// SPDX-License-Identifier: GPL-2.0-only /* * CAN driver for esd electronics gmbh CAN-USB/2, CAN-USB/3 and CAN-USB/Micro * * Copyright (C) 2010-2012 esd electronic system design gmbh, Matthias Fuchs * Copyright (C) 2022-2023 esd electronics gmbh, Frank Jungclaus */ #include #include #include #include #include #include #include #include #include #include MODULE_AUTHOR("Matthias Fuchs "); MODULE_AUTHOR("Frank Jungclaus "); MODULE_DESCRIPTION("CAN driver for esd electronics gmbh CAN-USB/2, CAN-USB/3 and CAN-USB/Micro interfaces"); MODULE_LICENSE("GPL v2"); /* USB vendor and product ID */ #define ESD_USB_ESDGMBH_VENDOR_ID 0x0ab4 #define ESD_USB_CANUSB2_PRODUCT_ID 0x0010 #define ESD_USB_CANUSBM_PRODUCT_ID 0x0011 #define ESD_USB_CANUSB3_PRODUCT_ID 0x0014 /* CAN controller clock frequencies */ #define ESD_USB_2_CAN_CLOCK (60 * MEGA) /* Hz */ #define ESD_USB_M_CAN_CLOCK (36 * MEGA) /* Hz */ #define ESD_USB_3_CAN_CLOCK (80 * MEGA) /* Hz */ /* Maximum number of CAN nets */ #define ESD_USB_MAX_NETS 2 /* USB commands */ #define ESD_USB_CMD_VERSION 1 /* also used for VERSION_REPLY */ #define ESD_USB_CMD_CAN_RX 2 /* device to host only */ #define ESD_USB_CMD_CAN_TX 3 /* also used for TX_DONE */ #define ESD_USB_CMD_SETBAUD 4 /* also used for SETBAUD_REPLY */ #define ESD_USB_CMD_TS 5 /* also used for TS_REPLY */ #define ESD_USB_CMD_IDADD 6 /* also used for IDADD_REPLY */ /* esd CAN message flags - dlc field */ #define ESD_USB_RTR BIT(4) #define ESD_USB_NO_BRS BIT(4) #define ESD_USB_ESI BIT(5) #define ESD_USB_FD BIT(7) /* esd CAN message flags - id field */ #define ESD_USB_EXTID BIT(29) #define ESD_USB_EVENT BIT(30) #define ESD_USB_IDMASK GENMASK(28, 0) /* esd CAN event ids */ #define ESD_USB_EV_CAN_ERROR_EXT 2 /* CAN controller specific diagnostic data */ /* baudrate message flags */ #define ESD_USB_LOM BIT(30) /* Listen Only Mode */ #define ESD_USB_UBR BIT(31) /* User Bit Rate (controller BTR) in bits 0..27 */ #define ESD_USB_NO_BAUDRATE GENMASK(30, 0) /* bit rate unconfigured */ /* bit timing esd CAN-USB */ #define ESD_USB_2_TSEG1_SHIFT 16 #define ESD_USB_2_TSEG2_SHIFT 20 #define ESD_USB_2_SJW_SHIFT 14 #define ESD_USB_M_SJW_SHIFT 24 #define ESD_USB_TRIPLE_SAMPLES BIT(23) /* Transmitter Delay Compensation */ #define ESD_USB_3_TDC_MODE_AUTO 0 /* esd IDADD message */ #define ESD_USB_ID_ENABLE BIT(7) #define ESD_USB_MAX_ID_SEGMENT 64 /* SJA1000 ECC register (emulated by usb firmware) */ #define ESD_USB_SJA1000_ECC_SEG GENMASK(4, 0) #define ESD_USB_SJA1000_ECC_DIR BIT(5) #define ESD_USB_SJA1000_ECC_ERR BIT(2, 1) #define ESD_USB_SJA1000_ECC_BIT 0x00 #define ESD_USB_SJA1000_ECC_FORM BIT(6) #define ESD_USB_SJA1000_ECC_STUFF BIT(7) #define ESD_USB_SJA1000_ECC_MASK GENMASK(7, 6) /* esd bus state event codes */ #define ESD_USB_BUSSTATE_MASK GENMASK(7, 6) #define ESD_USB_BUSSTATE_WARN BIT(6) #define ESD_USB_BUSSTATE_ERRPASSIVE BIT(7) #define ESD_USB_BUSSTATE_BUSOFF GENMASK(7, 6) #define ESD_USB_RX_BUFFER_SIZE 1024 #define ESD_USB_MAX_RX_URBS 4 #define ESD_USB_MAX_TX_URBS 16 /* must be power of 2 */ /* Modes for CAN-USB/3, to be used for esd_usb_3_set_baudrate_msg_x.mode */ #define ESD_USB_3_BAUDRATE_MODE_DISABLE 0 /* remove from bus */ #define ESD_USB_3_BAUDRATE_MODE_INDEX 1 /* ESD (CiA) bit rate idx */ #define ESD_USB_3_BAUDRATE_MODE_BTR_CTRL 2 /* BTR values (controller)*/ #define ESD_USB_3_BAUDRATE_MODE_BTR_CANONICAL 3 /* BTR values (canonical) */ #define ESD_USB_3_BAUDRATE_MODE_NUM 4 /* numerical bit rate */ #define ESD_USB_3_BAUDRATE_MODE_AUTOBAUD 5 /* autobaud */ /* Flags for CAN-USB/3, to be used for esd_usb_3_set_baudrate_msg_x.flags */ #define ESD_USB_3_BAUDRATE_FLAG_FD BIT(0) /* enable CAN FD mode */ #define ESD_USB_3_BAUDRATE_FLAG_LOM BIT(1) /* enable listen only mode */ #define ESD_USB_3_BAUDRATE_FLAG_STM BIT(2) /* enable self test mode */ #define ESD_USB_3_BAUDRATE_FLAG_TRS BIT(3) /* enable triple sampling */ #define ESD_USB_3_BAUDRATE_FLAG_TXP BIT(4) /* enable transmit pause */ struct esd_usb_header_msg { u8 len; /* total message length in 32bit words */ u8 cmd; u8 rsvd[2]; }; struct esd_usb_version_msg { u8 len; /* total message length in 32bit words */ u8 cmd; u8 rsvd; u8 flags; __le32 drv_version; }; struct esd_usb_version_reply_msg { u8 len; /* total message length in 32bit words */ u8 cmd; u8 nets; u8 features; __le32 version; u8 name[16]; __le32 rsvd; __le32 ts; }; struct esd_usb_rx_msg { u8 len; /* total message length in 32bit words */ u8 cmd; u8 net; u8 dlc; __le32 ts; __le32 id; /* upper 3 bits contain flags */ union { u8 data[CAN_MAX_DLEN]; u8 data_fd[CANFD_MAX_DLEN]; struct { u8 status; /* CAN Controller Status */ u8 ecc; /* Error Capture Register */ u8 rec; /* RX Error Counter */ u8 tec; /* TX Error Counter */ } ev_can_err_ext; /* For ESD_EV_CAN_ERROR_EXT */ }; }; struct esd_usb_tx_msg { u8 len; /* total message length in 32bit words */ u8 cmd; u8 net; u8 dlc; u32 hnd; /* opaque handle, not used by device */ __le32 id; /* upper 3 bits contain flags */ union { u8 data[CAN_MAX_DLEN]; u8 data_fd[CANFD_MAX_DLEN]; }; }; struct esd_usb_tx_done_msg { u8 len; /* total message length in 32bit words */ u8 cmd; u8 net; u8 status; u32 hnd; /* opaque handle, not used by device */ __le32 ts; }; struct esd_usb_id_filter_msg { u8 len; /* total message length in 32bit words */ u8 cmd; u8 net; u8 option; __le32 mask[ESD_USB_MAX_ID_SEGMENT + 1]; /* +1 for 29bit extended IDs */ }; struct esd_usb_set_baudrate_msg { u8 len; /* total message length in 32bit words */ u8 cmd; u8 net; u8 rsvd; __le32 baud; }; /* CAN-USB/3 baudrate configuration, used for nominal as well as for data bit rate */ struct esd_usb_3_baudrate_cfg { __le16 brp; /* bit rate pre-scaler */ __le16 tseg1; /* time segment before sample point */ __le16 tseg2; /* time segment after sample point */ __le16 sjw; /* synchronization jump Width */ }; /* In principle, the esd CAN-USB/3 supports Transmitter Delay Compensation (TDC), * but currently only the automatic TDC mode is supported by this driver. * An implementation for manual TDC configuration will follow. * * For information about struct esd_usb_3_tdc_cfg, see * NTCAN Application Developers Manual, 6.2.25 NTCAN_TDC_CFG + related chapters * https://esd.eu/fileadmin/esd/docs/manuals/NTCAN_Part1_Function_API_Manual_en_56.pdf */ struct esd_usb_3_tdc_cfg { u8 tdc_mode; /* transmitter delay compensation mode */ u8 ssp_offset; /* secondary sample point offset in mtq */ s8 ssp_shift; /* secondary sample point shift in mtq */ u8 tdc_filter; /* TDC filter in mtq */ }; /* Extended version of the above set_baudrate_msg for a CAN-USB/3 * to define the CAN bit timing configuration of the CAN controller in * CAN FD mode as well as in Classical CAN mode. * * The payload of this command is a NTCAN_BAUDRATE_X structure according to * esd electronics gmbh, NTCAN Application Developers Manual, 6.2.15 NTCAN_BAUDRATE_X * https://esd.eu/fileadmin/esd/docs/manuals/NTCAN_Part1_Function_API_Manual_en_56.pdf */ struct esd_usb_3_set_baudrate_msg_x { u8 len; /* total message length in 32bit words */ u8 cmd; u8 net; u8 rsvd; /*reserved */ /* Payload ... */ __le16 mode; /* mode word, see ESD_USB_3_BAUDRATE_MODE_xxx */ __le16 flags; /* control flags, see ESD_USB_3_BAUDRATE_FLAG_xxx */ struct esd_usb_3_tdc_cfg tdc; /* TDC configuration */ struct esd_usb_3_baudrate_cfg nom; /* nominal bit rate */ struct esd_usb_3_baudrate_cfg data; /* data bit rate */ }; /* Main message type used between library and application */ union __packed esd_usb_msg { struct esd_usb_header_msg hdr; struct esd_usb_version_msg version; struct esd_usb_version_reply_msg version_reply; struct esd_usb_rx_msg rx; struct esd_usb_tx_msg tx; struct esd_usb_tx_done_msg txdone; struct esd_usb_set_baudrate_msg setbaud; struct esd_usb_3_set_baudrate_msg_x setbaud_x; struct esd_usb_id_filter_msg filter; }; static struct usb_device_id esd_usb_table[] = { {USB_DEVICE(ESD_USB_ESDGMBH_VENDOR_ID, ESD_USB_CANUSB2_PRODUCT_ID)}, {USB_DEVICE(ESD_USB_ESDGMBH_VENDOR_ID, ESD_USB_CANUSBM_PRODUCT_ID)}, {USB_DEVICE(ESD_USB_ESDGMBH_VENDOR_ID, ESD_USB_CANUSB3_PRODUCT_ID)}, {} }; MODULE_DEVICE_TABLE(usb, esd_usb_table); struct esd_usb_net_priv; struct esd_tx_urb_context { struct esd_usb_net_priv *priv; u32 echo_index; }; struct esd_usb { struct usb_device *udev; struct esd_usb_net_priv *nets[ESD_USB_MAX_NETS]; struct usb_anchor rx_submitted; int net_count; u32 version; int rxinitdone; void *rxbuf[ESD_USB_MAX_RX_URBS]; dma_addr_t rxbuf_dma[ESD_USB_MAX_RX_URBS]; }; struct esd_usb_net_priv { struct can_priv can; /* must be the first member */ atomic_t active_tx_jobs; struct usb_anchor tx_submitted; struct esd_tx_urb_context tx_contexts[ESD_USB_MAX_TX_URBS]; struct esd_usb *usb; struct net_device *netdev; int index; u8 old_state; struct can_berr_counter bec; }; static void esd_usb_rx_event(struct esd_usb_net_priv *priv, union esd_usb_msg *msg) { struct net_device_stats *stats = &priv->netdev->stats; struct can_frame *cf; struct sk_buff *skb; u32 id = le32_to_cpu(msg->rx.id) & ESD_USB_IDMASK; if (id == ESD_USB_EV_CAN_ERROR_EXT) { u8 state = msg->rx.ev_can_err_ext.status; u8 ecc = msg->rx.ev_can_err_ext.ecc; priv->bec.rxerr = msg->rx.ev_can_err_ext.rec; priv->bec.txerr = msg->rx.ev_can_err_ext.tec; netdev_dbg(priv->netdev, "CAN_ERR_EV_EXT: dlc=%#02x state=%02x ecc=%02x rec=%02x tec=%02x\n", msg->rx.dlc, state, ecc, priv->bec.rxerr, priv->bec.txerr); /* if berr-reporting is off, only pass through on state change ... */ if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) && state == priv->old_state) return; skb = alloc_can_err_skb(priv->netdev, &cf); if (!skb) stats->rx_dropped++; if (state != priv->old_state) { enum can_state tx_state, rx_state; enum can_state new_state = CAN_STATE_ERROR_ACTIVE; priv->old_state = state; switch (state & ESD_USB_BUSSTATE_MASK) { case ESD_USB_BUSSTATE_BUSOFF: new_state = CAN_STATE_BUS_OFF; can_bus_off(priv->netdev); break; case ESD_USB_BUSSTATE_WARN: new_state = CAN_STATE_ERROR_WARNING; break; case ESD_USB_BUSSTATE_ERRPASSIVE: new_state = CAN_STATE_ERROR_PASSIVE; break; default: new_state = CAN_STATE_ERROR_ACTIVE; priv->bec.txerr = 0; priv->bec.rxerr = 0; break; } if (new_state != priv->can.state) { tx_state = (priv->bec.txerr >= priv->bec.rxerr) ? new_state : 0; rx_state = (priv->bec.txerr <= priv->bec.rxerr) ? new_state : 0; can_change_state(priv->netdev, cf, tx_state, rx_state); } } else if (skb) { priv->can.can_stats.bus_error++; stats->rx_errors++; cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR; switch (ecc & ESD_USB_SJA1000_ECC_MASK) { case ESD_USB_SJA1000_ECC_BIT: cf->data[2] |= CAN_ERR_PROT_BIT; break; case ESD_USB_SJA1000_ECC_FORM: cf->data[2] |= CAN_ERR_PROT_FORM; break; case ESD_USB_SJA1000_ECC_STUFF: cf->data[2] |= CAN_ERR_PROT_STUFF; break; default: break; } /* Error occurred during transmission? */ if (!(ecc & ESD_USB_SJA1000_ECC_DIR)) cf->data[2] |= CAN_ERR_PROT_TX; /* Bit stream position in CAN frame as the error was detected */ cf->data[3] = ecc & ESD_USB_SJA1000_ECC_SEG; } if (skb) { cf->can_id |= CAN_ERR_CNT; cf->data[6] = priv->bec.txerr; cf->data[7] = priv->bec.rxerr; netif_rx(skb); } } } static void esd_usb_rx_can_msg(struct esd_usb_net_priv *priv, union esd_usb_msg *msg) { struct net_device_stats *stats = &priv->netdev->stats; struct can_frame *cf; struct canfd_frame *cfd; struct sk_buff *skb; u32 id; u8 len; if (!netif_device_present(priv->netdev)) return; id = le32_to_cpu(msg->rx.id); if (id & ESD_USB_EVENT) { esd_usb_rx_event(priv, msg); } else { if (msg->rx.dlc & ESD_USB_FD) { skb = alloc_canfd_skb(priv->netdev, &cfd); } else { skb = alloc_can_skb(priv->netdev, &cf); cfd = (struct canfd_frame *)cf; } if (skb == NULL) { stats->rx_dropped++; return; } cfd->can_id = id & ESD_USB_IDMASK; if (msg->rx.dlc & ESD_USB_FD) { /* masking by 0x0F is already done within can_fd_dlc2len() */ cfd->len = can_fd_dlc2len(msg->rx.dlc); len = cfd->len; if ((msg->rx.dlc & ESD_USB_NO_BRS) == 0) cfd->flags |= CANFD_BRS; if (msg->rx.dlc & ESD_USB_ESI) cfd->flags |= CANFD_ESI; } else { can_frame_set_cc_len(cf, msg->rx.dlc & ~ESD_USB_RTR, priv->can.ctrlmode); len = cf->len; if (msg->rx.dlc & ESD_USB_RTR) { cf->can_id |= CAN_RTR_FLAG; len = 0; } } if (id & ESD_USB_EXTID) cfd->can_id |= CAN_EFF_FLAG; memcpy(cfd->data, msg->rx.data_fd, len); stats->rx_bytes += len; stats->rx_packets++; netif_rx(skb); } } static void esd_usb_tx_done_msg(struct esd_usb_net_priv *priv, union esd_usb_msg *msg) { struct net_device_stats *stats = &priv->netdev->stats; struct net_device *netdev = priv->netdev; struct esd_tx_urb_context *context; if (!netif_device_present(netdev)) return; context = &priv->tx_contexts[msg->txdone.hnd & (ESD_USB_MAX_TX_URBS - 1)]; if (!msg->txdone.status) { stats->tx_packets++; stats->tx_bytes += can_get_echo_skb(netdev, context->echo_index, NULL); } else { stats->tx_errors++; can_free_echo_skb(netdev, context->echo_index, NULL); } /* Release context */ context->echo_index = ESD_USB_MAX_TX_URBS; atomic_dec(&priv->active_tx_jobs); netif_wake_queue(netdev); } static void esd_usb_read_bulk_callback(struct urb *urb) { struct esd_usb *dev = urb->context; int retval; int pos = 0; int i; switch (urb->status) { case 0: /* success */ break; case -ENOENT: case -EPIPE: case -EPROTO: case -ESHUTDOWN: return; default: dev_info(dev->udev->dev.parent, "Rx URB aborted (%d)\n", urb->status); goto resubmit_urb; } while (pos < urb->actual_length) { union esd_usb_msg *msg; msg = (union esd_usb_msg *)(urb->transfer_buffer + pos); switch (msg->hdr.cmd) { case ESD_USB_CMD_CAN_RX: if (msg->rx.net >= dev->net_count) { dev_err(dev->udev->dev.parent, "format error\n"); break; } esd_usb_rx_can_msg(dev->nets[msg->rx.net], msg); break; case ESD_USB_CMD_CAN_TX: if (msg->txdone.net >= dev->net_count) { dev_err(dev->udev->dev.parent, "format error\n"); break; } esd_usb_tx_done_msg(dev->nets[msg->txdone.net], msg); break; } pos += msg->hdr.len * sizeof(u32); /* convert to # of bytes */ if (pos > urb->actual_length) { dev_err(dev->udev->dev.parent, "format error\n"); break; } } resubmit_urb: usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 1), urb->transfer_buffer, ESD_USB_RX_BUFFER_SIZE, esd_usb_read_bulk_callback, dev); retval = usb_submit_urb(urb, GFP_ATOMIC); if (retval == -ENODEV) { for (i = 0; i < dev->net_count; i++) { if (dev->nets[i]) netif_device_detach(dev->nets[i]->netdev); } } else if (retval) { dev_err(dev->udev->dev.parent, "failed resubmitting read bulk urb: %d\n", retval); } } /* callback for bulk IN urb */ static void esd_usb_write_bulk_callback(struct urb *urb) { struct esd_tx_urb_context *context = urb->context; struct esd_usb_net_priv *priv; struct net_device *netdev; size_t size = sizeof(union esd_usb_msg); WARN_ON(!context); priv = context->priv; netdev = priv->netdev; /* free up our allocated buffer */ usb_free_coherent(urb->dev, size, urb->transfer_buffer, urb->transfer_dma); if (!netif_device_present(netdev)) return; if (urb->status) netdev_info(netdev, "Tx URB aborted (%d)\n", urb->status); netif_trans_update(netdev); } static ssize_t firmware_show(struct device *d, struct device_attribute *attr, char *buf) { struct usb_interface *intf = to_usb_interface(d); struct esd_usb *dev = usb_get_intfdata(intf); return sprintf(buf, "%d.%d.%d\n", (dev->version >> 12) & 0xf, (dev->version >> 8) & 0xf, dev->version & 0xff); } static DEVICE_ATTR_RO(firmware); static ssize_t hardware_show(struct device *d, struct device_attribute *attr, char *buf) { struct usb_interface *intf = to_usb_interface(d); struct esd_usb *dev = usb_get_intfdata(intf); return sprintf(buf, "%d.%d.%d\n", (dev->version >> 28) & 0xf, (dev->version >> 24) & 0xf, (dev->version >> 16) & 0xff); } static DEVICE_ATTR_RO(hardware); static ssize_t nets_show(struct device *d, struct device_attribute *attr, char *buf) { struct usb_interface *intf = to_usb_interface(d); struct esd_usb *dev = usb_get_intfdata(intf); return sprintf(buf, "%d", dev->net_count); } static DEVICE_ATTR_RO(nets); static int esd_usb_send_msg(struct esd_usb *dev, union esd_usb_msg *msg) { int actual_length; return usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, 2), msg, msg->hdr.len * sizeof(u32), /* convert to # of bytes */ &actual_length, 1000); } static int esd_usb_wait_msg(struct esd_usb *dev, union esd_usb_msg *msg) { int actual_length; return usb_bulk_msg(dev->udev, usb_rcvbulkpipe(dev->udev, 1), msg, sizeof(*msg), &actual_length, 1000); } static int esd_usb_setup_rx_urbs(struct esd_usb *dev) { int i, err = 0; if (dev->rxinitdone) return 0; for (i = 0; i < ESD_USB_MAX_RX_URBS; i++) { struct urb *urb = NULL; u8 *buf = NULL; dma_addr_t buf_dma; /* create a URB, and a buffer for it */ urb = usb_alloc_urb(0, GFP_KERNEL); if (!urb) { err = -ENOMEM; break; } buf = usb_alloc_coherent(dev->udev, ESD_USB_RX_BUFFER_SIZE, GFP_KERNEL, &buf_dma); if (!buf) { dev_warn(dev->udev->dev.parent, "No memory left for USB buffer\n"); err = -ENOMEM; goto freeurb; } urb->transfer_dma = buf_dma; usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 1), buf, ESD_USB_RX_BUFFER_SIZE, esd_usb_read_bulk_callback, dev); urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; usb_anchor_urb(urb, &dev->rx_submitted); err = usb_submit_urb(urb, GFP_KERNEL); if (err) { usb_unanchor_urb(urb); usb_free_coherent(dev->udev, ESD_USB_RX_BUFFER_SIZE, buf, urb->transfer_dma); goto freeurb; } dev->rxbuf[i] = buf; dev->rxbuf_dma[i] = buf_dma; freeurb: /* Drop reference, USB core will take care of freeing it */ usb_free_urb(urb); if (err) break; } /* Did we submit any URBs */ if (i == 0) { dev_err(dev->udev->dev.parent, "couldn't setup read URBs\n"); return err; } /* Warn if we've couldn't transmit all the URBs */ if (i < ESD_USB_MAX_RX_URBS) { dev_warn(dev->udev->dev.parent, "rx performance may be slow\n"); } dev->rxinitdone = 1; return 0; } /* Start interface */ static int esd_usb_start(struct esd_usb_net_priv *priv) { struct esd_usb *dev = priv->usb; struct net_device *netdev = priv->netdev; union esd_usb_msg *msg; int err, i; msg = kmalloc(sizeof(*msg), GFP_KERNEL); if (!msg) { err = -ENOMEM; goto out; } /* Enable all IDs * The IDADD message takes up to 64 32 bit bitmasks (2048 bits). * Each bit represents one 11 bit CAN identifier. A set bit * enables reception of the corresponding CAN identifier. A cleared * bit disabled this identifier. An additional bitmask value * following the CAN 2.0A bits is used to enable reception of * extended CAN frames. Only the LSB of this final mask is checked * for the complete 29 bit ID range. The IDADD message also allows * filter configuration for an ID subset. In this case you can add * the number of the starting bitmask (0..64) to the filter.option * field followed by only some bitmasks. */ msg->hdr.cmd = ESD_USB_CMD_IDADD; msg->hdr.len = sizeof(struct esd_usb_id_filter_msg) / sizeof(u32); /* # of 32bit words */ msg->filter.net = priv->index; msg->filter.option = ESD_USB_ID_ENABLE; /* start with segment 0 */ for (i = 0; i < ESD_USB_MAX_ID_SEGMENT; i++) msg->filter.mask[i] = cpu_to_le32(GENMASK(31, 0)); /* enable 29bit extended IDs */ msg->filter.mask[ESD_USB_MAX_ID_SEGMENT] = cpu_to_le32(BIT(0)); err = esd_usb_send_msg(dev, msg); if (err) goto out; err = esd_usb_setup_rx_urbs(dev); if (err) goto out; priv->can.state = CAN_STATE_ERROR_ACTIVE; out: if (err == -ENODEV) netif_device_detach(netdev); if (err) netdev_err(netdev, "couldn't start device: %d\n", err); kfree(msg); return err; } static void unlink_all_urbs(struct esd_usb *dev) { struct esd_usb_net_priv *priv; int i, j; usb_kill_anchored_urbs(&dev->rx_submitted); for (i = 0; i < ESD_USB_MAX_RX_URBS; ++i) usb_free_coherent(dev->udev, ESD_USB_RX_BUFFER_SIZE, dev->rxbuf[i], dev->rxbuf_dma[i]); for (i = 0; i < dev->net_count; i++) { priv = dev->nets[i]; if (priv) { usb_kill_anchored_urbs(&priv->tx_submitted); atomic_set(&priv->active_tx_jobs, 0); for (j = 0; j < ESD_USB_MAX_TX_URBS; j++) priv->tx_contexts[j].echo_index = ESD_USB_MAX_TX_URBS; } } } static int esd_usb_open(struct net_device *netdev) { struct esd_usb_net_priv *priv = netdev_priv(netdev); int err; /* common open */ err = open_candev(netdev); if (err) return err; /* finally start device */ err = esd_usb_start(priv); if (err) { netdev_warn(netdev, "couldn't start device: %d\n", err); close_candev(netdev); return err; } netif_start_queue(netdev); return 0; } static netdev_tx_t esd_usb_start_xmit(struct sk_buff *skb, struct net_device *netdev) { struct esd_usb_net_priv *priv = netdev_priv(netdev); struct esd_usb *dev = priv->usb; struct esd_tx_urb_context *context = NULL; struct net_device_stats *stats = &netdev->stats; struct canfd_frame *cfd = (struct canfd_frame *)skb->data; union esd_usb_msg *msg; struct urb *urb; u8 *buf; int i, err; int ret = NETDEV_TX_OK; size_t size = sizeof(union esd_usb_msg); if (can_dev_dropped_skb(netdev, skb)) return NETDEV_TX_OK; /* create a URB, and a buffer for it, and copy the data to the URB */ urb = usb_alloc_urb(0, GFP_ATOMIC); if (!urb) { stats->tx_dropped++; dev_kfree_skb(skb); goto nourbmem; } buf = usb_alloc_coherent(dev->udev, size, GFP_ATOMIC, &urb->transfer_dma); if (!buf) { netdev_err(netdev, "No memory left for USB buffer\n"); stats->tx_dropped++; dev_kfree_skb(skb); goto nobufmem; } msg = (union esd_usb_msg *)buf; /* minimal length as # of 32bit words */ msg->hdr.len = offsetof(struct esd_usb_tx_msg, data) / sizeof(u32); msg->hdr.cmd = ESD_USB_CMD_CAN_TX; msg->tx.net = priv->index; if (can_is_canfd_skb(skb)) { msg->tx.dlc = can_fd_len2dlc(cfd->len); msg->tx.dlc |= ESD_USB_FD; if ((cfd->flags & CANFD_BRS) == 0) msg->tx.dlc |= ESD_USB_NO_BRS; } else { msg->tx.dlc = can_get_cc_dlc((struct can_frame *)cfd, priv->can.ctrlmode); if (cfd->can_id & CAN_RTR_FLAG) msg->tx.dlc |= ESD_USB_RTR; } msg->tx.id = cpu_to_le32(cfd->can_id & CAN_ERR_MASK); if (cfd->can_id & CAN_EFF_FLAG) msg->tx.id |= cpu_to_le32(ESD_USB_EXTID); memcpy(msg->tx.data_fd, cfd->data, cfd->len); /* round up, then divide by 4 to add the payload length as # of 32bit words */ msg->hdr.len += DIV_ROUND_UP(cfd->len, sizeof(u32)); for (i = 0; i < ESD_USB_MAX_TX_URBS; i++) { if (priv->tx_contexts[i].echo_index == ESD_USB_MAX_TX_URBS) { context = &priv->tx_contexts[i]; break; } } /* This may never happen */ if (!context) { netdev_warn(netdev, "couldn't find free context\n"); ret = NETDEV_TX_BUSY; goto releasebuf; } context->priv = priv; context->echo_index = i; /* hnd must not be 0 - MSB is stripped in txdone handling */ msg->tx.hnd = BIT(31) | i; /* returned in TX done message */ usb_fill_bulk_urb(urb, dev->udev, usb_sndbulkpipe(dev->udev, 2), buf, msg->hdr.len * sizeof(u32), /* convert to # of bytes */ esd_usb_write_bulk_callback, context); urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; usb_anchor_urb(urb, &priv->tx_submitted); can_put_echo_skb(skb, netdev, context->echo_index, 0); atomic_inc(&priv->active_tx_jobs); /* Slow down tx path */ if (atomic_read(&priv->active_tx_jobs) >= ESD_USB_MAX_TX_URBS) netif_stop_queue(netdev); err = usb_submit_urb(urb, GFP_ATOMIC); if (err) { can_free_echo_skb(netdev, context->echo_index, NULL); atomic_dec(&priv->active_tx_jobs); usb_unanchor_urb(urb); stats->tx_dropped++; if (err == -ENODEV) netif_device_detach(netdev); else netdev_warn(netdev, "failed tx_urb %d\n", err); goto releasebuf; } netif_trans_update(netdev); /* Release our reference to this URB, the USB core will eventually free * it entirely. */ usb_free_urb(urb); return NETDEV_TX_OK; releasebuf: usb_free_coherent(dev->udev, size, buf, urb->transfer_dma); nobufmem: usb_free_urb(urb); nourbmem: return ret; } static int esd_usb_close(struct net_device *netdev) { struct esd_usb_net_priv *priv = netdev_priv(netdev); union esd_usb_msg *msg; int i; msg = kmalloc(sizeof(*msg), GFP_KERNEL); if (!msg) return -ENOMEM; /* Disable all IDs (see esd_usb_start()) */ msg->hdr.cmd = ESD_USB_CMD_IDADD; msg->hdr.len = sizeof(struct esd_usb_id_filter_msg) / sizeof(u32);/* # of 32bit words */ msg->filter.net = priv->index; msg->filter.option = ESD_USB_ID_ENABLE; /* start with segment 0 */ for (i = 0; i <= ESD_USB_MAX_ID_SEGMENT; i++) msg->filter.mask[i] = 0; if (esd_usb_send_msg(priv->usb, msg) < 0) netdev_err(netdev, "sending idadd message failed\n"); /* set CAN controller to reset mode */ msg->hdr.len = sizeof(struct esd_usb_set_baudrate_msg) / sizeof(u32); /* # of 32bit words */ msg->hdr.cmd = ESD_USB_CMD_SETBAUD; msg->setbaud.net = priv->index; msg->setbaud.rsvd = 0; msg->setbaud.baud = cpu_to_le32(ESD_USB_NO_BAUDRATE); if (esd_usb_send_msg(priv->usb, msg) < 0) netdev_err(netdev, "sending setbaud message failed\n"); priv->can.state = CAN_STATE_STOPPED; netif_stop_queue(netdev); close_candev(netdev); kfree(msg); return 0; } static const struct net_device_ops esd_usb_netdev_ops = { .ndo_open = esd_usb_open, .ndo_stop = esd_usb_close, .ndo_start_xmit = esd_usb_start_xmit, .ndo_change_mtu = can_change_mtu, }; static const struct ethtool_ops esd_usb_ethtool_ops = { .get_ts_info = ethtool_op_get_ts_info, }; static const struct can_bittiming_const esd_usb_2_bittiming_const = { .name = "esd_usb_2", .tseg1_min = 1, .tseg1_max = 16, .tseg2_min = 1, .tseg2_max = 8, .sjw_max = 4, .brp_min = 1, .brp_max = 1024, .brp_inc = 1, }; static int esd_usb_2_set_bittiming(struct net_device *netdev) { const struct can_bittiming_const *btc = &esd_usb_2_bittiming_const; struct esd_usb_net_priv *priv = netdev_priv(netdev); struct can_bittiming *bt = &priv->can.bittiming; union esd_usb_msg *msg; int err; u32 canbtr; int sjw_shift; canbtr = ESD_USB_UBR; if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) canbtr |= ESD_USB_LOM; canbtr |= (bt->brp - 1) & (btc->brp_max - 1); if (le16_to_cpu(priv->usb->udev->descriptor.idProduct) == ESD_USB_CANUSBM_PRODUCT_ID) sjw_shift = ESD_USB_M_SJW_SHIFT; else sjw_shift = ESD_USB_2_SJW_SHIFT; canbtr |= ((bt->sjw - 1) & (btc->sjw_max - 1)) << sjw_shift; canbtr |= ((bt->prop_seg + bt->phase_seg1 - 1) & (btc->tseg1_max - 1)) << ESD_USB_2_TSEG1_SHIFT; canbtr |= ((bt->phase_seg2 - 1) & (btc->tseg2_max - 1)) << ESD_USB_2_TSEG2_SHIFT; if (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES) canbtr |= ESD_USB_TRIPLE_SAMPLES; msg = kmalloc(sizeof(*msg), GFP_KERNEL); if (!msg) return -ENOMEM; msg->hdr.len = sizeof(struct esd_usb_set_baudrate_msg) / sizeof(u32); /* # of 32bit words */ msg->hdr.cmd = ESD_USB_CMD_SETBAUD; msg->setbaud.net = priv->index; msg->setbaud.rsvd = 0; msg->setbaud.baud = cpu_to_le32(canbtr); netdev_dbg(netdev, "setting BTR=%#x\n", canbtr); err = esd_usb_send_msg(priv->usb, msg); kfree(msg); return err; } /* Nominal bittiming constants, see * Microchip SAM E70/S70/V70/V71, Data Sheet, Rev. G - 07/2022 * 48.6.8 MCAN Nominal Bit Timing and Prescaler Register */ static const struct can_bittiming_const esd_usb_3_nom_bittiming_const = { .name = "esd_usb_3", .tseg1_min = 2, .tseg1_max = 256, .tseg2_min = 2, .tseg2_max = 128, .sjw_max = 128, .brp_min = 1, .brp_max = 512, .brp_inc = 1, }; /* Data bittiming constants, see * Microchip SAM E70/S70/V70/V71, Data Sheet, Rev. G - 07/2022 * 48.6.4 MCAN Data Bit Timing and Prescaler Register */ static const struct can_bittiming_const esd_usb_3_data_bittiming_const = { .name = "esd_usb_3", .tseg1_min = 2, .tseg1_max = 32, .tseg2_min = 1, .tseg2_max = 16, .sjw_max = 8, .brp_min = 1, .brp_max = 32, .brp_inc = 1, }; static int esd_usb_3_set_bittiming(struct net_device *netdev) { const struct can_bittiming_const *nom_btc = &esd_usb_3_nom_bittiming_const; const struct can_bittiming_const *data_btc = &esd_usb_3_data_bittiming_const; struct esd_usb_net_priv *priv = netdev_priv(netdev); struct can_bittiming *nom_bt = &priv->can.bittiming; struct can_bittiming *data_bt = &priv->can.data_bittiming; struct esd_usb_3_set_baudrate_msg_x *baud_x; union esd_usb_msg *msg; u16 flags = 0; int err; msg = kmalloc(sizeof(*msg), GFP_KERNEL); if (!msg) return -ENOMEM; baud_x = &msg->setbaud_x; /* Canonical is the most reasonable mode for SocketCAN on CAN-USB/3 ... */ baud_x->mode = cpu_to_le16(ESD_USB_3_BAUDRATE_MODE_BTR_CANONICAL); if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) flags |= ESD_USB_3_BAUDRATE_FLAG_LOM; if (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES) flags |= ESD_USB_3_BAUDRATE_FLAG_TRS; baud_x->nom.brp = cpu_to_le16(nom_bt->brp & (nom_btc->brp_max - 1)); baud_x->nom.sjw = cpu_to_le16(nom_bt->sjw & (nom_btc->sjw_max - 1)); baud_x->nom.tseg1 = cpu_to_le16((nom_bt->prop_seg + nom_bt->phase_seg1) & (nom_btc->tseg1_max - 1)); baud_x->nom.tseg2 = cpu_to_le16(nom_bt->phase_seg2 & (nom_btc->tseg2_max - 1)); if (priv->can.ctrlmode & CAN_CTRLMODE_FD) { baud_x->data.brp = cpu_to_le16(data_bt->brp & (data_btc->brp_max - 1)); baud_x->data.sjw = cpu_to_le16(data_bt->sjw & (data_btc->sjw_max - 1)); baud_x->data.tseg1 = cpu_to_le16((data_bt->prop_seg + data_bt->phase_seg1) & (data_btc->tseg1_max - 1)); baud_x->data.tseg2 = cpu_to_le16(data_bt->phase_seg2 & (data_btc->tseg2_max - 1)); flags |= ESD_USB_3_BAUDRATE_FLAG_FD; } /* Currently this driver only supports the automatic TDC mode */ baud_x->tdc.tdc_mode = ESD_USB_3_TDC_MODE_AUTO; baud_x->tdc.ssp_offset = 0; baud_x->tdc.ssp_shift = 0; baud_x->tdc.tdc_filter = 0; baud_x->flags = cpu_to_le16(flags); baud_x->net = priv->index; baud_x->rsvd = 0; /* set len as # of 32bit words */ msg->hdr.len = sizeof(struct esd_usb_3_set_baudrate_msg_x) / sizeof(u32); msg->hdr.cmd = ESD_USB_CMD_SETBAUD; netdev_dbg(netdev, "ctrlmode=%#x/%#x, esd-net=%u, esd-mode=%#x, esd-flags=%#x\n", priv->can.ctrlmode, priv->can.ctrlmode_supported, priv->index, le16_to_cpu(baud_x->mode), flags); err = esd_usb_send_msg(priv->usb, msg); kfree(msg); return err; } static int esd_usb_get_berr_counter(const struct net_device *netdev, struct can_berr_counter *bec) { struct esd_usb_net_priv *priv = netdev_priv(netdev); bec->txerr = priv->bec.txerr; bec->rxerr = priv->bec.rxerr; return 0; } static int esd_usb_set_mode(struct net_device *netdev, enum can_mode mode) { switch (mode) { case CAN_MODE_START: netif_wake_queue(netdev); break; default: return -EOPNOTSUPP; } return 0; } static int esd_usb_probe_one_net(struct usb_interface *intf, int index) { struct esd_usb *dev = usb_get_intfdata(intf); struct net_device *netdev; struct esd_usb_net_priv *priv; int err = 0; int i; netdev = alloc_candev(sizeof(*priv), ESD_USB_MAX_TX_URBS); if (!netdev) { dev_err(&intf->dev, "couldn't alloc candev\n"); err = -ENOMEM; goto done; } priv = netdev_priv(netdev); init_usb_anchor(&priv->tx_submitted); atomic_set(&priv->active_tx_jobs, 0); for (i = 0; i < ESD_USB_MAX_TX_URBS; i++) priv->tx_contexts[i].echo_index = ESD_USB_MAX_TX_URBS; priv->usb = dev; priv->netdev = netdev; priv->index = index; priv->can.state = CAN_STATE_STOPPED; priv->can.ctrlmode_supported = CAN_CTRLMODE_LISTENONLY | CAN_CTRLMODE_CC_LEN8_DLC | CAN_CTRLMODE_BERR_REPORTING; switch (le16_to_cpu(dev->udev->descriptor.idProduct)) { case ESD_USB_CANUSB3_PRODUCT_ID: priv->can.clock.freq = ESD_USB_3_CAN_CLOCK; priv->can.ctrlmode_supported |= CAN_CTRLMODE_3_SAMPLES; priv->can.ctrlmode_supported |= CAN_CTRLMODE_FD; priv->can.bittiming_const = &esd_usb_3_nom_bittiming_const; priv->can.data_bittiming_const = &esd_usb_3_data_bittiming_const; priv->can.do_set_bittiming = esd_usb_3_set_bittiming; priv->can.do_set_data_bittiming = esd_usb_3_set_bittiming; break; case ESD_USB_CANUSBM_PRODUCT_ID: priv->can.clock.freq = ESD_USB_M_CAN_CLOCK; priv->can.bittiming_const = &esd_usb_2_bittiming_const; priv->can.do_set_bittiming = esd_usb_2_set_bittiming; break; case ESD_USB_CANUSB2_PRODUCT_ID: default: priv->can.clock.freq = ESD_USB_2_CAN_CLOCK; priv->can.ctrlmode_supported |= CAN_CTRLMODE_3_SAMPLES; priv->can.bittiming_const = &esd_usb_2_bittiming_const; priv->can.do_set_bittiming = esd_usb_2_set_bittiming; break; } priv->can.do_set_mode = esd_usb_set_mode; priv->can.do_get_berr_counter = esd_usb_get_berr_counter; netdev->flags |= IFF_ECHO; /* we support local echo */ netdev->netdev_ops = &esd_usb_netdev_ops; netdev->ethtool_ops = &esd_usb_ethtool_ops; SET_NETDEV_DEV(netdev, &intf->dev); netdev->dev_id = index; err = register_candev(netdev); if (err) { dev_err(&intf->dev, "couldn't register CAN device: %d\n", err); free_candev(netdev); err = -ENOMEM; goto done; } dev->nets[index] = priv; netdev_info(netdev, "device %s registered\n", netdev->name); done: return err; } /* probe function for new USB devices * * check version information and number of available * CAN interfaces */ static int esd_usb_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct esd_usb *dev; union esd_usb_msg *msg; int i, err; dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (!dev) { err = -ENOMEM; goto done; } dev->udev = interface_to_usbdev(intf); init_usb_anchor(&dev->rx_submitted); usb_set_intfdata(intf, dev); msg = kmalloc(sizeof(*msg), GFP_KERNEL); if (!msg) { err = -ENOMEM; goto free_msg; } /* query number of CAN interfaces (nets) */ msg->hdr.cmd = ESD_USB_CMD_VERSION; msg->hdr.len = sizeof(struct esd_usb_version_msg) / sizeof(u32); /* # of 32bit words */ msg->version.rsvd = 0; msg->version.flags = 0; msg->version.drv_version = 0; err = esd_usb_send_msg(dev, msg); if (err < 0) { dev_err(&intf->dev, "sending version message failed\n"); goto free_msg; } err = esd_usb_wait_msg(dev, msg); if (err < 0) { dev_err(&intf->dev, "no version message answer\n"); goto free_msg; } dev->net_count = (int)msg->version_reply.nets; dev->version = le32_to_cpu(msg->version_reply.version); if (device_create_file(&intf->dev, &dev_attr_firmware)) dev_err(&intf->dev, "Couldn't create device file for firmware\n"); if (device_create_file(&intf->dev, &dev_attr_hardware)) dev_err(&intf->dev, "Couldn't create device file for hardware\n"); if (device_create_file(&intf->dev, &dev_attr_nets)) dev_err(&intf->dev, "Couldn't create device file for nets\n"); /* do per device probing */ for (i = 0; i < dev->net_count; i++) esd_usb_probe_one_net(intf, i); free_msg: kfree(msg); if (err) kfree(dev); done: return err; } /* called by the usb core when the device is removed from the system */ static void esd_usb_disconnect(struct usb_interface *intf) { struct esd_usb *dev = usb_get_intfdata(intf); struct net_device *netdev; int i; device_remove_file(&intf->dev, &dev_attr_firmware); device_remove_file(&intf->dev, &dev_attr_hardware); device_remove_file(&intf->dev, &dev_attr_nets); usb_set_intfdata(intf, NULL); if (dev) { for (i = 0; i < dev->net_count; i++) { if (dev->nets[i]) { netdev = dev->nets[i]->netdev; unregister_netdev(netdev); free_candev(netdev); } } unlink_all_urbs(dev); kfree(dev); } } /* usb specific object needed to register this driver with the usb subsystem */ static struct usb_driver esd_usb_driver = { .name = KBUILD_MODNAME, .probe = esd_usb_probe, .disconnect = esd_usb_disconnect, .id_table = esd_usb_table, }; module_usb_driver(esd_usb_driver);