dma_addr_t *addrs, const unsigned int *lens, unsigned int ngle) { struct fun_dataop_gl *gle; unsigned int i; req->len8 = (sizeof(*req) + ngle * sizeof(*gle)) / 8; for (i = 0, gle = (struct fun_dataop_gl *)req->dataop.imm; i < ngle && txq_to_end(q, gle); i++, gle++) fun_dataop_gl_init(gle, 0, 0, lens[i], addrs[i]); if (txq_to_end(q, gle) == 0) { gle = (struct fun_dataop_gl *)q->desc; for ( ; i < ngle; i++, gle++) fun_dataop_gl_init(gle, 0, 0, lens[i], addrs[i]); } return gle; } static __be16 tcp_hdr_doff_flags(const struct tcphdr *th) { return *(__be16 *)&tcp_flag_word(th); } static struct sk_buff *fun_tls_tx(struct sk_buff *skb, struct funeth_txq *q, unsigned int *tls_len) { #if IS_ENABLED(CONFIG_TLS_DEVICE) const struct fun_ktls_tx_ctx *tls_ctx; u32 datalen, seq; datalen = skb->len - skb_tcp_all_headers(skb); if (!datalen) return skb; if (likely(!tls_offload_tx_resync_pending(skb->sk))) { seq = ntohl(tcp_hdr(skb)->seq); tls_ctx = tls_driver_ctx(skb->sk, TLS_OFFLOAD_CTX_DIR_TX); if (likely(tls_ctx->next_seq == seq)) { *tls_len = datalen; return skb; } if (seq - tls_ctx->next_seq < U32_MAX / 4) { tls_offload_tx_resync_request(skb->sk, seq, tls_ctx->next_seq); } } FUN_QSTAT_INC(q, tx_tls_fallback); skb = tls_encrypt_skb(skb); if (!skb) FUN_QSTAT_INC(q, tx_tls_drops); return skb; #else return NULL; #endif } /* Write as many descriptors as needed for the supplied skb starting at the * current producer location. The caller has made certain enough descriptors * are available. * * Returns the number of descriptors written, 0 on error. */ static unsigned int write_pkt_desc(struct sk_buff *skb, struct funeth_txq *q, unsigned int tls_len) { unsigned int extra_bytes = 0, extra_pkts = 0; unsigned int idx = q->prod_cnt & q->mask; const struct skb_shared_info *shinfo; unsigned int lens[MAX_SKB_FRAGS + 1]; dma_addr_t addrs[MAX_SKB_FRAGS + 1]; struct fun_eth_tx_req *req; struct fun_dataop_gl *gle; const struct tcphdr *th; unsigned int l4_hlen; unsigned int ngle; u16 flags; shinfo = skb_shinfo(skb); if (unlikely(fun_map_pkt(q->dma_dev, shinfo, skb->data, skb_headlen(skb), addrs, lens))) { FUN_QSTAT_INC(q, tx_map_err); return 0; } req = fun_tx_desc_addr(q, idx); req->op = FUN_ETH_OP_TX; req->len8 = 0; req->flags = 0; req->suboff8 = offsetof(struct fun_eth_tx_req, dataop); req->repr_idn = 0; req->encap_proto = 0; if (likely(shinfo->gso_size)) { if (skb->encapsulation) { u16 ol4_ofst; flags = FUN_ETH_OUTER_EN | FUN_ETH_INNER_LSO | FUN_ETH_UPDATE_INNER_L4_CKSUM | FUN_ETH_UPDATE_OUTER_L3_LEN; if (shinfo->gso_type & (SKB_GSO_UDP_TUNNEL | SKB_GSO_UDP_TUNNEL_CSUM)) { flags |= FUN_ETH_UPDATE_OUTER_L4_LEN | FUN_ETH_OUTER_UDP; if (shinfo->gso_type & SKB_GSO_UDP_TUNNEL_CSUM) flags |= FUN_ETH_UPDATE_OUTER_L4_CKSUM; ol4_ofst = skb_transport_offset(skb); } else { ol4_ofst = skb_inner_network_offset(skb); } if (ip_hdr(skb)->version == 4) flags |= FUN_ETH_UPDATE_OUTER_L3_CKSUM; else flags |= FUN_ETH_OUTER_IPV6; if (skb->inner_network_header) { if (inner_ip_hdr(skb)->version == 4) flags |= FUN_ETH_UPDATE_INNER_L3_CKSUM | FUN_ETH_UPDATE_INNER_L3_LEN; else flags |= FUN_ETH_INNER_IPV6 | FUN_ETH_UPDATE_INNER_L3_LEN; } th = inner_tcp_hdr(skb); l4_hlen = __tcp_hdrlen(th); fun_eth_offload_init(&req->offload, flags, shinfo->gso_size, tcp_hdr_doff_flags(th), 0, skb_inner_network_offset(skb), skb_inner_transport_offset(skb), skb_network_offset(skb), ol4_ofst); FUN_QSTAT_INC(q, tx_encap_tso); } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { flags = FUN_ETH_INNER_LSO | FUN_ETH_INNER_UDP | FUN_ETH_UPDATE_INNER_L4_CKSUM | FUN_ETH_UPDATE_INNER_L4_LEN | FUN_ETH_UPDATE_INNER_L3_LEN; if (ip_hdr(skb)->version == 4) flags |= FUN_ETH_UPDATE_INNER_L3_CKSUM; else flags |= FUN_ETH_INNER_IPV6; l4_hlen = sizeof(struct udphdr); fun_eth_offload_init(&req->offload, flags, shinfo->gso_size, cpu_to_be16(l4_hlen << 10), 0, skb_network_offset(skb), skb_transport_offset(skb), 0, 0); FUN_QSTAT_INC(q, tx_uso); } else { /* HW considers one set of headers as inner */ flags = FUN_ETH_INNER_LSO | FUN_ETH_UPDATE_INNER_L4_CKSUM | FUN_ETH_UPDATE_INNER_L3_LEN; if (shinfo->gso_type & SKB_GSO_TCPV6) flags |= FUN_ETH_INNER_IPV6; else flags |= FUN_ETH_UPDATE_INNER_L3_CKSUM; th = tcp_hdr(skb); l4_hlen = __tcp_hdrlen(th); fun_eth_offload_init(&req->offload, flags, shinfo->gso_size, tcp_hdr_doff_flags(th), 0, skb_network_offset(skb), skb_transport_offset(skb), 0, 0); FUN_QSTAT_INC(q, tx_tso); } u64_stats_update_begin(&q->syncp); q->stats.tx_cso += shinfo->gso_segs; u64_stats_update_end(&q->syncp); extra_pkts = shinfo->gso_segs - 1; extra_bytes = (be16_to_cpu(req->offload.inner_l4_off) + l4_hlen) * extra_pkts; } else if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) { flags = FUN_ETH_UPDATE_INNER_L4_CKSUM; if (skb->csum_offset == offsetof(struct udphdr, check)) flags |= FUN_ETH_INNER_UDP; fun_eth_offload_init(&req->offload, flags, 0, 0, 0, 0, skb_checksum_start_offset(skb), 0, 0); FUN_QSTAT_INC(q, tx_cso); } else { fun_eth_offload_init(&req->offload, 0, 0, 0, 0, 0, 0, 0, 0); } ngle = shinfo->nr_frags + 1; req->dataop = FUN_DATAOP_HDR_INIT(ngle, 0, ngle, 0, skb->len); gle = fun_write_gl(q, req, addrs, lens, ngle); if (IS_ENABLED(CONFIG_TLS_DEVICE) && unlikely(tls_len)) { struct fun_eth_tls *tls = (struct fun_eth_tls *)gle; struct fun_ktls_tx_ctx *tls_ctx; req->len8 += FUNETH_TLS_SZ / 8; req->flags = cpu_to_be16(FUN_ETH_TX_TLS); tls_ctx = tls_driver_ctx(skb->sk, TLS_OFFLOAD_CTX_DIR_TX); tls->tlsid = tls_ctx->tlsid; tls_ctx->next_seq += tls_len; u64_stats_update_begin(&q->syncp); q->stats.tx_tls_bytes += tls_len; q->stats.tx_tls_pkts += 1 + extra_pkts; u64_stats_update_end(&q->syncp); } u64_stats_update_begin(&q->syncp); q->stats.tx_bytes += skb->len + extra_bytes; q->stats.tx_pkts += 1 + extra_pkts; u64_stats_update_end(&q->syncp); q->info[idx].skb = skb; trace_funeth_tx(q, skb->len, idx, req->dataop.ngather); return tx_req_ndesc(req); } /* Return the number of available descriptors of a Tx queue. * HW assumes head==tail means the ring is empty so we need to keep one * descriptor unused. */ static unsigned int fun_txq_avail(const struct funeth_txq *q) { return q->mask - q->prod_cnt + q->cons_cnt; } /* Stop a queue if it can't handle another worst-case packet. */ static void fun_tx_check_stop(struct funeth_txq *q) { if (likely(fun_txq_avail(q) >= FUNETH_MAX_PKT_DESC)) return; netif_tx_stop_queue(q->ndq); /* NAPI reclaim is freeing packets in parallel with us and we may race. * We have stopped the queue but check again after synchronizing with * reclaim. */ smp_mb(); if (likely(fun_txq_avail(q) < FUNETH_MAX_PKT_DESC)) FUN_QSTAT_INC(q, tx_nstops); else netif_tx_start_queue(q->ndq); } /* Return true if a queue has enough space to restart. Current condition is * that the queue must be >= 1/4 empty. */ static bool fun_txq_may_restart(struct funeth_txq *q) { return fun_txq_avail(q) >= q->mask / 4; } netdev_tx_t fun_start_xmit(struct sk_buff *skb, struct net_device *netdev) { struct funeth_priv *fp = netdev_priv(netdev); unsigned int qid = skb_get_queue_mapping(skb); struct funeth_txq *q = fp->txqs[qid]; unsigned int tls_len = 0; unsigned int ndesc; if (tls_is_skb_tx_device_offloaded(skb)) { skb = fun_tls_tx(skb, q, &tls_len); if (unlikely(!skb)) goto dropped; } ndesc = write_pkt_desc(skb, q, tls_len); if (unlikely(!ndesc)) { dev_kfree_skb_any(skb); goto dropped; } q->prod_cnt += ndesc; fun_tx_check_stop(q); skb_tx_timestamp(skb); if (__netdev_tx_sent_queue(q->ndq, skb->len, netdev_xmit_more())) fun_txq_wr_db(q); else FUN_QSTAT_INC(q, tx_more); return NETDEV_TX_OK; dropped: /* A dropped packet may be the last one in a xmit_more train, * ring the doorbell just in case. */ if (!netdev_xmit_more()) fun_txq_wr_db(q); return NETDEV_TX_OK; } /* Return a Tx queue's HW head index written back to host memory. */ static u16 txq_hw_head(const struct funeth_txq *q) { return (u16)be64_to_cpu(*q->hw_wb); } /* Unmap the Tx packet starting at the given descriptor index and * return the number of Tx descriptors it occupied. */ static unsigned int fun_unmap_pkt(const struct funeth_txq *q, unsigned int idx) { const struct fun_eth_tx_req *req = fun_tx_desc_addr(q, idx); unsigned int ngle = req->dataop.ngather; struct fun_dataop_gl *gle; if (ngle) { gle = (struct fun_dataop_gl *)req->dataop.imm; dma_unmap_single(q->dma_dev, be64_to_cpu(gle->sgl_data), be32_to_cpu(gle->sgl_len), DMA_TO_DEVICE); for (gle++; --ngle && txq_to_end(q, gle); gle++) dma_unmap_page(q->dma_dev, be64_to_cpu(gle->sgl_data), be32_to_cpu(gle->sgl_len), DMA_TO_DEVICE); for (gle = (struct fun_dataop_gl *)q->desc; ngle; ngle--, gle++) dma_unmap_page(q->dma_dev, be64_to_cpu(gle->sgl_data), be32_to_cpu(gle->sgl_len), DMA_TO_DEVICE); } return tx_req_ndesc(req); } /* Reclaim completed Tx descriptors and free their packets. Restart a stopped * queue if we freed enough descriptors. * * Return true if we exhausted the budget while there is more work to be done. */ static bool fun_txq_reclaim(struct funeth_txq *q, int budget) { unsigned int npkts = 0, nbytes = 0, ndesc = 0; unsigned int head, limit, reclaim_idx; /* budget may be 0, e.g., netpoll */ limit = budget ? budget : UINT_MAX; for (head = txq_hw_head(q), reclaim_idx = q->cons_cnt & q->mask; head != reclaim_idx && npkts < limit; head = txq_hw_head(q)) { /* The HW head is continually updated, ensure we don't read * descriptor state before the head tells us to reclaim it. * On the enqueue side the doorbell is an implicit write * barrier. */ rmb(); do { unsigned int pkt_desc = fun_unmap_pkt(q, reclaim_idx); struct sk_buff *skb = q->info[reclaim_idx].skb; trace_funeth_tx_free(q, reclaim_idx, pkt_desc, head); nbytes += skb->len; napi_consume_skb(skb, budget); ndesc += pkt_desc; reclaim_idx = (reclaim_idx + pkt_desc) & q->mask; npkts++; } while (reclaim_idx != head && npkts < limit); } q->cons_cnt += ndesc; netdev_tx_completed_queue(q->ndq, npkts, nbytes); smp_mb(); /* pairs with the one in fun_tx_check_stop() */ if (unlikely(netif_tx_queue_stopped(q->ndq) && fun_txq_may_restart(q))) { netif_tx_wake_queue(q->ndq); FUN_QSTAT_INC(q, tx_nrestarts); } return reclaim_idx != head; } /* The NAPI handler for Tx queues. */ int fun_txq_napi_poll(struct napi_struct *napi, int budget) { struct fun_irq *irq = container_of(napi, struct fun_irq, napi); struct funeth_txq *q = irq->txq; unsigned int db_val; if (fun_txq_reclaim(q, budget)) return budget; /* exhausted budget */ napi_complete(napi); /* exhausted pending work */ db_val = READ_ONCE(q->irq_db_val) | (q->cons_cnt & q->mask); writel(db_val, q->db); return 0; } /* Reclaim up to @budget completed Tx packets from a TX XDP queue. */ static unsigned int fun_xdpq_clean(struct funeth_txq *q, unsigned int budget) { unsigned int npkts = 0, ndesc = 0, head, reclaim_idx; for (head = txq_hw_head(q), reclaim_idx = q->cons_cnt & q->mask; head != reclaim_idx && npkts < budget; head = txq_hw_head(q)) { /* The HW head is continually updated, ensure we don't read * descriptor state before the head tells us to reclaim it. * On the enqueue side the doorbell is an implicit write * barrier. */ rmb(); do { unsigned int pkt_desc = fun_unmap_pkt(q, reclaim_idx); xdp_return_frame(q->info[reclaim_idx].xdpf); trace_funeth_tx_free(q, reclaim_idx, pkt_desc, head); reclaim_idx = (reclaim_idx + pkt_desc) & q->mask; ndesc += pkt_desc; npkts++; } while (reclaim_idx != head && npkts < budget); } q->cons_cnt += ndesc; return npkts; } bool fun_xdp_tx(struct funeth_txq *q, struct xdp_frame *xdpf) { unsigned int idx, nfrags = 1, ndesc = 1, tot_len = xdpf->len; const struct skb_shared_info *si = NULL; unsigned int lens[MAX_SKB_FRAGS + 1]; dma_addr_t dma[MAX_SKB_FRAGS + 1]; struct fun_eth_tx_req *req; if (fun_txq_avail(q) < FUN_XDP_CLEAN_THRES) fun_xdpq_clean(q, FUN_XDP_CLEAN_BATCH); if (unlikely(xdp_frame_has_frags(xdpf))) { si = xdp_get_shared_info_from_frame(xdpf); tot_len = xdp_get_frame_len(xdpf); nfrags += si->nr_frags; ndesc = DIV_ROUND_UP((sizeof(*req) + nfrags * sizeof(struct fun_dataop_gl)), FUNETH_SQE_SIZE); } if (unlikely(fun_txq_avail(q) < ndesc)) { FUN_QSTAT_INC(q, tx_xdp_full); return false; } if (unlikely(fun_map_pkt(q->dma_dev, si, xdpf->data, xdpf->len, dma, lens))) { FUN_QSTAT_INC(q, tx_map_err); return false; } idx = q->prod_cnt & q->mask; req = fun_tx_desc_addr(q, idx); req->op = FUN_ETH_OP_TX; req->len8 = 0; req->flags = 0; req->suboff8 = offsetof(struct fun_eth_tx_req, dataop); req->repr_idn = 0; req->encap_proto = 0; fun_eth_offload_init(&req->offload, 0, 0, 0, 0, 0, 0, 0, 0); req->dataop = FUN_DATAOP_HDR_INIT(nfrags, 0, nfrags, 0, tot_len); fun_write_gl(q, req, dma, lens, nfrags); q->info[idx].xdpf = xdpf; u64_stats_update_begin(&q->syncp); q->stats.tx_bytes += tot_len; q->stats.tx_pkts++; u64_stats_update_end(&q->syncp); trace_funeth_tx(q, tot_len, idx, nfrags); q->prod_cnt += ndesc; return true; } int fun_xdp_xmit_frames(struct net_device *dev, int n, struct xdp_frame **frames, u32 flags) { struct funeth_priv *fp = netdev_priv(dev); struct funeth_txq *q, **xdpqs; int i, q_idx; if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) return -EINVAL; xdpqs = rcu_dereference_bh(fp->xdpqs); if (unlikely(!xdpqs)) return -ENETDOWN; q_idx = smp_processor_id(); if (unlikely(q_idx >= fp->num_xdpqs)) return -ENXIO; for (q = xdpqs[q_idx], i = 0; i < n; i++) if (!fun_xdp_tx(q, frames[i])) break; if (unlikely(flags & XDP_XMIT_FLUSH)) fun_txq_wr_db(q); return i; } /* Purge a Tx queue of any queued packets. Should be called once HW access * to the packets has been revoked, e.g., after the queue has been disabled. */ static void fun_txq_purge(struct funeth_txq *q) { while (q->cons_cnt != q->prod_cnt) { unsigned int idx = q->cons_cnt & q->mask; q->cons_cnt += fun_unmap_pkt(q, idx); dev_kfree_skb_any(q->info[idx].skb); } netdev_tx_reset_queue(q->ndq); } static void fun_xdpq_purge(struct funeth_txq *q) { while (q->cons_cnt != q->prod_cnt) { unsigned int idx = q->cons_cnt & q->mask; q->cons_cnt += fun_unmap_pkt(q, idx); xdp_return_frame(q->info[idx].xdpf); } } /* Create a Tx queue, allocating all the host resources needed. */ static struct funeth_txq *fun_txq_create_sw(struct net_device *dev, unsigned int qidx, unsigned int ndesc, struct fun_irq *irq) { struct funeth_priv *fp = netdev_priv(dev); struct funeth_txq *q; int numa_node; if (irq) numa_node = fun_irq_node(irq); /* skb Tx queue */ else numa_node = cpu_to_node(qidx); /* XDP Tx queue */ q = kzalloc_node(sizeof(*q), GFP_KERNEL, numa_node); if (!q) goto err; q->dma_dev = &fp->pdev->dev; q->desc = fun_alloc_ring_mem(q->dma_dev, ndesc, FUNETH_SQE_SIZE, sizeof(*q->info), true, numa_node, &q->dma_addr, (void **)&q->info, &q->hw_wb); if (!q->desc) goto free_q; q->netdev = dev; q->mask = ndesc - 1; q->qidx = qidx; q->numa_node = numa_node; u64_stats_init(&q->syncp); q->init_state = FUN_QSTATE_INIT_SW; return q; free_q: kfree(q); err: netdev_err(dev, "Can't allocate memory for %s queue %u\n", irq ? "Tx" : "XDP", qidx); return NULL; } static void fun_txq_free_sw(struct funeth_txq *q) { struct funeth_priv *fp = netdev_priv(q->netdev); fun_free_ring_mem(q->dma_dev, q->mask + 1, FUNETH_SQE_SIZE, true, q->desc, q->dma_addr, q->info); fp->tx_packets += q->stats.tx_pkts; fp->tx_bytes += q->stats.tx_bytes; fp->tx_dropped += q->stats.tx_map_err; kfree(q); } /* Allocate the device portion of a Tx queue. */ int fun_txq_create_dev(struct funeth_txq *q, struct fun_irq *irq) { struct funeth_priv *fp = netdev_priv(q->netdev); unsigned int irq_idx, ndesc = q->mask + 1; int err; q->irq = irq; *q->hw_wb = 0; q->prod_cnt = 0; q->cons_cnt = 0; irq_idx = irq ? irq->irq_idx : 0; err = fun_sq_create(fp->fdev, FUN_ADMIN_EPSQ_CREATE_FLAG_HEAD_WB_ADDRESS | FUN_ADMIN_RES_CREATE_FLAG_ALLOCATOR, 0, FUN_HCI_ID_INVALID, ilog2(FUNETH_SQE_SIZE), ndesc, q->dma_addr, fp->tx_coal_count, fp->tx_coal_usec, irq_idx, 0, fp->fdev->kern_end_qid, 0, &q->hw_qid, &q->db); if (err) goto out; err = fun_create_and_bind_tx(fp, q->hw_qid); if (err < 0) goto free_devq; q->ethid = err; if (irq) { irq->txq = q; q->ndq = netdev_get_tx_queue(q->netdev, q->qidx); q->irq_db_val = FUN_IRQ_SQ_DB(fp->tx_coal_usec, fp->tx_coal_count); writel(q->irq_db_val, q->db); } q->init_state = FUN_QSTATE_INIT_FULL; netif_info(fp, ifup, q->netdev, "%s queue %u, depth %u, HW qid %u, IRQ idx %u, eth id %u, node %d\n", irq ? "Tx" : "XDP", q->qidx, ndesc, q->hw_qid, irq_idx, q->ethid, q->numa_node); return 0; free_devq: fun_destroy_sq(fp->fdev, q->hw_qid); out: netdev_err(q->netdev, "Failed to create %s queue %u on device, error %d\n", irq ? "Tx" : "XDP", q->qidx, err); return err; } static void fun_txq_free_dev(struct funeth_txq *q) { struct funeth_priv *fp = netdev_priv(q->netdev); if (q->init_state < FUN_QSTATE_INIT_FULL) return; netif_info(fp, ifdown, q->netdev, "Freeing %s queue %u (id %u), IRQ %u, ethid %u\n", q->irq ? "Tx" : "XDP", q->qidx, q->hw_qid, q->irq ? q->irq->irq_idx : 0, q->ethid); fun_destroy_sq(fp->fdev, q->hw_qid); fun_res_destroy(fp->fdev, FUN_ADMIN_OP_ETH, 0, q->ethid); if (q->irq) { q->irq->txq = NULL; fun_txq_purge(q); } else { fun_xdpq_purge(q); } q->init_state = FUN_QSTATE_INIT_SW; } /* Create or advance a Tx queue, allocating all the host and device resources * needed to reach the target state. */ int funeth_txq_create(struct net_device *dev, unsigned int qidx, unsigned int ndesc, struct fun_irq *irq, int state, struct funeth_txq **qp) { struct funeth_txq *q = *qp; int err; if (!q) q = fun_txq_create_sw(dev, qidx, ndesc, irq); if (!q) return -ENOMEM; if (q->init_state >= state) goto out; err = fun_txq_create_dev(q, irq); if (err) { if (!*qp) fun_txq_free_sw(q); return err; } out: *qp = q; return 0; } /* Free Tx queue resources until it reaches the target state. * The queue must be already disconnected from the stack. */ struct funeth_txq *funeth_txq_free(struct funeth_txq *q, int state) { if (state < FUN_QSTATE_INIT_FULL) fun_txq_free_dev(q); if (state == FUN_QSTATE_DESTROYED) { fun_txq_free_sw(q); q = NULL; } return q; }