// SPDX-License-Identifier: GPL-2.0-only /* * Aptina Sensor PLL Configuration * * Copyright (C) 2012 Laurent Pinchart */ #include #include #include #include #include "aptina-pll.h" int aptina_pll_calculate(struct device *dev, const struct aptina_pll_limits *limits, struct aptina_pll *pll) { unsigned int mf_min; unsigned int mf_max; unsigned int p1_min; unsigned int p1_max; unsigned int p1; unsigned int div; dev_dbg(dev, "PLL: ext clock %u pix clock %u\n", pll->ext_clock, pll->pix_clock); if (pll->ext_clock < limits->ext_clock_min || pll->ext_clock > limits->ext_clock_max) { dev_err(dev, "pll: invalid external clock frequency.\n"); return -EINVAL; } if (pll->pix_clock == 0 || pll->pix_clock > limits->pix_clock_max) { dev_err(dev, "pll: invalid pixel clock frequency.\n"); return -EINVAL; } /* Compute the multiplier M and combined N*P1 divisor. */ div = gcd(pll->pix_clock, pll->ext_clock); pll->m = pll->pix_clock / div; div = pll->ext_clock / div; /* We now have the smallest M and N*P1 values that will result in the * desired pixel clock frequency, but they might be out of the valid * range. Compute the factor by which we should multiply them given the * following constraints: * * - minimum/maximum multiplier * - minimum/maximum multiplier output clock frequency assuming the * minimum/maximum N value * - minimum/maximum combined N*P1 divisor */ mf_min = DIV_ROUND_UP(limits->m_min, pll->m); mf_min = max(mf_min, limits->out_clock_min / (pll->ext_clock / limits->n_min * pll->m)); mf_min = max(mf_min, limits->n_min * limits->p1_min / div); mf_max = limits->m_max / pll->m; mf_max = min(mf_max, limits->out_clock_max / (pll->ext_clock / limits->n_max * pll->m)); mf_max = min(mf_max, DIV_ROUND_UP(limits->n_max * limits->p1_max, div)); dev_dbg(dev, "pll: mf min %u max %u\n", mf_min, mf_max); if (mf_min > mf_max) { dev_err(dev, "pll: no valid combined N*P1 divisor.\n"); return -EINVAL; } /* * We're looking for the highest acceptable P1 value for which a * multiplier factor MF exists that fulfills the following conditions: * * 1. p1 is in the [p1_min, p1_max] range given by the limits and is * even * 2. mf is in the [mf_min, mf_max] range computed above * 3. div * mf is a multiple of p1, in order to compute * n = div * mf / p1 * m = pll->m * mf * 4. the internal clock frequency, given by ext_clock / n, is in the * [int_clock_min, int_clock_max] range given by the limits * 5. the output clock frequency, given by ext_clock / n * m, is in the * [out_clock_min, out_clock_max] range given by the limits * * The first naive approach is to iterate over all p1 values acceptable * according to (1) and all mf values acceptable according to (2), and * stop at the first combination that fulfills (3), (4) and (5). This * has a O(n^2) complexity. * * Instead of iterating over all mf values in the [mf_min, mf_max] range * we can compute the mf increment between two acceptable values * according to (3) with * * mf_inc = p1 / gcd(div, p1) (6) * * and round the minimum up to the nearest multiple of mf_inc. This will * restrict the number of mf values to be checked. * * Furthermore, conditions (4) and (5) only restrict the range of * acceptable p1 and mf values by modifying the minimum and maximum * limits. (5) can be expressed as * * ext_clock / (div * mf / p1) * m * mf >= out_clock_min * ext_clock / (div * mf / p1) * m * mf <= out_clock_max * * or * * p1 >= out_clock_min * div / (ext_clock * m) (7) * p1 <= out_clock_max * div / (ext_clock * m) * * Similarly, (4) can be expressed as * * mf >= ext_clock * p1 / (int_clock_max * div) (8) * mf <= ext_clock * p1 / (int_clock_min * div) * * We can thus iterate over the restricted p1 range defined by the * combination of (1) and (7), and then compute the restricted mf range * defined by the combination of (2), (6) and (8). If the resulting mf * range is not empty, any value in the mf range is acceptable. We thus * select the mf lwoer bound and the corresponding p1 value. */ if (limits->p1_min == 0) { dev_err(dev, "pll: P1 minimum value must be >0.\n"); return -EINVAL; } p1_min = max(limits->p1_min, DIV_ROUND_UP(limits->out_clock_min * div, pll->ext_clock * pll->m)); p1_max = min(limits->p1_max, limits->out_clock_max * div / (pll->ext_clock * pll->m)); for (p1 = p1_max & ~1; p1 >= p1_min; p1 -= 2) { unsigned int mf_inc = p1 / gcd(div, p1); unsigned int mf_high; unsigned int mf_low; mf_low = roundup(max(mf_min, DIV_ROUND_UP(pll->ext_clock * p1, limits->int_clock_max * div)), mf_inc); mf_high = min(mf_max, pll->ext_clock * p1 / (limits->int_clock_min * div)); if (mf_low > mf_high) continue; pll->n = div * mf_low / p1; pll->m *= mf_low; pll->p1 = p1; dev_dbg(dev, "PLL: N %u M %u P1 %u\n", pll->n, pll->m, pll->p1); return 0; } dev_err(dev, "pll: no valid N and P1 divisors found.\n"); return -EINVAL; } EXPORT_SYMBOL_GPL(aptina_pll_calculate); MODULE_DESCRIPTION("Aptina PLL Helpers"); MODULE_AUTHOR("Laurent Pinchart "); MODULE_LICENSE("GPL v2");