// SPDX-License-Identifier: GPL-2.0 // // mt9v011 -Micron 1/4-Inch VGA Digital Image Sensor // // Copyright (c) 2009 Mauro Carvalho Chehab #include #include #include #include #include #include #include #include #include MODULE_DESCRIPTION("Micron mt9v011 sensor driver"); MODULE_AUTHOR("Mauro Carvalho Chehab"); MODULE_LICENSE("GPL v2"); static int debug; module_param(debug, int, 0); MODULE_PARM_DESC(debug, "Debug level (0-2)"); #define R00_MT9V011_CHIP_VERSION 0x00 #define R01_MT9V011_ROWSTART 0x01 #define R02_MT9V011_COLSTART 0x02 #define R03_MT9V011_HEIGHT 0x03 #define R04_MT9V011_WIDTH 0x04 #define R05_MT9V011_HBLANK 0x05 #define R06_MT9V011_VBLANK 0x06 #define R07_MT9V011_OUT_CTRL 0x07 #define R09_MT9V011_SHUTTER_WIDTH 0x09 #define R0A_MT9V011_CLK_SPEED 0x0a #define R0B_MT9V011_RESTART 0x0b #define R0C_MT9V011_SHUTTER_DELAY 0x0c #define R0D_MT9V011_RESET 0x0d #define R1E_MT9V011_DIGITAL_ZOOM 0x1e #define R20_MT9V011_READ_MODE 0x20 #define R2B_MT9V011_GREEN_1_GAIN 0x2b #define R2C_MT9V011_BLUE_GAIN 0x2c #define R2D_MT9V011_RED_GAIN 0x2d #define R2E_MT9V011_GREEN_2_GAIN 0x2e #define R35_MT9V011_GLOBAL_GAIN 0x35 #define RF1_MT9V011_CHIP_ENABLE 0xf1 #define MT9V011_VERSION 0x8232 #define MT9V011_REV_B_VERSION 0x8243 struct mt9v011 { struct v4l2_subdev sd; struct media_pad pad; struct v4l2_ctrl_handler ctrls; unsigned width, height; unsigned xtal; unsigned hflip:1; unsigned vflip:1; u16 global_gain, exposure; s16 red_bal, blue_bal; }; static inline struct mt9v011 *to_mt9v011(struct v4l2_subdev *sd) { return container_of(sd, struct mt9v011, sd); } static int mt9v011_read(struct v4l2_subdev *sd, unsigned char addr) { struct i2c_client *c = v4l2_get_subdevdata(sd); __be16 buffer; int rc, val; rc = i2c_master_send(c, &addr, 1); if (rc != 1) v4l2_dbg(0, debug, sd, "i2c i/o error: rc == %d (should be 1)\n", rc); msleep(10); rc = i2c_master_recv(c, (char *)&buffer, 2); if (rc != 2) v4l2_dbg(0, debug, sd, "i2c i/o error: rc == %d (should be 2)\n", rc); val = be16_to_cpu(buffer); v4l2_dbg(2, debug, sd, "mt9v011: read 0x%02x = 0x%04x\n", addr, val); return val; } static void mt9v011_write(struct v4l2_subdev *sd, unsigned char addr, u16 value) { struct i2c_client *c = v4l2_get_subdevdata(sd); unsigned char buffer[3]; int rc; buffer[0] = addr; buffer[1] = value >> 8; buffer[2] = value & 0xff; v4l2_dbg(2, debug, sd, "mt9v011: writing 0x%02x 0x%04x\n", buffer[0], value); rc = i2c_master_send(c, buffer, 3); if (rc != 3) v4l2_dbg(0, debug, sd, "i2c i/o error: rc == %d (should be 3)\n", rc); } struct i2c_reg_value { unsigned char reg; u16 value; }; /* * Values used at the original driver * Some values are marked as Reserved at the datasheet */ static const struct i2c_reg_value mt9v011_init_default[] = { { R0D_MT9V011_RESET, 0x0001 }, { R0D_MT9V011_RESET, 0x0000 }, { R0C_MT9V011_SHUTTER_DELAY, 0x0000 }, { R09_MT9V011_SHUTTER_WIDTH, 0x1fc }, { R0A_MT9V011_CLK_SPEED, 0x0000 }, { R1E_MT9V011_DIGITAL_ZOOM, 0x0000 }, { R07_MT9V011_OUT_CTRL, 0x0002 }, /* chip enable */ }; static u16 calc_mt9v011_gain(s16 lineargain) { u16 digitalgain = 0; u16 analogmult = 0; u16 analoginit = 0; if (lineargain < 0) lineargain = 0; /* recommended minimum */ lineargain += 0x0020; if (lineargain > 2047) lineargain = 2047; if (lineargain > 1023) { digitalgain = 3; analogmult = 3; analoginit = lineargain / 16; } else if (lineargain > 511) { digitalgain = 1; analogmult = 3; analoginit = lineargain / 8; } else if (lineargain > 255) { analogmult = 3; analoginit = lineargain / 4; } else if (lineargain > 127) { analogmult = 1; analoginit = lineargain / 2; } else analoginit = lineargain; return analoginit + (analogmult << 7) + (digitalgain << 9); } static void set_balance(struct v4l2_subdev *sd) { struct mt9v011 *core = to_mt9v011(sd); u16 green_gain, blue_gain, red_gain; u16 exposure; s16 bal; exposure = core->exposure; green_gain = calc_mt9v011_gain(core->global_gain); bal = core->global_gain; bal += (core->blue_bal * core->global_gain / (1 << 7)); blue_gain = calc_mt9v011_gain(bal); bal = core->global_gain; bal += (core->red_bal * core->global_gain / (1 << 7)); red_gain = calc_mt9v011_gain(bal); mt9v011_write(sd, R2B_MT9V011_GREEN_1_GAIN, green_gain); mt9v011_write(sd, R2E_MT9V011_GREEN_2_GAIN, green_gain); mt9v011_write(sd, R2C_MT9V011_BLUE_GAIN, blue_gain); mt9v011_write(sd, R2D_MT9V011_RED_GAIN, red_gain); mt9v011_write(sd, R09_MT9V011_SHUTTER_WIDTH, exposure); } static void calc_fps(struct v4l2_subdev *sd, u32 *numerator, u32 *denominator) { struct mt9v011 *core = to_mt9v011(sd); unsigned height, width, hblank, vblank, speed; unsigned row_time, t_time; u64 frames_per_ms; unsigned tmp; height = mt9v011_read(sd, R03_MT9V011_HEIGHT); width = mt9v011_read(sd, R04_MT9V011_WIDTH); hblank = mt9v011_read(sd, R05_MT9V011_HBLANK); vblank = mt9v011_read(sd, R06_MT9V011_VBLANK); speed = mt9v011_read(sd, R0A_MT9V011_CLK_SPEED); row_time = (width + 113 + hblank) * (speed + 2); t_time = row_time * (height + vblank + 1); frames_per_ms = core->xtal * 1000l; do_div(frames_per_ms, t_time); tmp = frames_per_ms; v4l2_dbg(1, debug, sd, "Programmed to %u.%03u fps (%d pixel clcks)\n", tmp / 1000, tmp % 1000, t_time); if (numerator && denominator) { *numerator = 1000; *denominator = (u32)frames_per_ms; } } static u16 calc_speed(struct v4l2_subdev *sd, u32 numerator, u32 denominator) { struct mt9v011 *core = to_mt9v011(sd); unsigned height, width, hblank, vblank; unsigned row_time, line_time; u64 t_time, speed; /* Avoid bogus calculus */ if (!numerator || !denominator) return 0; height = mt9v011_read(sd, R03_MT9V011_HEIGHT); width = mt9v011_read(sd, R04_MT9V011_WIDTH); hblank = mt9v011_read(sd, R05_MT9V011_HBLANK); vblank = mt9v011_read(sd, R06_MT9V011_VBLANK); row_time = width + 113 + hblank; line_time = height + vblank + 1; t_time = core->xtal * ((u64)numerator); /* round to the closest value */ t_time += denominator / 2; do_div(t_time, denominator); speed = t_time; do_div(speed, row_time * line_time); /* Avoid having a negative value for speed */ if (speed < 2) speed = 0; else speed -= 2; /* Avoid speed overflow */ if (speed > 15) return 15; return (u16)speed; } static void set_res(struct v4l2_subdev *sd) { struct mt9v011 *core = to_mt9v011(sd); unsigned vstart, hstart; /* * The mt9v011 doesn't have scaling. So, in order to select the desired * resolution, we're cropping at the middle of the sensor. * hblank and vblank should be adjusted, in order to warrant that * we'll preserve the line timings for 30 fps, no matter what resolution * is selected. * NOTE: datasheet says that width (and height) should be filled with * width-1. However, this doesn't work, since one pixel per line will * be missing. */ hstart = 20 + (640 - core->width) / 2; mt9v011_write(sd, R02_MT9V011_COLSTART, hstart); mt9v011_write(sd, R04_MT9V011_WIDTH, core->width); mt9v011_write(sd, R05_MT9V011_HBLANK, 771 - core->width); vstart = 8 + (480 - core->height) / 2; mt9v011_write(sd, R01_MT9V011_ROWSTART, vstart); mt9v011_write(sd, R03_MT9V011_HEIGHT, core->height); mt9v011_write(sd, R06_MT9V011_VBLANK, 508 - core->height); calc_fps(sd, NULL, NULL); }; static void set_read_mode(struct v4l2_subdev *sd) { struct mt9v011 *core = to_mt9v011(sd); unsigned mode = 0x1000; if (core->hflip) mode |= 0x4000; if (core->vflip) mode |= 0x8000; mt9v011_write(sd, R20_MT9V011_READ_MODE, mode); } static int mt9v011_reset(struct v4l2_subdev *sd, u32 val) { int i; for (i = 0; i < ARRAY_SIZE(mt9v011_init_default); i++) mt9v011_write(sd, mt9v011_init_default[i].reg, mt9v011_init_default[i].value); set_balance(sd); set_res(sd); set_read_mode(sd); return 0; } static int mt9v011_enum_mbus_code(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_mbus_code_enum *code) { if (code->pad || code->index > 0) return -EINVAL; code->code = MEDIA_BUS_FMT_SGRBG8_1X8; return 0; } static int mt9v011_set_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_format *format) { struct v4l2_mbus_framefmt *fmt = &format->format; struct mt9v011 *core = to_mt9v011(sd); if (format->pad || fmt->code != MEDIA_BUS_FMT_SGRBG8_1X8) return -EINVAL; v4l_bound_align_image(&fmt->width, 48, 639, 1, &fmt->height, 32, 480, 1, 0); fmt->field = V4L2_FIELD_NONE; fmt->colorspace = V4L2_COLORSPACE_SRGB; if (format->which == V4L2_SUBDEV_FORMAT_ACTIVE) { core->width = fmt->width; core->height = fmt->height; set_res(sd); } else { *v4l2_subdev_state_get_format(sd_state, 0) = *fmt; } return 0; } static int mt9v011_get_frame_interval(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_frame_interval *ival) { /* * FIXME: Implement support for V4L2_SUBDEV_FORMAT_TRY, using the V4L2 * subdev active state API. */ if (ival->which != V4L2_SUBDEV_FORMAT_ACTIVE) return -EINVAL; calc_fps(sd, &ival->interval.numerator, &ival->interval.denominator); return 0; } static int mt9v011_set_frame_interval(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_frame_interval *ival) { struct v4l2_fract *tpf = &ival->interval; u16 speed; /* * FIXME: Implement support for V4L2_SUBDEV_FORMAT_TRY, using the V4L2 * subdev active state API. */ if (ival->which != V4L2_SUBDEV_FORMAT_ACTIVE) return -EINVAL; speed = calc_speed(sd, tpf->numerator, tpf->denominator); mt9v011_write(sd, R0A_MT9V011_CLK_SPEED, speed); v4l2_dbg(1, debug, sd, "Setting speed to %d\n", speed); /* Recalculate and update fps info */ calc_fps(sd, &tpf->numerator, &tpf->denominator); return 0; } #ifdef CONFIG_VIDEO_ADV_DEBUG static int mt9v011_g_register(struct v4l2_subdev *sd, struct v4l2_dbg_register *reg) { reg->val = mt9v011_read(sd, reg->reg & 0xff); reg->size = 2; return 0; } static int mt9v011_s_register(struct v4l2_subdev *sd, const struct v4l2_dbg_register *reg) { mt9v011_write(sd, reg->reg & 0xff, reg->val & 0xffff); return 0; } #endif static int mt9v011_s_ctrl(struct v4l2_ctrl *ctrl) { struct mt9v011 *core = container_of(ctrl->handler, struct mt9v011, ctrls); struct v4l2_subdev *sd = &core->sd; switch (ctrl->id) { case V4L2_CID_GAIN: core->global_gain = ctrl->val; break; case V4L2_CID_EXPOSURE: core->exposure = ctrl->val; break; case V4L2_CID_RED_BALANCE: core->red_bal = ctrl->val; break; case V4L2_CID_BLUE_BALANCE: core->blue_bal = ctrl->val; break; case V4L2_CID_HFLIP: core->hflip = ctrl->val; set_read_mode(sd); return 0; case V4L2_CID_VFLIP: core->vflip = ctrl->val; set_read_mode(sd); return 0; default: return -EINVAL; } set_balance(sd); return 0; } static const struct v4l2_ctrl_ops mt9v011_ctrl_ops = { .s_ctrl = mt9v011_s_ctrl, }; static const struct v4l2_subdev_core_ops mt9v011_core_ops = { .reset = mt9v011_reset, #ifdef CONFIG_VIDEO_ADV_DEBUG .g_register = mt9v011_g_register, .s_register = mt9v011_s_register, #endif }; static const struct v4l2_subdev_pad_ops mt9v011_pad_ops = { .enum_mbus_code = mt9v011_enum_mbus_code, .set_fmt = mt9v011_set_fmt, .get_frame_interval = mt9v011_get_frame_interval, .set_frame_interval = mt9v011_set_frame_interval, }; static const struct v4l2_subdev_ops mt9v011_ops = { .core = &mt9v011_core_ops, .pad = &mt9v011_pad_ops, }; /**************************************************************************** I2C Client & Driver ****************************************************************************/ static int mt9v011_probe(struct i2c_client *c) { u16 version; struct mt9v011 *core; struct v4l2_subdev *sd; int ret; /* Check if the adapter supports the needed features */ if (!i2c_check_functionality(c->adapter, I2C_FUNC_SMBUS_READ_BYTE | I2C_FUNC_SMBUS_WRITE_BYTE_DATA)) return -EIO; core = devm_kzalloc(&c->dev, sizeof(struct mt9v011), GFP_KERNEL); if (!core) return -ENOMEM; sd = &core->sd; v4l2_i2c_subdev_init(sd, c, &mt9v011_ops); core->pad.flags = MEDIA_PAD_FL_SOURCE; sd->entity.function = MEDIA_ENT_F_CAM_SENSOR; ret = media_entity_pads_init(&sd->entity, 1, &core->pad); if (ret < 0) return ret; /* Check if the sensor is really a MT9V011 */ version = mt9v011_read(sd, R00_MT9V011_CHIP_VERSION); if ((version != MT9V011_VERSION) && (version != MT9V011_REV_B_VERSION)) { v4l2_info(sd, "*** unknown micron chip detected (0x%04x).\n", version); return -EINVAL; } v4l2_ctrl_handler_init(&core->ctrls, 5); v4l2_ctrl_new_std(&core->ctrls, &mt9v011_ctrl_ops, V4L2_CID_GAIN, 0, (1 << 12) - 1 - 0x20, 1, 0x20); v4l2_ctrl_new_std(&core->ctrls, &mt9v011_ctrl_ops, V4L2_CID_EXPOSURE, 0, 2047, 1, 0x01fc); v4l2_ctrl_new_std(&core->ctrls, &mt9v011_ctrl_ops, V4L2_CID_RED_BALANCE, -(1 << 9), (1 << 9) - 1, 1, 0); v4l2_ctrl_new_std(&core->ctrls, &mt9v011_ctrl_ops, V4L2_CID_BLUE_BALANCE, -(1 << 9), (1 << 9) - 1, 1, 0); v4l2_ctrl_new_std(&core->ctrls, &mt9v011_ctrl_ops, V4L2_CID_HFLIP, 0, 1, 1, 0); v4l2_ctrl_new_std(&core->ctrls, &mt9v011_ctrl_ops, V4L2_CID_VFLIP, 0, 1, 1, 0); if (core->ctrls.error) { int ret = core->ctrls.error; v4l2_err(sd, "control initialization error %d\n", ret); v4l2_ctrl_handler_free(&core->ctrls); return ret; } core->sd.ctrl_handler = &core->ctrls; core->global_gain = 0x0024; core->exposure = 0x01fc; core->width = 640; core->height = 480; core->xtal = 27000000; /* Hz */ if (c->dev.platform_data) { struct mt9v011_platform_data *pdata = c->dev.platform_data; core->xtal = pdata->xtal; v4l2_dbg(1, debug, sd, "xtal set to %d.%03d MHz\n", core->xtal / 1000000, (core->xtal / 1000) % 1000); } v4l_info(c, "chip found @ 0x%02x (%s - chip version 0x%04x)\n", c->addr << 1, c->adapter->name, version); return 0; } static void mt9v011_remove(struct i2c_client *c) { struct v4l2_subdev *sd = i2c_get_clientdata(c); struct mt9v011 *core = to_mt9v011(sd); v4l2_dbg(1, debug, sd, "mt9v011.c: removing mt9v011 adapter on address 0x%x\n", c->addr << 1); v4l2_device_unregister_subdev(sd); v4l2_ctrl_handler_free(&core->ctrls); } /* ----------------------------------------------------------------------- */ static const struct i2c_device_id mt9v011_id[] = { { "mt9v011", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, mt9v011_id); static struct i2c_driver mt9v011_driver = { .driver = { .name = "mt9v011", }, .probe = mt9v011_probe, .remove = mt9v011_remove, .id_table = mt9v011_id, }; module_i2c_driver(mt9v011_driver);