// SPDX-License-Identifier: GPL-2.0-or-later /* * Driver for the Conexant CX23885 PCIe bridge * * Copyright (c) 2007 Steven Toth */ #include "cx23885.h" #include #include #include #include static unsigned int vbibufs = 4; module_param(vbibufs, int, 0644); MODULE_PARM_DESC(vbibufs, "number of vbi buffers, range 2-32"); static unsigned int vbi_debug; module_param(vbi_debug, int, 0644); MODULE_PARM_DESC(vbi_debug, "enable debug messages [vbi]"); #define dprintk(level, fmt, arg...)\ do { if (vbi_debug >= level)\ printk(KERN_DEBUG pr_fmt("%s: vbi:" fmt), \ __func__, ##arg); \ } while (0) /* ------------------------------------------------------------------ */ #define VBI_LINE_LENGTH 1440 #define VBI_NTSC_LINE_COUNT 12 #define VBI_PAL_LINE_COUNT 18 int cx23885_vbi_fmt(struct file *file, void *priv, struct v4l2_format *f) { struct cx23885_dev *dev = video_drvdata(file); f->fmt.vbi.sampling_rate = 27000000; f->fmt.vbi.samples_per_line = VBI_LINE_LENGTH; f->fmt.vbi.sample_format = V4L2_PIX_FMT_GREY; f->fmt.vbi.offset = 0; f->fmt.vbi.flags = 0; if (dev->tvnorm & V4L2_STD_525_60) { /* ntsc */ f->fmt.vbi.start[0] = V4L2_VBI_ITU_525_F1_START + 9; f->fmt.vbi.start[1] = V4L2_VBI_ITU_525_F2_START + 9; f->fmt.vbi.count[0] = VBI_NTSC_LINE_COUNT; f->fmt.vbi.count[1] = VBI_NTSC_LINE_COUNT; } else if (dev->tvnorm & V4L2_STD_625_50) { /* pal */ f->fmt.vbi.start[0] = V4L2_VBI_ITU_625_F1_START + 5; f->fmt.vbi.start[1] = V4L2_VBI_ITU_625_F2_START + 5; f->fmt.vbi.count[0] = VBI_PAL_LINE_COUNT; f->fmt.vbi.count[1] = VBI_PAL_LINE_COUNT; } return 0; } /* We're given the Video Interrupt status register. * The cx23885_video_irq() func has already validated * the potential error bits, we just need to * deal with vbi payload and return indication if * we actually processed any payload. */ int cx23885_vbi_irq(struct cx23885_dev *dev, u32 status) { u32 count; int handled = 0; if (status & VID_BC_MSK_VBI_RISCI1) { dprintk(1, "%s() VID_BC_MSK_VBI_RISCI1\n", __func__); spin_lock(&dev->slock); count = cx_read(VBI_A_GPCNT); cx23885_video_wakeup(dev, &dev->vbiq, count); spin_unlock(&dev->slock); handled++; } return handled; } static int cx23885_start_vbi_dma(struct cx23885_dev *dev, struct cx23885_dmaqueue *q, struct cx23885_buffer *buf) { dprintk(1, "%s()\n", __func__); /* setup fifo + format */ cx23885_sram_channel_setup(dev, &dev->sram_channels[SRAM_CH02], VBI_LINE_LENGTH, buf->risc.dma); /* reset counter */ cx_write(VID_A_VBI_CTRL, 3); cx_write(VBI_A_GPCNT_CTL, 3); q->count = 0; /* enable irq */ cx23885_irq_add_enable(dev, 0x01); cx_set(VID_A_INT_MSK, 0x000022); /* start dma */ cx_set(DEV_CNTRL2, (1<<5)); cx_set(VID_A_DMA_CTL, 0x22); /* FIFO and RISC enable */ return 0; } /* ------------------------------------------------------------------ */ static int queue_setup(struct vb2_queue *q, unsigned int *num_buffers, unsigned int *num_planes, unsigned int sizes[], struct device *alloc_devs[]) { struct cx23885_dev *dev = q->drv_priv; unsigned lines = VBI_PAL_LINE_COUNT; if (dev->tvnorm & V4L2_STD_525_60) lines = VBI_NTSC_LINE_COUNT; *num_planes = 1; sizes[0] = lines * VBI_LINE_LENGTH * 2; return 0; } static int buffer_prepare(struct vb2_buffer *vb) { struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb); struct cx23885_dev *dev = vb->vb2_queue->drv_priv; struct cx23885_buffer *buf = container_of(vbuf, struct cx23885_buffer, vb); struct sg_table *sgt = vb2_dma_sg_plane_desc(vb, 0); unsigned lines = VBI_PAL_LINE_COUNT; if (dev->tvnorm & V4L2_STD_525_60) lines = VBI_NTSC_LINE_COUNT; if (vb2_plane_size(vb, 0) < lines * VBI_LINE_LENGTH * 2) return -EINVAL; vb2_set_plane_payload(vb, 0, lines * VBI_LINE_LENGTH * 2); cx23885_risc_vbibuffer(dev->pci, &buf->risc, sgt->sgl, 0, VBI_LINE_LENGTH * lines, VBI_LINE_LENGTH, 0, lines); return 0; } static void buffer_finish(struct vb2_buffer *vb) { struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb); struct cx23885_buffer *buf = container_of(vbuf, struct cx23885_buffer, vb); cx23885_free_buffer(vb->vb2_queue->drv_priv, buf); } /* * The risc program for each buffer works as follows: it starts with a simple * 'JUMP to addr + 12', which is effectively a NOP. Then the code to DMA the * buffer follows and at the end we have a JUMP back to the start + 12 (skipping * the initial JUMP). * * This is the risc program of the first buffer to be queued if the active list * is empty and it just keeps DMAing this buffer without generating any * interrupts. * * If a new buffer is added then the initial JUMP in the code for that buffer * will generate an interrupt which signals that the previous buffer has been * DMAed successfully and that it can be returned to userspace. * * It also sets the final jump of the previous buffer to the start of the new * buffer, thus chaining the new buffer into the DMA chain. This is a single * atomic u32 write, so there is no race condition. * * The end-result of all this that you only get an interrupt when a buffer * is ready, so the control flow is very easy. */ static void buffer_queue(struct vb2_buffer *vb) { struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb); struct cx23885_dev *dev = vb->vb2_queue->drv_priv; struct cx23885_buffer *buf = container_of(vbuf, struct cx23885_buffer, vb); struct cx23885_buffer *prev; struct cx23885_dmaqueue *q = &dev->vbiq; unsigned long flags; buf->risc.cpu[1] = cpu_to_le32(buf->risc.dma + 12); buf->risc.jmp[0] = cpu_to_le32(RISC_JUMP | RISC_CNT_INC); buf->risc.jmp[1] = cpu_to_le32(buf->risc.dma + 12); buf->risc.jmp[2] = cpu_to_le32(0); /* bits 63-32 */ if (list_empty(&q->active)) { spin_lock_irqsave(&dev->slock, flags); list_add_tail(&buf->queue, &q->active); spin_unlock_irqrestore(&dev->slock, flags); dprintk(2, "[%p/%d] vbi_queue - first active\n", buf, buf->vb.vb2_buf.index); } else { buf->risc.cpu[0] |= cpu_to_le32(RISC_IRQ1); prev = list_entry(q->active.prev, struct cx23885_buffer, queue); spin_lock_irqsave(&dev->slock, flags); list_add_tail(&buf->queue, &q->active); spin_unlock_irqrestore(&dev->slock, flags); prev->risc.jmp[1] = cpu_to_le32(buf->risc.dma); dprintk(2, "[%p/%d] buffer_queue - append to active\n", buf, buf->vb.vb2_buf.index); } } static int cx23885_start_streaming(struct vb2_queue *q, unsigned int count) { struct cx23885_dev *dev = q->drv_priv; struct cx23885_dmaqueue *dmaq = &dev->vbiq; struct cx23885_buffer *buf = list_entry(dmaq->active.next, struct cx23885_buffer, queue); cx23885_start_vbi_dma(dev, dmaq, buf); return 0; } static void cx23885_stop_streaming(struct vb2_queue *q) { struct cx23885_dev *dev = q->drv_priv; struct cx23885_dmaqueue *dmaq = &dev->vbiq; unsigned long flags; cx_clear(VID_A_DMA_CTL, 0x22); /* FIFO and RISC enable */ spin_lock_irqsave(&dev->slock, flags); while (!list_empty(&dmaq->active)) { struct cx23885_buffer *buf = list_entry(dmaq->active.next, struct cx23885_buffer, queue); list_del(&buf->queue); vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_ERROR); } spin_unlock_irqrestore(&dev->slock, flags); } const struct vb2_ops cx23885_vbi_qops = { .queue_setup = queue_setup, .buf_prepare = buffer_prepare, .buf_finish = buffer_finish, .buf_queue = buffer_queue, .wait_prepare = vb2_ops_wait_prepare, .wait_finish = vb2_ops_wait_finish, .start_streaming = cx23885_start_streaming, .stop_streaming = cx23885_stop_streaming, };