// SPDX-License-Identifier: GPL-2.0-or-later /* * OKI Semiconductor ML86V7667 video decoder driver * * Author: Vladimir Barinov * Copyright (C) 2013 Cogent Embedded, Inc. * Copyright (C) 2013 Renesas Solutions Corp. */ #include #include #include #include #include #include #include #include #include #define DRV_NAME "ml86v7667" /* Subaddresses */ #define MRA_REG 0x00 /* Mode Register A */ #define MRC_REG 0x02 /* Mode Register C */ #define LUMC_REG 0x0C /* Luminance Control */ #define CLC_REG 0x10 /* Contrast level control */ #define SSEPL_REG 0x11 /* Sync separation level */ #define CHRCA_REG 0x12 /* Chrominance Control A */ #define ACCC_REG 0x14 /* ACC Loop filter & Chrominance control */ #define ACCRC_REG 0x15 /* ACC Reference level control */ #define HUE_REG 0x16 /* Hue control */ #define ADC2_REG 0x1F /* ADC Register 2 */ #define PLLR1_REG 0x20 /* PLL Register 1 */ #define STATUS_REG 0x2C /* STATUS Register */ /* Mode Register A register bits */ #define MRA_OUTPUT_MODE_MASK (3 << 6) #define MRA_ITUR_BT601 (1 << 6) #define MRA_ITUR_BT656 (0 << 6) #define MRA_INPUT_MODE_MASK (7 << 3) #define MRA_PAL_BT601 (4 << 3) #define MRA_NTSC_BT601 (0 << 3) #define MRA_REGISTER_MODE (1 << 0) /* Mode Register C register bits */ #define MRC_AUTOSELECT (1 << 7) /* Luminance Control register bits */ #define LUMC_ONOFF_SHIFT 7 #define LUMC_ONOFF_MASK (1 << 7) /* Contrast level control register bits */ #define CLC_CONTRAST_ONOFF (1 << 7) #define CLC_CONTRAST_MASK 0x0F /* Sync separation level register bits */ #define SSEPL_LUMINANCE_ONOFF (1 << 7) #define SSEPL_LUMINANCE_MASK 0x7F /* Chrominance Control A register bits */ #define CHRCA_MODE_SHIFT 6 #define CHRCA_MODE_MASK (1 << 6) /* ACC Loop filter & Chrominance control register bits */ #define ACCC_CHROMA_CR_SHIFT 3 #define ACCC_CHROMA_CR_MASK (7 << 3) #define ACCC_CHROMA_CB_SHIFT 0 #define ACCC_CHROMA_CB_MASK (7 << 0) /* ACC Reference level control register bits */ #define ACCRC_CHROMA_MASK 0xfc #define ACCRC_CHROMA_SHIFT 2 /* ADC Register 2 register bits */ #define ADC2_CLAMP_VOLTAGE_MASK (7 << 1) #define ADC2_CLAMP_VOLTAGE(n) ((n & 7) << 1) /* PLL Register 1 register bits */ #define PLLR1_FIXED_CLOCK (1 << 7) /* STATUS Register register bits */ #define STATUS_HLOCK_DETECT (1 << 3) #define STATUS_NTSCPAL (1 << 2) struct ml86v7667_priv { struct v4l2_subdev sd; struct v4l2_ctrl_handler hdl; v4l2_std_id std; }; static inline struct ml86v7667_priv *to_ml86v7667(struct v4l2_subdev *subdev) { return container_of(subdev, struct ml86v7667_priv, sd); } static inline struct v4l2_subdev *to_sd(struct v4l2_ctrl *ctrl) { return &container_of(ctrl->handler, struct ml86v7667_priv, hdl)->sd; } static int ml86v7667_mask_set(struct i2c_client *client, const u8 reg, const u8 mask, const u8 data) { int val = i2c_smbus_read_byte_data(client, reg); if (val < 0) return val; val = (val & ~mask) | (data & mask); return i2c_smbus_write_byte_data(client, reg, val); } static int ml86v7667_s_ctrl(struct v4l2_ctrl *ctrl) { struct v4l2_subdev *sd = to_sd(ctrl); struct i2c_client *client = v4l2_get_subdevdata(sd); int ret = -EINVAL; switch (ctrl->id) { case V4L2_CID_BRIGHTNESS: ret = ml86v7667_mask_set(client, SSEPL_REG, SSEPL_LUMINANCE_MASK, ctrl->val); break; case V4L2_CID_CONTRAST: ret = ml86v7667_mask_set(client, CLC_REG, CLC_CONTRAST_MASK, ctrl->val); break; case V4L2_CID_CHROMA_GAIN: ret = ml86v7667_mask_set(client, ACCRC_REG, ACCRC_CHROMA_MASK, ctrl->val << ACCRC_CHROMA_SHIFT); break; case V4L2_CID_HUE: ret = ml86v7667_mask_set(client, HUE_REG, ~0, ctrl->val); break; case V4L2_CID_RED_BALANCE: ret = ml86v7667_mask_set(client, ACCC_REG, ACCC_CHROMA_CR_MASK, ctrl->val << ACCC_CHROMA_CR_SHIFT); break; case V4L2_CID_BLUE_BALANCE: ret = ml86v7667_mask_set(client, ACCC_REG, ACCC_CHROMA_CB_MASK, ctrl->val << ACCC_CHROMA_CB_SHIFT); break; case V4L2_CID_SHARPNESS: ret = ml86v7667_mask_set(client, LUMC_REG, LUMC_ONOFF_MASK, ctrl->val << LUMC_ONOFF_SHIFT); break; case V4L2_CID_COLOR_KILLER: ret = ml86v7667_mask_set(client, CHRCA_REG, CHRCA_MODE_MASK, ctrl->val << CHRCA_MODE_SHIFT); break; } return ret; } static int ml86v7667_querystd(struct v4l2_subdev *sd, v4l2_std_id *std) { struct i2c_client *client = v4l2_get_subdevdata(sd); int status; status = i2c_smbus_read_byte_data(client, STATUS_REG); if (status < 0) return status; if (status & STATUS_HLOCK_DETECT) *std &= status & STATUS_NTSCPAL ? V4L2_STD_625_50 : V4L2_STD_525_60; else *std = V4L2_STD_UNKNOWN; return 0; } static int ml86v7667_g_input_status(struct v4l2_subdev *sd, u32 *status) { struct i2c_client *client = v4l2_get_subdevdata(sd); int status_reg; status_reg = i2c_smbus_read_byte_data(client, STATUS_REG); if (status_reg < 0) return status_reg; *status = status_reg & STATUS_HLOCK_DETECT ? 0 : V4L2_IN_ST_NO_SIGNAL; return 0; } static int ml86v7667_enum_mbus_code(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_mbus_code_enum *code) { if (code->pad || code->index > 0) return -EINVAL; code->code = MEDIA_BUS_FMT_YUYV8_2X8; return 0; } static int ml86v7667_fill_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_format *format) { struct ml86v7667_priv *priv = to_ml86v7667(sd); struct v4l2_mbus_framefmt *fmt = &format->format; if (format->pad) return -EINVAL; fmt->code = MEDIA_BUS_FMT_YUYV8_2X8; fmt->colorspace = V4L2_COLORSPACE_SMPTE170M; /* The top field is always transferred first by the chip */ fmt->field = V4L2_FIELD_INTERLACED_TB; fmt->width = 720; fmt->height = priv->std & V4L2_STD_525_60 ? 480 : 576; return 0; } static int ml86v7667_get_mbus_config(struct v4l2_subdev *sd, unsigned int pad, struct v4l2_mbus_config *cfg) { cfg->type = V4L2_MBUS_BT656; cfg->bus.parallel.flags = V4L2_MBUS_MASTER | V4L2_MBUS_PCLK_SAMPLE_RISING | V4L2_MBUS_DATA_ACTIVE_HIGH; return 0; } static int ml86v7667_g_std(struct v4l2_subdev *sd, v4l2_std_id *std) { struct ml86v7667_priv *priv = to_ml86v7667(sd); *std = priv->std; return 0; } static int ml86v7667_s_std(struct v4l2_subdev *sd, v4l2_std_id std) { struct ml86v7667_priv *priv = to_ml86v7667(sd); struct i2c_client *client = v4l2_get_subdevdata(&priv->sd); int ret; u8 mode; /* PAL/NTSC ITU-R BT.601 input mode */ mode = std & V4L2_STD_525_60 ? MRA_NTSC_BT601 : MRA_PAL_BT601; ret = ml86v7667_mask_set(client, MRA_REG, MRA_INPUT_MODE_MASK, mode); if (ret < 0) return ret; priv->std = std; return 0; } #ifdef CONFIG_VIDEO_ADV_DEBUG static int ml86v7667_g_register(struct v4l2_subdev *sd, struct v4l2_dbg_register *reg) { struct i2c_client *client = v4l2_get_subdevdata(sd); int ret; ret = i2c_smbus_read_byte_data(client, (u8)reg->reg); if (ret < 0) return ret; reg->val = ret; reg->size = sizeof(u8); return 0; } static int ml86v7667_s_register(struct v4l2_subdev *sd, const struct v4l2_dbg_register *reg) { struct i2c_client *client = v4l2_get_subdevdata(sd); return i2c_smbus_write_byte_data(client, (u8)reg->reg, (u8)reg->val); } #endif static const struct v4l2_ctrl_ops ml86v7667_ctrl_ops = { .s_ctrl = ml86v7667_s_ctrl, }; static const struct v4l2_subdev_video_ops ml86v7667_subdev_video_ops = { .g_std = ml86v7667_g_std, .s_std = ml86v7667_s_std, .querystd = ml86v7667_querystd, .g_input_status = ml86v7667_g_input_status, }; static const struct v4l2_subdev_pad_ops ml86v7667_subdev_pad_ops = { .enum_mbus_code = ml86v7667_enum_mbus_code, .get_fmt = ml86v7667_fill_fmt, .set_fmt = ml86v7667_fill_fmt, .get_mbus_config = ml86v7667_get_mbus_config, }; static const struct v4l2_subdev_core_ops ml86v7667_subdev_core_ops = { #ifdef CONFIG_VIDEO_ADV_DEBUG .g_register = ml86v7667_g_register, .s_register = ml86v7667_s_register, #endif }; static const struct v4l2_subdev_ops ml86v7667_subdev_ops = { .core = &ml86v7667_subdev_core_ops, .video = &ml86v7667_subdev_video_ops, .pad = &ml86v7667_subdev_pad_ops, }; static int ml86v7667_init(struct ml86v7667_priv *priv) { struct i2c_client *client = v4l2_get_subdevdata(&priv->sd); int val; int ret; /* BT.656-4 output mode, register mode */ ret = ml86v7667_mask_set(client, MRA_REG, MRA_OUTPUT_MODE_MASK | MRA_REGISTER_MODE, MRA_ITUR_BT656 | MRA_REGISTER_MODE); /* PLL circuit fixed clock, 32MHz */ ret |= ml86v7667_mask_set(client, PLLR1_REG, PLLR1_FIXED_CLOCK, PLLR1_FIXED_CLOCK); /* ADC2 clamping voltage maximum */ ret |= ml86v7667_mask_set(client, ADC2_REG, ADC2_CLAMP_VOLTAGE_MASK, ADC2_CLAMP_VOLTAGE(7)); /* enable luminance function */ ret |= ml86v7667_mask_set(client, SSEPL_REG, SSEPL_LUMINANCE_ONOFF, SSEPL_LUMINANCE_ONOFF); /* enable contrast function */ ret |= ml86v7667_mask_set(client, CLC_REG, CLC_CONTRAST_ONOFF, 0); /* * PAL/NTSC autodetection is enabled after reset, * set the autodetected std in manual std mode and * disable autodetection */ val = i2c_smbus_read_byte_data(client, STATUS_REG); if (val < 0) return val; priv->std = val & STATUS_NTSCPAL ? V4L2_STD_625_50 : V4L2_STD_525_60; ret |= ml86v7667_mask_set(client, MRC_REG, MRC_AUTOSELECT, 0); val = priv->std & V4L2_STD_525_60 ? MRA_NTSC_BT601 : MRA_PAL_BT601; ret |= ml86v7667_mask_set(client, MRA_REG, MRA_INPUT_MODE_MASK, val); return ret; } static int ml86v7667_probe(struct i2c_client *client) { struct ml86v7667_priv *priv; int ret; if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA)) return -EIO; priv = devm_kzalloc(&client->dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; v4l2_i2c_subdev_init(&priv->sd, client, &ml86v7667_subdev_ops); v4l2_ctrl_handler_init(&priv->hdl, 8); v4l2_ctrl_new_std(&priv->hdl, &ml86v7667_ctrl_ops, V4L2_CID_BRIGHTNESS, -64, 63, 1, 0); v4l2_ctrl_new_std(&priv->hdl, &ml86v7667_ctrl_ops, V4L2_CID_CONTRAST, -8, 7, 1, 0); v4l2_ctrl_new_std(&priv->hdl, &ml86v7667_ctrl_ops, V4L2_CID_CHROMA_GAIN, -32, 31, 1, 0); v4l2_ctrl_new_std(&priv->hdl, &ml86v7667_ctrl_ops, V4L2_CID_HUE, -128, 127, 1, 0); v4l2_ctrl_new_std(&priv->hdl, &ml86v7667_ctrl_ops, V4L2_CID_RED_BALANCE, -4, 3, 1, 0); v4l2_ctrl_new_std(&priv->hdl, &ml86v7667_ctrl_ops, V4L2_CID_BLUE_BALANCE, -4, 3, 1, 0); v4l2_ctrl_new_std(&priv->hdl, &ml86v7667_ctrl_ops, V4L2_CID_SHARPNESS, 0, 1, 1, 0); v4l2_ctrl_new_std(&priv->hdl, &ml86v7667_ctrl_ops, V4L2_CID_COLOR_KILLER, 0, 1, 1, 0); priv->sd.ctrl_handler = &priv->hdl; ret = priv->hdl.error; if (ret) goto cleanup; v4l2_ctrl_handler_setup(&priv->hdl); ret = ml86v7667_init(priv); if (ret) goto cleanup; v4l_info(client, "chip found @ 0x%02x (%s)\n", client->addr, client->adapter->name); return 0; cleanup: v4l2_ctrl_handler_free(&priv->hdl); v4l2_device_unregister_subdev(&priv->sd); v4l_err(client, "failed to probe @ 0x%02x (%s)\n", client->addr, client->adapter->name); return ret; } static void ml86v7667_remove(struct i2c_client *client) { struct v4l2_subdev *sd = i2c_get_clientdata(client); struct ml86v7667_priv *priv = to_ml86v7667(sd); v4l2_ctrl_handler_free(&priv->hdl); v4l2_device_unregister_subdev(&priv->sd); } static const struct i2c_device_id ml86v7667_id[] = { {DRV_NAME, 0}, {}, }; MODULE_DEVICE_TABLE(i2c, ml86v7667_id); static struct i2c_driver ml86v7667_i2c_driver = { .driver = { .name = DRV_NAME, }, .probe = ml86v7667_probe, .remove = ml86v7667_remove, .id_table = ml86v7667_id, }; module_i2c_driver(ml86v7667_i2c_driver); MODULE_DESCRIPTION("OKI Semiconductor ML86V7667 video decoder driver"); MODULE_AUTHOR("Vladimir Barinov"); MODULE_LICENSE("GPL");