// SPDX-License-Identifier: GPL-2.0-only /* * Fujitu mb86a20s ISDB-T/ISDB-Tsb Module driver * * Copyright (C) 2010-2013 Mauro Carvalho Chehab * Copyright (C) 2009-2010 Douglas Landgraf */ #include #include #include #include "mb86a20s.h" #define NUM_LAYERS 3 enum mb86a20s_bandwidth { MB86A20S_13SEG = 0, MB86A20S_13SEG_PARTIAL = 1, MB86A20S_1SEG = 2, MB86A20S_3SEG = 3, }; static u8 mb86a20s_subchannel[] = { 0xb0, 0xc0, 0xd0, 0xe0, 0xf0, 0x00, 0x10, 0x20, }; struct mb86a20s_state { struct i2c_adapter *i2c; const struct mb86a20s_config *config; u32 last_frequency; struct dvb_frontend frontend; u32 if_freq; enum mb86a20s_bandwidth bw; bool inversion; u32 subchannel; u32 estimated_rate[NUM_LAYERS]; unsigned long get_strength_time; bool need_init; }; struct regdata { u8 reg; u8 data; }; #define BER_SAMPLING_RATE 1 /* Seconds */ /* * Initialization sequence: Use whatevere default values that PV SBTVD * does on its initialisation, obtained via USB snoop */ static struct regdata mb86a20s_init1[] = { { 0x70, 0x0f }, { 0x70, 0xff }, { 0x08, 0x01 }, { 0x50, 0xd1 }, { 0x51, 0x20 }, }; static struct regdata mb86a20s_init2[] = { { 0x50, 0xd1 }, { 0x51, 0x22 }, { 0x39, 0x01 }, { 0x71, 0x00 }, { 0x3b, 0x21 }, { 0x3c, 0x3a }, { 0x01, 0x0d }, { 0x04, 0x08 }, { 0x05, 0x05 }, { 0x04, 0x0e }, { 0x05, 0x00 }, { 0x04, 0x0f }, { 0x05, 0x14 }, { 0x04, 0x0b }, { 0x05, 0x8c }, { 0x04, 0x00 }, { 0x05, 0x00 }, { 0x04, 0x01 }, { 0x05, 0x07 }, { 0x04, 0x02 }, { 0x05, 0x0f }, { 0x04, 0x03 }, { 0x05, 0xa0 }, { 0x04, 0x09 }, { 0x05, 0x00 }, { 0x04, 0x0a }, { 0x05, 0xff }, { 0x04, 0x27 }, { 0x05, 0x64 }, { 0x04, 0x28 }, { 0x05, 0x00 }, { 0x04, 0x1e }, { 0x05, 0xff }, { 0x04, 0x29 }, { 0x05, 0x0a }, { 0x04, 0x32 }, { 0x05, 0x0a }, { 0x04, 0x14 }, { 0x05, 0x02 }, { 0x04, 0x04 }, { 0x05, 0x00 }, { 0x04, 0x05 }, { 0x05, 0x22 }, { 0x04, 0x06 }, { 0x05, 0x0e }, { 0x04, 0x07 }, { 0x05, 0xd8 }, { 0x04, 0x12 }, { 0x05, 0x00 }, { 0x04, 0x13 }, { 0x05, 0xff }, /* * On this demod, when the bit count reaches the count below, * it collects the bit error count. The bit counters are initialized * to 65535 here. This warrants that all of them will be quickly * calculated when device gets locked. As TMCC is parsed, the values * will be adjusted later in the driver's code. */ { 0x52, 0x01 }, /* Turn on BER before Viterbi */ { 0x50, 0xa7 }, { 0x51, 0x00 }, { 0x50, 0xa8 }, { 0x51, 0xff }, { 0x50, 0xa9 }, { 0x51, 0xff }, { 0x50, 0xaa }, { 0x51, 0x00 }, { 0x50, 0xab }, { 0x51, 0xff }, { 0x50, 0xac }, { 0x51, 0xff }, { 0x50, 0xad }, { 0x51, 0x00 }, { 0x50, 0xae }, { 0x51, 0xff }, { 0x50, 0xaf }, { 0x51, 0xff }, /* * On this demod, post BER counts blocks. When the count reaches the * value below, it collects the block error count. The block counters * are initialized to 127 here. This warrants that all of them will be * quickly calculated when device gets locked. As TMCC is parsed, the * values will be adjusted later in the driver's code. */ { 0x5e, 0x07 }, /* Turn on BER after Viterbi */ { 0x50, 0xdc }, { 0x51, 0x00 }, { 0x50, 0xdd }, { 0x51, 0x7f }, { 0x50, 0xde }, { 0x51, 0x00 }, { 0x50, 0xdf }, { 0x51, 0x7f }, { 0x50, 0xe0 }, { 0x51, 0x00 }, { 0x50, 0xe1 }, { 0x51, 0x7f }, /* * On this demod, when the block count reaches the count below, * it collects the block error count. The block counters are initialized * to 127 here. This warrants that all of them will be quickly * calculated when device gets locked. As TMCC is parsed, the values * will be adjusted later in the driver's code. */ { 0x50, 0xb0 }, { 0x51, 0x07 }, /* Enable PER */ { 0x50, 0xb2 }, { 0x51, 0x00 }, { 0x50, 0xb3 }, { 0x51, 0x7f }, { 0x50, 0xb4 }, { 0x51, 0x00 }, { 0x50, 0xb5 }, { 0x51, 0x7f }, { 0x50, 0xb6 }, { 0x51, 0x00 }, { 0x50, 0xb7 }, { 0x51, 0x7f }, { 0x50, 0x50 }, { 0x51, 0x02 }, /* MER manual mode */ { 0x50, 0x51 }, { 0x51, 0x04 }, /* MER symbol 4 */ { 0x45, 0x04 }, /* CN symbol 4 */ { 0x48, 0x04 }, /* CN manual mode */ { 0x50, 0xd5 }, { 0x51, 0x01 }, { 0x50, 0xd6 }, { 0x51, 0x1f }, { 0x50, 0xd2 }, { 0x51, 0x03 }, { 0x50, 0xd7 }, { 0x51, 0x3f }, { 0x1c, 0x01 }, { 0x28, 0x06 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x03 }, { 0x28, 0x07 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0d }, { 0x28, 0x08 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x02 }, { 0x28, 0x09 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x01 }, { 0x28, 0x0a }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x21 }, { 0x28, 0x0b }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x29 }, { 0x28, 0x0c }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x16 }, { 0x28, 0x0d }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x31 }, { 0x28, 0x0e }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0e }, { 0x28, 0x0f }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x4e }, { 0x28, 0x10 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x46 }, { 0x28, 0x11 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0f }, { 0x28, 0x12 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x56 }, { 0x28, 0x13 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x35 }, { 0x28, 0x14 }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0xbe }, { 0x28, 0x15 }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0x84 }, { 0x28, 0x16 }, { 0x29, 0x00 }, { 0x2a, 0x03 }, { 0x2b, 0xee }, { 0x28, 0x17 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x98 }, { 0x28, 0x18 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x9f }, { 0x28, 0x19 }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0xb2 }, { 0x28, 0x1a }, { 0x29, 0x00 }, { 0x2a, 0x06 }, { 0x2b, 0xc2 }, { 0x28, 0x1b }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0x4a }, { 0x28, 0x1c }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0xbc }, { 0x28, 0x1d }, { 0x29, 0x00 }, { 0x2a, 0x04 }, { 0x2b, 0xba }, { 0x28, 0x1e }, { 0x29, 0x00 }, { 0x2a, 0x06 }, { 0x2b, 0x14 }, { 0x50, 0x1e }, { 0x51, 0x5d }, { 0x50, 0x22 }, { 0x51, 0x00 }, { 0x50, 0x23 }, { 0x51, 0xc8 }, { 0x50, 0x24 }, { 0x51, 0x00 }, { 0x50, 0x25 }, { 0x51, 0xf0 }, { 0x50, 0x26 }, { 0x51, 0x00 }, { 0x50, 0x27 }, { 0x51, 0xc3 }, { 0x50, 0x39 }, { 0x51, 0x02 }, { 0x50, 0xd5 }, { 0x51, 0x01 }, { 0xd0, 0x00 }, }; static struct regdata mb86a20s_reset_reception[] = { { 0x70, 0xf0 }, { 0x70, 0xff }, { 0x08, 0x01 }, { 0x08, 0x00 }, }; static struct regdata mb86a20s_per_ber_reset[] = { { 0x53, 0x00 }, /* pre BER Counter reset */ { 0x53, 0x07 }, { 0x5f, 0x00 }, /* post BER Counter reset */ { 0x5f, 0x07 }, { 0x50, 0xb1 }, /* PER Counter reset */ { 0x51, 0x07 }, { 0x51, 0x00 }, }; /* * I2C read/write functions and macros */ static int mb86a20s_i2c_writereg(struct mb86a20s_state *state, u8 i2c_addr, u8 reg, u8 data) { u8 buf[] = { reg, data }; struct i2c_msg msg = { .addr = i2c_addr, .flags = 0, .buf = buf, .len = 2 }; int rc; rc = i2c_transfer(state->i2c, &msg, 1); if (rc != 1) { dev_err(&state->i2c->dev, "%s: writereg error (rc == %i, reg == 0x%02x, data == 0x%02x)\n", __func__, rc, reg, data); return rc; } return 0; } static int mb86a20s_i2c_writeregdata(struct mb86a20s_state *state, u8 i2c_addr, struct regdata *rd, int size) { int i, rc; for (i = 0; i < size; i++) { rc = mb86a20s_i2c_writereg(state, i2c_addr, rd[i].reg, rd[i].data); if (rc < 0) return rc; } return 0; } static int mb86a20s_i2c_readreg(struct mb86a20s_state *state, u8 i2c_addr, u8 reg) { u8 val; int rc; struct i2c_msg msg[] = { { .addr = i2c_addr, .flags = 0, .buf = ®, .len = 1 }, { .addr = i2c_addr, .flags = I2C_M_RD, .buf = &val, .len = 1 } }; rc = i2c_transfer(state->i2c, msg, 2); if (rc != 2) { dev_err(&state->i2c->dev, "%s: reg=0x%x (error=%d)\n", __func__, reg, rc); return (rc < 0) ? rc : -EIO; } return val; } #define mb86a20s_readreg(state, reg) \ mb86a20s_i2c_readreg(state, state->config->demod_address, reg) #define mb86a20s_writereg(state, reg, val) \ mb86a20s_i2c_writereg(state, state->config->demod_address, reg, val) #define mb86a20s_writeregdata(state, regdata) \ mb86a20s_i2c_writeregdata(state, state->config->demod_address, \ regdata, ARRAY_SIZE(regdata)) /* * Ancillary internal routines (likely compiled inlined) * * The functions below assume that gateway lock has already obtained */ static int mb86a20s_read_status(struct dvb_frontend *fe, enum fe_status *status) { struct mb86a20s_state *state = fe->demodulator_priv; int val; *status = 0; val = mb86a20s_readreg(state, 0x0a); if (val < 0) return val; val &= 0xf; if (val >= 2) *status |= FE_HAS_SIGNAL; if (val >= 4) *status |= FE_HAS_CARRIER; if (val >= 5) *status |= FE_HAS_VITERBI; if (val >= 7) *status |= FE_HAS_SYNC; /* * Actually, on state S8, it starts receiving TS, but the TS * output is only on normal state after the transition to S9. */ if (val >= 9) *status |= FE_HAS_LOCK; dev_dbg(&state->i2c->dev, "%s: Status = 0x%02x (state = %d)\n", __func__, *status, val); return val; } static int mb86a20s_read_signal_strength(struct dvb_frontend *fe) { struct mb86a20s_state *state = fe->demodulator_priv; struct dtv_frontend_properties *c = &fe->dtv_property_cache; int rc; unsigned rf_max, rf_min, rf; if (state->get_strength_time && (!time_after(jiffies, state->get_strength_time))) return c->strength.stat[0].uvalue; /* Reset its value if an error happen */ c->strength.stat[0].uvalue = 0; /* Does a binary search to get RF strength */ rf_max = 0xfff; rf_min = 0; do { rf = (rf_max + rf_min) / 2; rc = mb86a20s_writereg(state, 0x04, 0x1f); if (rc < 0) return rc; rc = mb86a20s_writereg(state, 0x05, rf >> 8); if (rc < 0) return rc; rc = mb86a20s_writereg(state, 0x04, 0x20); if (rc < 0) return rc; rc = mb86a20s_writereg(state, 0x05, rf); if (rc < 0) return rc; rc = mb86a20s_readreg(state, 0x02); if (rc < 0) return rc; if (rc & 0x08) rf_min = (rf_max + rf_min) / 2; else rf_max = (rf_max + rf_min) / 2; if (rf_max - rf_min < 4) { rf = (rf_max + rf_min) / 2; /* Rescale it from 2^12 (4096) to 2^16 */ rf = rf << (16 - 12); if (rf) rf |= (1 << 12) - 1; dev_dbg(&state->i2c->dev, "%s: signal strength = %d (%d < RF=%d < %d)\n", __func__, rf, rf_min, rf >> 4, rf_max); c->strength.stat[0].uvalue = rf; state->get_strength_time = jiffies + msecs_to_jiffies(1000); return 0; } } while (1); } static int mb86a20s_get_modulation(struct mb86a20s_state *state, unsigned layer) { int rc; static unsigned char reg[] = { [0] = 0x86, /* Layer A */ [1] = 0x8a, /* Layer B */ [2] = 0x8e, /* Layer C */ }; if (layer >= ARRAY_SIZE(reg)) return -EINVAL; rc = mb86a20s_writereg(state, 0x6d, reg[layer]); if (rc < 0) return rc; rc = mb86a20s_readreg(state, 0x6e); if (rc < 0) return rc; switch ((rc >> 4) & 0x07) { case 0: return DQPSK; case 1: return QPSK; case 2: return QAM_16; case 3: return QAM_64; default: return QAM_AUTO; } } static int mb86a20s_get_fec(struct mb86a20s_state *state, unsigned layer) { int rc; static unsigned char reg[] = { [0] = 0x87, /* Layer A */ [1] = 0x8b, /* Layer B */ [2] = 0x8f, /* Layer C */ }; if (layer >= ARRAY_SIZE(reg)) return -EINVAL; rc = mb86a20s_writereg(state, 0x6d, reg[layer]); if (rc < 0) return rc; rc = mb86a20s_readreg(state, 0x6e); if (rc < 0) return rc; switch ((rc >> 4) & 0x07) { case 0: return FEC_1_2; case 1: return FEC_2_3; case 2: return FEC_3_4; case 3: return FEC_5_6; case 4: return FEC_7_8; default: return FEC_AUTO; } } static int mb86a20s_get_interleaving(struct mb86a20s_state *state, unsigned layer) { int rc; static const int interleaving[] = { 0, 1, 2, 4, 8 }; static const unsigned char reg[] = { [0] = 0x88, /* Layer A */ [1] = 0x8c, /* Layer B */ [2] = 0x90, /* Layer C */ }; if (layer >= ARRAY_SIZE(reg)) return -EINVAL; rc = mb86a20s_writereg(state, 0x6d, reg[layer]); if (rc < 0) return rc; rc = mb86a20s_readreg(state, 0x6e); if (rc < 0) return rc; return interleaving[(rc >> 4) & 0x07]; } static int mb86a20s_get_segment_count(struct mb86a20s_state *state, unsigned layer) { int rc, count; static unsigned char reg[] = { [0] = 0x89, /* Layer A */ [1] = 0x8d, /* Layer B */ [2] = 0x91, /* Layer C */ }; dev_dbg(&state->i2c->dev, "%s called.\n", __func__); if (layer >= ARRAY_SIZE(reg)) return -EINVAL; rc = mb86a20s_writereg(state, 0x6d, reg[layer]); if (rc < 0) return rc; rc = mb86a20s_readreg(state, 0x6e); if (rc < 0) return rc; count = (rc >> 4) & 0x0f; dev_dbg(&state->i2c->dev, "%s: segments: %d.\n", __func__, count); return count; } static void mb86a20s_reset_frontend_cache(struct dvb_frontend *fe) { struct mb86a20s_state *state = fe->demodulator_priv; struct dtv_frontend_properties *c = &fe->dtv_property_cache; dev_dbg(&state->i2c->dev, "%s called.\n", __func__); /* Fixed parameters */ c->delivery_system = SYS_ISDBT; c->bandwidth_hz = 6000000; /* Initialize values that will be later autodetected */ c->isdbt_layer_enabled = 0; c->transmission_mode = TRANSMISSION_MODE_AUTO; c->guard_interval = GUARD_INTERVAL_AUTO; c->isdbt_sb_mode = 0; c->isdbt_sb_segment_count = 0; } /* * Estimates the bit rate using the per-segment bit rate given by * ABNT/NBR 15601 spec (table 4). */ static const u32 isdbt_rate[3][5][4] = { { /* DQPSK/QPSK */ { 280850, 312060, 330420, 340430 }, /* 1/2 */ { 374470, 416080, 440560, 453910 }, /* 2/3 */ { 421280, 468090, 495630, 510650 }, /* 3/4 */ { 468090, 520100, 550700, 567390 }, /* 5/6 */ { 491500, 546110, 578230, 595760 }, /* 7/8 */ }, { /* QAM16 */ { 561710, 624130, 660840, 680870 }, /* 1/2 */ { 748950, 832170, 881120, 907820 }, /* 2/3 */ { 842570, 936190, 991260, 1021300 }, /* 3/4 */ { 936190, 1040210, 1101400, 1134780 }, /* 5/6 */ { 983000, 1092220, 1156470, 1191520 }, /* 7/8 */ }, { /* QAM64 */ { 842570, 936190, 991260, 1021300 }, /* 1/2 */ { 1123430, 1248260, 1321680, 1361740 }, /* 2/3 */ { 1263860, 1404290, 1486900, 1531950 }, /* 3/4 */ { 1404290, 1560320, 1652110, 1702170 }, /* 5/6 */ { 1474500, 1638340, 1734710, 1787280 }, /* 7/8 */ } }; static u32 isdbt_layer_min_bitrate(struct dtv_frontend_properties *c, u32 layer) { int mod, fec, guard; /* * If modulation/fec/guard is not detected, the default is * to consider the lowest bit rate, to avoid taking too long time * to get BER. */ switch (c->layer[layer].modulation) { case DQPSK: case QPSK: default: mod = 0; break; case QAM_16: mod = 1; break; case QAM_64: mod = 2; break; } switch (c->layer[layer].fec) { default: case FEC_1_2: case FEC_AUTO: fec = 0; break; case FEC_2_3: fec = 1; break; case FEC_3_4: fec = 2; break; case FEC_5_6: fec = 3; break; case FEC_7_8: fec = 4; break; } switch (c->guard_interval) { default: case GUARD_INTERVAL_1_4: guard = 0; break; case GUARD_INTERVAL_1_8: guard = 1; break; case GUARD_INTERVAL_1_16: guard = 2; break; case GUARD_INTERVAL_1_32: guard = 3; break; } return isdbt_rate[mod][fec][guard] * c->layer[layer].segment_count; } static int mb86a20s_get_frontend(struct dvb_frontend *fe) { struct mb86a20s_state *state = fe->demodulator_priv; struct dtv_frontend_properties *c = &fe->dtv_property_cache; int layer, rc, rate, counter; dev_dbg(&state->i2c->dev, "%s called.\n", __func__); /* Reset frontend cache to default values */ mb86a20s_reset_frontend_cache(fe); /* Check for partial reception */ rc = mb86a20s_writereg(state, 0x6d, 0x85); if (rc < 0) return rc; rc = mb86a20s_readreg(state, 0x6e); if (rc < 0) return rc; c->isdbt_partial_reception = (rc & 0x10) ? 1 : 0; /* Get per-layer data */ for (layer = 0; layer < NUM_LAYERS; layer++) { dev_dbg(&state->i2c->dev, "%s: getting data for layer %c.\n", __func__, 'A' + layer); rc = mb86a20s_get_segment_count(state, layer); if (rc < 0) goto noperlayer_error; if (rc >= 0 && rc < 14) { c->layer[layer].segment_count = rc; } else { c->layer[layer].segment_count = 0; state->estimated_rate[layer] = 0; continue; } c->isdbt_layer_enabled |= 1 << layer; rc = mb86a20s_get_modulation(state, layer); if (rc < 0) goto noperlayer_error; dev_dbg(&state->i2c->dev, "%s: modulation %d.\n", __func__, rc); c->layer[layer].modulation = rc; rc = mb86a20s_get_fec(state, layer); if (rc < 0) goto noperlayer_error; dev_dbg(&state->i2c->dev, "%s: FEC %d.\n", __func__, rc); c->layer[layer].fec = rc; rc = mb86a20s_get_interleaving(state, layer); if (rc < 0) goto noperlayer_error; dev_dbg(&state->i2c->dev, "%s: interleaving %d.\n", __func__, rc); c->layer[layer].interleaving = rc; rate = isdbt_layer_min_bitrate(c, layer); counter = rate * BER_SAMPLING_RATE; /* Avoids sampling too quickly or to overflow the register */ if (counter < 256) counter = 256; else if (counter > (1 << 24) - 1) counter = (1 << 24) - 1; dev_dbg(&state->i2c->dev, "%s: layer %c bitrate: %d kbps; counter = %d (0x%06x)\n", __func__, 'A' + layer, rate / 1000, counter, counter); state->estimated_rate[layer] = counter; } rc = mb86a20s_writereg(state, 0x6d, 0x84); if (rc < 0) return rc; if ((rc & 0x60) == 0x20) { c->isdbt_sb_mode = 1; /* At least, one segment should exist */ if (!c->isdbt_sb_segment_count) c->isdbt_sb_segment_count = 1; } /* Get transmission mode and guard interval */ rc = mb86a20s_readreg(state, 0x07); if (rc < 0) return rc; c->transmission_mode = TRANSMISSION_MODE_AUTO; if ((rc & 0x60) == 0x20) { /* Only modes 2 and 3 are supported */ switch ((rc >> 2) & 0x03) { case 1: c->transmission_mode = TRANSMISSION_MODE_4K; break; case 2: c->transmission_mode = TRANSMISSION_MODE_8K; break; } } c->guard_interval = GUARD_INTERVAL_AUTO; if (!(rc & 0x10)) { /* Guard interval 1/32 is not supported */ switch (rc & 0x3) { case 0: c->guard_interval = GUARD_INTERVAL_1_4; break; case 1: c->guard_interval = GUARD_INTERVAL_1_8; break; case 2: c->guard_interval = GUARD_INTERVAL_1_16; break; } } return 0; noperlayer_error: /* per-layer info is incomplete; discard all per-layer */ c->isdbt_layer_enabled = 0; return rc; } static int mb86a20s_reset_counters(struct dvb_frontend *fe) { struct mb86a20s_state *state = fe->demodulator_priv; struct dtv_frontend_properties *c = &fe->dtv_property_cache; int rc, val; dev_dbg(&state->i2c->dev, "%s called.\n", __func__); /* Reset the counters, if the channel changed */ if (state->last_frequency != c->frequency) { memset(&c->cnr, 0, sizeof(c->cnr)); memset(&c->pre_bit_error, 0, sizeof(c->pre_bit_error)); memset(&c->pre_bit_count, 0, sizeof(c->pre_bit_count)); memset(&c->post_bit_error, 0, sizeof(c->post_bit_error)); memset(&c->post_bit_count, 0, sizeof(c->post_bit_count)); memset(&c->block_error, 0, sizeof(c->block_error)); memset(&c->block_count, 0, sizeof(c->block_count)); state->last_frequency = c->frequency; } /* Clear status for most stats */ /* BER/PER counter reset */ rc = mb86a20s_writeregdata(state, mb86a20s_per_ber_reset); if (rc < 0) goto err; /* CNR counter reset */ rc = mb86a20s_readreg(state, 0x45); if (rc < 0) goto err; val = rc; rc = mb86a20s_writereg(state, 0x45, val | 0x10); if (rc < 0) goto err; rc = mb86a20s_writereg(state, 0x45, val & 0x6f); if (rc < 0) goto err; /* MER counter reset */ rc = mb86a20s_writereg(state, 0x50, 0x50); if (rc < 0) goto err; rc = mb86a20s_readreg(state, 0x51); if (rc < 0) goto err; val = rc; rc = mb86a20s_writereg(state, 0x51, val | 0x01); if (rc < 0) goto err; rc = mb86a20s_writereg(state, 0x51, val & 0x06); if (rc < 0) goto err; goto ok; err: dev_err(&state->i2c->dev, "%s: Can't reset FE statistics (error %d).\n", __func__, rc); ok: return rc; } static int mb86a20s_get_pre_ber(struct dvb_frontend *fe, unsigned layer, u32 *error, u32 *count) { struct mb86a20s_state *state = fe->demodulator_priv; int rc, val; dev_dbg(&state->i2c->dev, "%s called.\n", __func__); if (layer >= NUM_LAYERS) return -EINVAL; /* Check if the BER measures are already available */ rc = mb86a20s_readreg(state, 0x54); if (rc < 0) return rc; /* Check if data is available for that layer */ if (!(rc & (1 << layer))) { dev_dbg(&state->i2c->dev, "%s: preBER for layer %c is not available yet.\n", __func__, 'A' + layer); return -EBUSY; } /* Read Bit Error Count */ rc = mb86a20s_readreg(state, 0x55 + layer * 3); if (rc < 0) return rc; *error = rc << 16; rc = mb86a20s_readreg(state, 0x56 + layer * 3); if (rc < 0) return rc; *error |= rc << 8; rc = mb86a20s_readreg(state, 0x57 + layer * 3); if (rc < 0) return rc; *error |= rc; dev_dbg(&state->i2c->dev, "%s: bit error before Viterbi for layer %c: %d.\n", __func__, 'A' + layer, *error); /* Read Bit Count */ rc = mb86a20s_writereg(state, 0x50, 0xa7 + layer * 3); if (rc < 0) return rc; rc = mb86a20s_readreg(state, 0x51); if (rc < 0) return rc; *count = rc << 16; rc = mb86a20s_writereg(state, 0x50, 0xa8 + layer * 3); if (rc < 0) return rc; rc = mb86a20s_readreg(state, 0x51); if (rc < 0) return rc; *count |= rc << 8; rc = mb86a20s_writereg(state, 0x50, 0xa9 + layer * 3); if (rc < 0) return rc; rc = mb86a20s_readreg(state, 0x51); if (rc < 0) return rc; *count |= rc; dev_dbg(&state->i2c->dev, "%s: bit count before Viterbi for layer %c: %d.\n", __func__, 'A' + layer, *count); /* * As we get TMCC data from the frontend, we can better estimate the * BER bit counters, in order to do the BER measure during a longer * time. Use those data, if available, to update the bit count * measure. */ if (state->estimated_rate[layer] && state->estimated_rate[layer] != *count) { dev_dbg(&state->i2c->dev, "%s: updating layer %c preBER counter to %d.\n", __func__, 'A' + layer, state->estimated_rate[layer]); /* Turn off BER before Viterbi */ rc = mb86a20s_writereg(state, 0x52, 0x00); /* Update counter for this layer */ rc = mb86a20s_writereg(state, 0x50, 0xa7 + layer * 3); if (rc < 0) return rc; rc = mb86a20s_writereg(state, 0x51, state->estimated_rate[layer] >> 16); if (rc < 0) return rc; rc = mb86a20s_writereg(state, 0x50, 0xa8 + layer * 3); if (rc < 0) return rc; rc = mb86a20s_writereg(state, 0x51, state->estimated_rate[layer] >> 8); if (rc < 0) return rc; rc = mb86a20s_writereg(state, 0x50, 0xa9 + layer * 3); if (rc < 0) return rc; rc = mb86a20s_writereg(state, 0x51, state->estimated_rate[layer]); if (rc < 0) return rc; /* Turn on BER before Viterbi */ rc = mb86a20s_writereg(state, 0x52, 0x01); /* Reset all preBER counters */ rc = mb86a20s_writereg(state, 0x53, 0x00); if (rc < 0) return rc; rc = mb86a20s_writereg(state, 0x53, 0x07); } else { /* Reset counter to collect new data */ rc = mb86a20s_readreg(state, 0x53); if (rc < 0) return rc; val = rc; rc = mb86a20s_writereg(state, 0x53, val & ~(1 << layer)); if (rc < 0) return rc; rc = mb86a20s_writereg(state, 0x53, val | (1 << layer)); } return rc; } static int mb86a20s_get_post_ber(struct dvb_frontend *fe, unsigned layer, u32 *error, u32 *count) { struct mb86a20s_state *state = fe->demodulator_priv; u32 counter, collect_rate; int rc, val; dev_dbg(&state->i2c->dev, "%s called.\n", __func__); if (layer >= NUM_LAYERS) return -EINVAL; /* Check if the BER measures are already available */ rc = mb86a20s_readreg(state, 0x60); if (rc < 0) return rc; /* Check if data is available for that layer */ if (!(rc & (1 << layer))) { dev_dbg(&state->i2c->dev, "%s: post BER for layer %c is not available yet.\n", __func__, 'A' + layer); return -EBUSY; } /* Read Bit Error Count */ rc = mb86a20s_readreg(state, 0x64 + layer * 3); if (rc < 0) return rc; *error = rc << 16; rc = mb86a20s_readreg(state, 0x65 + layer * 3); if (rc < 0) return rc; *error |= rc << 8; rc = mb86a20s_readreg(state, 0x66 + layer * 3); if (rc < 0) return rc; *error |= rc; dev_dbg(&state->i2c->dev, "%s: post bit error for layer %c: %d.\n", __func__, 'A' + layer, *error); /* Read Bit Count */ rc = mb86a20s_writereg(state, 0x50, 0xdc + layer * 2); if (rc < 0) return rc; rc = mb86a20s_readreg(state, 0x51); if (rc < 0) return rc; counter = rc << 8; rc = mb86a20s_writereg(state, 0x50, 0xdd + layer * 2); if (rc < 0) return rc; rc = mb86a20s_readreg(state, 0x51); if (rc < 0) return rc; counter |= rc; *count = counter * 204 * 8; dev_dbg(&state->i2c->dev, "%s: post bit count for layer %c: %d.\n", __func__, 'A' + layer, *count); /* * As we get TMCC data from the frontend, we can better estimate the * BER bit counters, in order to do the BER measure during a longer * time. Use those data, if available, to update the bit count * measure. */ if (!state->estimated_rate[layer]) goto reset_measurement; collect_rate = state->estimated_rate[layer] / 204 / 8; if (collect_rate < 32) collect_rate = 32; if (collect_rate > 65535) collect_rate = 65535; if (collect_rate != counter) { dev_dbg(&state->i2c->dev, "%s: updating postBER counter on layer %c to %d.\n", __func__, 'A' + layer, collect_rate); /* Turn off BER after Viterbi */ rc = mb86a20s_writereg(state, 0x5e, 0x00); /* Update counter for this layer */ rc = mb86a20s_writereg(state, 0x50, 0xdc + layer * 2); if (rc < 0) return rc; rc = mb86a20s_writereg(state, 0x51, collect_rate >> 8); if (rc < 0) return rc; rc = mb86a20s_writereg(state, 0x50, 0xdd + layer * 2); if (rc < 0) return rc; rc = mb86a20s_writereg(state, 0x51, collect_rate & 0xff); if (rc < 0) return rc; /* Turn on BER after Viterbi */ rc = mb86a20s_writereg(state, 0x5e, 0x07); /* Reset all preBER counters */ rc = mb86a20s_writereg(state, 0x5f, 0x00); if (rc < 0) return rc; rc = mb86a20s_writereg(state, 0x5f, 0x07); return rc; } reset_measurement: /* Reset counter to collect new data */ rc = mb86a20s_readreg(state, 0x5f); if (rc < 0) return rc; val = rc; rc = mb86a20s_writereg(state, 0x5f, val & ~(1 << layer)); if (rc < 0) return rc; rc = mb86a20s_writereg(state, 0x5f, val | (1 << layer)); return rc; } static int mb86a20s_get_blk_error(struct dvb_frontend *fe, unsigned layer, u32 *error, u32 *count) { struct mb86a20s_state *state = fe->demodulator_priv; int rc, val; u32 collect_rate; dev_dbg(&state->i2c->dev, "%s called.\n", __func__); if (layer >= NUM_LAYERS) return -EINVAL; /* Check if the PER measures are already available */ rc = mb86a20s_writereg(state, 0x50, 0xb8); if (rc < 0) return rc; rc = mb86a20s_readreg(state, 0x51); if (rc < 0) return rc; /* Check if data is available for that layer */ if (!(rc & (1 << layer))) { dev_dbg(&state->i2c->dev, "%s: block counts for layer %c aren't available yet.\n", __func__, 'A' + layer); return -EBUSY; } /* Read Packet error Count */ rc = mb86a20s_writereg(state, 0x50, 0xb9 + layer * 2); if (rc < 0) return rc; rc = mb86a20s_readreg(state, 0x51); if (rc < 0) return rc; *error = rc << 8; rc = mb86a20s_writereg(state, 0x50, 0xba + layer * 2); if (rc < 0) return rc; rc = mb86a20s_readreg(state, 0x51); if (rc < 0) return rc; *error |= rc; dev_dbg(&state->i2c->dev, "%s: block error for layer %c: %d.\n", __func__, 'A' + layer, *error); /* Read Bit Count */ rc = mb86a20s_writereg(state, 0x50, 0xb2 + layer * 2); if (rc < 0) return rc; rc = mb86a20s_readreg(state, 0x51); if (rc < 0) return rc; *count = rc << 8; rc = mb86a20s_writereg(state, 0x50, 0xb3 + layer * 2); if (rc < 0) return rc; rc = mb86a20s_readreg(state, 0x51); if (rc < 0) return rc; *count |= rc; dev_dbg(&state->i2c->dev, "%s: block count for layer %c: %d.\n", __func__, 'A' + layer, *count); /* * As we get TMCC data from the frontend, we can better estimate the * BER bit counters, in order to do the BER measure during a longer * time. Use those data, if available, to update the bit count * measure. */ if (!state->estimated_rate[layer]) goto reset_measurement; collect_rate = state->estimated_rate[layer] / 204 / 8; if (collect_rate < 32) collect_rate = 32; if (collect_rate > 65535) collect_rate = 65535; if (collect_rate != *count) { dev_dbg(&state->i2c->dev, "%s: updating PER counter on layer %c to %d.\n", __func__, 'A' + layer, collect_rate); /* Stop PER measurement */ rc = mb86a20s_writereg(state, 0x50, 0xb0); if (rc < 0) return rc; rc = mb86a20s_writereg(state, 0x51, 0x00); if (rc < 0) return rc; /* Update this layer's counter */ rc = mb86a20s_writereg(state, 0x50, 0xb2 + layer * 2); if (rc < 0) return rc; rc = mb86a20s_writereg(state, 0x51, collect_rate >> 8); if (rc < 0) return rc; rc = mb86a20s_writereg(state, 0x50, 0xb3 + layer * 2); if (rc < 0) return rc; rc = mb86a20s_writereg(state, 0x51, collect_rate & 0xff); if (rc < 0) return rc; /* start PER measurement */ rc = mb86a20s_writereg(state, 0x50, 0xb0); if (rc < 0) return rc; rc = mb86a20s_writereg(state, 0x51, 0x07); if (rc < 0) return rc; /* Reset all counters to collect new data */ rc = mb86a20s_writereg(state, 0x50, 0xb1); if (rc < 0) return rc; rc = mb86a20s_writereg(state, 0x51, 0x07); if (rc < 0) return rc; rc = mb86a20s_writereg(state, 0x51, 0x00); return rc; } reset_measurement: /* Reset counter to collect new data */ rc = mb86a20s_writereg(state, 0x50, 0xb1); if (rc < 0) return rc; rc = mb86a20s_readreg(state, 0x51); if (rc < 0) return rc; val = rc; rc = mb86a20s_writereg(state, 0x51, val | (1 << layer)); if (rc < 0) return rc; rc = mb86a20s_writereg(state, 0x51, val & ~(1 << layer)); return rc; } struct linear_segments { unsigned x, y; }; /* * All tables below return a dB/1000 measurement */ static const struct linear_segments cnr_to_db_table[] = { { 19648, 0}, { 18187, 1000}, { 16534, 2000}, { 14823, 3000}, { 13161, 4000}, { 11622, 5000}, { 10279, 6000}, { 9089, 7000}, { 8042, 8000}, { 7137, 9000}, { 6342, 10000}, { 5641, 11000}, { 5030, 12000}, { 4474, 13000}, { 3988, 14000}, { 3556, 15000}, { 3180, 16000}, { 2841, 17000}, { 2541, 18000}, { 2276, 19000}, { 2038, 20000}, { 1800, 21000}, { 1625, 22000}, { 1462, 23000}, { 1324, 24000}, { 1175, 25000}, { 1063, 26000}, { 980, 27000}, { 907, 28000}, { 840, 29000}, { 788, 30000}, }; static const struct linear_segments cnr_64qam_table[] = { { 3922688, 0}, { 3920384, 1000}, { 3902720, 2000}, { 3894784, 3000}, { 3882496, 4000}, { 3872768, 5000}, { 3858944, 6000}, { 3851520, 7000}, { 3838976, 8000}, { 3829248, 9000}, { 3818240, 10000}, { 3806976, 11000}, { 3791872, 12000}, { 3767040, 13000}, { 3720960, 14000}, { 3637504, 15000}, { 3498496, 16000}, { 3296000, 17000}, { 3031040, 18000}, { 2715392, 19000}, { 2362624, 20000}, { 1963264, 21000}, { 1649664, 22000}, { 1366784, 23000}, { 1120768, 24000}, { 890880, 25000}, { 723456, 26000}, { 612096, 27000}, { 518912, 28000}, { 448256, 29000}, { 388864, 30000}, }; static const struct linear_segments cnr_16qam_table[] = { { 5314816, 0}, { 5219072, 1000}, { 5118720, 2000}, { 4998912, 3000}, { 4875520, 4000}, { 4736000, 5000}, { 4604160, 6000}, { 4458752, 7000}, { 4300288, 8000}, { 4092928, 9000}, { 3836160, 10000}, { 3521024, 11000}, { 3155968, 12000}, { 2756864, 13000}, { 2347008, 14000}, { 1955072, 15000}, { 1593600, 16000}, { 1297920, 17000}, { 1043968, 18000}, { 839680, 19000}, { 672256, 20000}, { 523008, 21000}, { 424704, 22000}, { 345088, 23000}, { 280064, 24000}, { 221440, 25000}, { 179712, 26000}, { 151040, 27000}, { 128512, 28000}, { 110080, 29000}, { 95744, 30000}, }; static const struct linear_segments cnr_qpsk_table[] = { { 2834176, 0}, { 2683648, 1000}, { 2536960, 2000}, { 2391808, 3000}, { 2133248, 4000}, { 1906176, 5000}, { 1666560, 6000}, { 1422080, 7000}, { 1189632, 8000}, { 976384, 9000}, { 790272, 10000}, { 633344, 11000}, { 505600, 12000}, { 402944, 13000}, { 320768, 14000}, { 255488, 15000}, { 204032, 16000}, { 163072, 17000}, { 130304, 18000}, { 105216, 19000}, { 83456, 20000}, { 65024, 21000}, { 52480, 22000}, { 42752, 23000}, { 34560, 24000}, { 27136, 25000}, { 22016, 26000}, { 18432, 27000}, { 15616, 28000}, { 13312, 29000}, { 11520, 30000}, }; static u32 interpolate_value(u32 value, const struct linear_segments *segments, unsigned len) { u64 tmp64; u32 dx, dy; int i, ret; if (value >= segments[0].x) return segments[0].y; if (value < segments[len-1].x) return segments[len-1].y; for (i = 1; i < len - 1; i++) { /* If value is identical, no need to interpolate */ if (value == segments[i].x) return segments[i].y; if (value > segments[i].x) break; } /* Linear interpolation between the two (x,y) points */ dy = segments[i].y - segments[i - 1].y; dx = segments[i - 1].x - segments[i].x; tmp64 = value - segments[i].x; tmp64 *= dy; do_div(tmp64, dx); ret = segments[i].y - tmp64; return ret; } static int mb86a20s_get_main_CNR(struct dvb_frontend *fe) { struct mb86a20s_state *state = fe->demodulator_priv; struct dtv_frontend_properties *c = &fe->dtv_property_cache; u32 cnr_linear, cnr; int rc, val; /* Check if CNR is available */ rc = mb86a20s_readreg(state, 0x45); if (rc < 0) return rc; if (!(rc & 0x40)) { dev_dbg(&state->i2c->dev, "%s: CNR is not available yet.\n", __func__); return -EBUSY; } val = rc; rc = mb86a20s_readreg(state, 0x46); if (rc < 0) return rc; cnr_linear = rc << 8; rc = mb86a20s_readreg(state, 0x46); if (rc < 0) return rc; cnr_linear |= rc; cnr = interpolate_value(cnr_linear, cnr_to_db_table, ARRAY_SIZE(cnr_to_db_table)); c->cnr.stat[0].scale = FE_SCALE_DECIBEL; c->cnr.stat[0].svalue = cnr; dev_dbg(&state->i2c->dev, "%s: CNR is %d.%03d dB (%d)\n", __func__, cnr / 1000, cnr % 1000, cnr_linear); /* CNR counter reset */ rc = mb86a20s_writereg(state, 0x45, val | 0x10); if (rc < 0) return rc; rc = mb86a20s_writereg(state, 0x45, val & 0x6f); return rc; } static int mb86a20s_get_blk_error_layer_CNR(struct dvb_frontend *fe) { struct mb86a20s_state *state = fe->demodulator_priv; struct dtv_frontend_properties *c = &fe->dtv_property_cache; u32 mer, cnr; int rc, val, layer; const struct linear_segments *segs; unsigned segs_len; dev_dbg(&state->i2c->dev, "%s called.\n", __func__); /* Check if the measures are already available */ rc = mb86a20s_writereg(state, 0x50, 0x5b); if (rc < 0) return rc; rc = mb86a20s_readreg(state, 0x51); if (rc < 0) return rc; /* Check if data is available */ if (!(rc & 0x01)) { dev_dbg(&state->i2c->dev, "%s: MER measures aren't available yet.\n", __func__); return -EBUSY; } /* Read all layers */ for (layer = 0; layer < NUM_LAYERS; layer++) { if (!(c->isdbt_layer_enabled & (1 << layer))) { c->cnr.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE; continue; } rc = mb86a20s_writereg(state, 0x50, 0x52 + layer * 3); if (rc < 0) return rc; rc = mb86a20s_readreg(state, 0x51); if (rc < 0) return rc; mer = rc << 16; rc = mb86a20s_writereg(state, 0x50, 0x53 + layer * 3); if (rc < 0) return rc; rc = mb86a20s_readreg(state, 0x51); if (rc < 0) return rc; mer |= rc << 8; rc = mb86a20s_writereg(state, 0x50, 0x54 + layer * 3); if (rc < 0) return rc; rc = mb86a20s_readreg(state, 0x51); if (rc < 0) return rc; mer |= rc; switch (c->layer[layer].modulation) { case DQPSK: case QPSK: segs = cnr_qpsk_table; segs_len = ARRAY_SIZE(cnr_qpsk_table); break; case QAM_16: segs = cnr_16qam_table; segs_len = ARRAY_SIZE(cnr_16qam_table); break; default: case QAM_64: segs = cnr_64qam_table; segs_len = ARRAY_SIZE(cnr_64qam_table); break; } cnr = interpolate_value(mer, segs, segs_len); c->cnr.stat[1 + layer].scale = FE_SCALE_DECIBEL; c->cnr.stat[1 + layer].svalue = cnr; dev_dbg(&state->i2c->dev, "%s: CNR for layer %c is %d.%03d dB (MER = %d).\n", __func__, 'A' + layer, cnr / 1000, cnr % 1000, mer); } /* Start a new MER measurement */ /* MER counter reset */ rc = mb86a20s_writereg(state, 0x50, 0x50); if (rc < 0) return rc; rc = mb86a20s_readreg(state, 0x51); if (rc < 0) return rc; val = rc; rc = mb86a20s_writereg(state, 0x51, val | 0x01); if (rc < 0) return rc; rc = mb86a20s_writereg(state, 0x51, val & 0x06); if (rc < 0) return rc; return 0; } static void mb86a20s_stats_not_ready(struct dvb_frontend *fe) { struct mb86a20s_state *state = fe->demodulator_priv; struct dtv_frontend_properties *c = &fe->dtv_property_cache; int layer; dev_dbg(&state->i2c->dev, "%s called.\n", __func__); /* Fill the length of each status counter */ /* Only global stats */ c->strength.len = 1; /* Per-layer stats - 3 layers + global */ c->cnr.len = NUM_LAYERS + 1; c->pre_bit_error.len = NUM_LAYERS + 1; c->pre_bit_count.len = NUM_LAYERS + 1; c->post_bit_error.len = NUM_LAYERS + 1; c->post_bit_count.len = NUM_LAYERS + 1; c->block_error.len = NUM_LAYERS + 1; c->block_count.len = NUM_LAYERS + 1; /* Signal is always available */ c->strength.stat[0].scale = FE_SCALE_RELATIVE; c->strength.stat[0].uvalue = 0; /* Put all of them at FE_SCALE_NOT_AVAILABLE */ for (layer = 0; layer < NUM_LAYERS + 1; layer++) { c->cnr.stat[layer].scale = FE_SCALE_NOT_AVAILABLE; c->pre_bit_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE; c->pre_bit_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE; c->post_bit_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE; c->post_bit_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE; c->block_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE; c->block_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE; } } static int mb86a20s_get_stats(struct dvb_frontend *fe, int status_nr) { struct mb86a20s_state *state = fe->demodulator_priv; struct dtv_frontend_properties *c = &fe->dtv_property_cache; int rc = 0, layer; u32 bit_error = 0, bit_count = 0; u32 t_pre_bit_error = 0, t_pre_bit_count = 0; u32 t_post_bit_error = 0, t_post_bit_count = 0; u32 block_error = 0, block_count = 0; u32 t_block_error = 0, t_block_count = 0; int pre_ber_layers = 0, post_ber_layers = 0; int per_layers = 0; dev_dbg(&state->i2c->dev, "%s called.\n", __func__); mb86a20s_get_main_CNR(fe); /* Get per-layer stats */ mb86a20s_get_blk_error_layer_CNR(fe); /* * At state 7, only CNR is available * For BER measures, state=9 is required * FIXME: we may get MER measures with state=8 */ if (status_nr < 9) return 0; for (layer = 0; layer < NUM_LAYERS; layer++) { if (c->isdbt_layer_enabled & (1 << layer)) { /* Handle BER before vterbi */ rc = mb86a20s_get_pre_ber(fe, layer, &bit_error, &bit_count); if (rc >= 0) { c->pre_bit_error.stat[1 + layer].scale = FE_SCALE_COUNTER; c->pre_bit_error.stat[1 + layer].uvalue += bit_error; c->pre_bit_count.stat[1 + layer].scale = FE_SCALE_COUNTER; c->pre_bit_count.stat[1 + layer].uvalue += bit_count; } else if (rc != -EBUSY) { /* * If an I/O error happened, * measures are now unavailable */ c->pre_bit_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE; c->pre_bit_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE; dev_err(&state->i2c->dev, "%s: Can't get BER for layer %c (error %d).\n", __func__, 'A' + layer, rc); } if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE) pre_ber_layers++; /* Handle BER post vterbi */ rc = mb86a20s_get_post_ber(fe, layer, &bit_error, &bit_count); if (rc >= 0) { c->post_bit_error.stat[1 + layer].scale = FE_SCALE_COUNTER; c->post_bit_error.stat[1 + layer].uvalue += bit_error; c->post_bit_count.stat[1 + layer].scale = FE_SCALE_COUNTER; c->post_bit_count.stat[1 + layer].uvalue += bit_count; } else if (rc != -EBUSY) { /* * If an I/O error happened, * measures are now unavailable */ c->post_bit_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE; c->post_bit_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE; dev_err(&state->i2c->dev, "%s: Can't get BER for layer %c (error %d).\n", __func__, 'A' + layer, rc); } if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE) post_ber_layers++; /* Handle Block errors for PER/UCB reports */ rc = mb86a20s_get_blk_error(fe, layer, &block_error, &block_count); if (rc >= 0) { c->block_error.stat[1 + layer].scale = FE_SCALE_COUNTER; c->block_error.stat[1 + layer].uvalue += block_error; c->block_count.stat[1 + layer].scale = FE_SCALE_COUNTER; c->block_count.stat[1 + layer].uvalue += block_count; } else if (rc != -EBUSY) { /* * If an I/O error happened, * measures are now unavailable */ c->block_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE; c->block_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE; dev_err(&state->i2c->dev, "%s: Can't get PER for layer %c (error %d).\n", __func__, 'A' + layer, rc); } if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE) per_layers++; /* Update total preBER */ t_pre_bit_error += c->pre_bit_error.stat[1 + layer].uvalue; t_pre_bit_count += c->pre_bit_count.stat[1 + layer].uvalue; /* Update total postBER */ t_post_bit_error += c->post_bit_error.stat[1 + layer].uvalue; t_post_bit_count += c->post_bit_count.stat[1 + layer].uvalue; /* Update total PER */ t_block_error += c->block_error.stat[1 + layer].uvalue; t_block_count += c->block_count.stat[1 + layer].uvalue; } } /* * Start showing global count if at least one error count is * available. */ if (pre_ber_layers) { /* * At least one per-layer BER measure was read. We can now * calculate the total BER * * Total Bit Error/Count is calculated as the sum of the * bit errors on all active layers. */ c->pre_bit_error.stat[0].scale = FE_SCALE_COUNTER; c->pre_bit_error.stat[0].uvalue = t_pre_bit_error; c->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER; c->pre_bit_count.stat[0].uvalue = t_pre_bit_count; } else { c->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; c->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER; } /* * Start showing global count if at least one error count is * available. */ if (post_ber_layers) { /* * At least one per-layer BER measure was read. We can now * calculate the total BER * * Total Bit Error/Count is calculated as the sum of the * bit errors on all active layers. */ c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER; c->post_bit_error.stat[0].uvalue = t_post_bit_error; c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER; c->post_bit_count.stat[0].uvalue = t_post_bit_count; } else { c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER; } if (per_layers) { /* * At least one per-layer UCB measure was read. We can now * calculate the total UCB * * Total block Error/Count is calculated as the sum of the * block errors on all active layers. */ c->block_error.stat[0].scale = FE_SCALE_COUNTER; c->block_error.stat[0].uvalue = t_block_error; c->block_count.stat[0].scale = FE_SCALE_COUNTER; c->block_count.stat[0].uvalue = t_block_count; } else { c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; c->block_count.stat[0].scale = FE_SCALE_COUNTER; } return rc; } /* * The functions below are called via DVB callbacks, so they need to * properly use the I2C gate control */ static int mb86a20s_initfe(struct dvb_frontend *fe) { struct mb86a20s_state *state = fe->demodulator_priv; u64 pll; u32 fclk; int rc; u8 regD5 = 1, reg71, reg09 = 0x3a; dev_dbg(&state->i2c->dev, "%s called.\n", __func__); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); /* Initialize the frontend */ rc = mb86a20s_writeregdata(state, mb86a20s_init1); if (rc < 0) goto err; if (!state->inversion) reg09 |= 0x04; rc = mb86a20s_writereg(state, 0x09, reg09); if (rc < 0) goto err; if (!state->bw) reg71 = 1; else reg71 = 0; rc = mb86a20s_writereg(state, 0x39, reg71); if (rc < 0) goto err; rc = mb86a20s_writereg(state, 0x71, state->bw); if (rc < 0) goto err; if (state->subchannel) { rc = mb86a20s_writereg(state, 0x44, state->subchannel); if (rc < 0) goto err; } fclk = state->config->fclk; if (!fclk) fclk = 32571428; /* Adjust IF frequency to match tuner */ if (fe->ops.tuner_ops.get_if_frequency) fe->ops.tuner_ops.get_if_frequency(fe, &state->if_freq); if (!state->if_freq) state->if_freq = 3300000; pll = (((u64)1) << 34) * state->if_freq; do_div(pll, 63 * fclk); pll = (1 << 25) - pll; rc = mb86a20s_writereg(state, 0x28, 0x2a); if (rc < 0) goto err; rc = mb86a20s_writereg(state, 0x29, (pll >> 16) & 0xff); if (rc < 0) goto err; rc = mb86a20s_writereg(state, 0x2a, (pll >> 8) & 0xff); if (rc < 0) goto err; rc = mb86a20s_writereg(state, 0x2b, pll & 0xff); if (rc < 0) goto err; dev_dbg(&state->i2c->dev, "%s: fclk=%d, IF=%d, clock reg=0x%06llx\n", __func__, fclk, state->if_freq, (long long)pll); /* pll = freq[Hz] * 2^24/10^6 / 16.285714286 */ pll = state->if_freq * 1677721600L; do_div(pll, 1628571429L); rc = mb86a20s_writereg(state, 0x28, 0x20); if (rc < 0) goto err; rc = mb86a20s_writereg(state, 0x29, (pll >> 16) & 0xff); if (rc < 0) goto err; rc = mb86a20s_writereg(state, 0x2a, (pll >> 8) & 0xff); if (rc < 0) goto err; rc = mb86a20s_writereg(state, 0x2b, pll & 0xff); if (rc < 0) goto err; dev_dbg(&state->i2c->dev, "%s: IF=%d, IF reg=0x%06llx\n", __func__, state->if_freq, (long long)pll); if (!state->config->is_serial) regD5 &= ~1; rc = mb86a20s_writereg(state, 0x50, 0xd5); if (rc < 0) goto err; rc = mb86a20s_writereg(state, 0x51, regD5); if (rc < 0) goto err; rc = mb86a20s_writeregdata(state, mb86a20s_init2); if (rc < 0) goto err; err: if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 1); if (rc < 0) { state->need_init = true; dev_info(&state->i2c->dev, "mb86a20s: Init failed. Will try again later\n"); } else { state->need_init = false; dev_dbg(&state->i2c->dev, "Initialization succeeded.\n"); } return rc; } static int mb86a20s_set_frontend(struct dvb_frontend *fe) { struct mb86a20s_state *state = fe->demodulator_priv; struct dtv_frontend_properties *c = &fe->dtv_property_cache; int rc, if_freq; dev_dbg(&state->i2c->dev, "%s called.\n", __func__); if (!c->isdbt_layer_enabled) c->isdbt_layer_enabled = 7; if (c->isdbt_layer_enabled == 1) state->bw = MB86A20S_1SEG; else if (c->isdbt_partial_reception) state->bw = MB86A20S_13SEG_PARTIAL; else state->bw = MB86A20S_13SEG; if (c->inversion == INVERSION_ON) state->inversion = true; else state->inversion = false; if (!c->isdbt_sb_mode) { state->subchannel = 0; } else { if (c->isdbt_sb_subchannel >= ARRAY_SIZE(mb86a20s_subchannel)) c->isdbt_sb_subchannel = 0; state->subchannel = mb86a20s_subchannel[c->isdbt_sb_subchannel]; } /* * Gate should already be opened, but it doesn't hurt to * double-check */ if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 1); fe->ops.tuner_ops.set_params(fe); if (fe->ops.tuner_ops.get_if_frequency) fe->ops.tuner_ops.get_if_frequency(fe, &if_freq); /* * Make it more reliable: if, for some reason, the initial * device initialization doesn't happen, initialize it when * a SBTVD parameters are adjusted. * * Unfortunately, due to a hard to track bug at tda829x/tda18271, * the agc callback logic is not called during DVB attach time, * causing mb86a20s to not be initialized with Kworld SBTVD. * So, this hack is needed, in order to make Kworld SBTVD to work. * * It is also needed to change the IF after the initial init. * * HACK: Always init the frontend when set_frontend is called: * it was noticed that, on some devices, it fails to lock on a * different channel. So, it is better to reset everything, even * wasting some time, than to loose channel lock. */ mb86a20s_initfe(fe); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); rc = mb86a20s_writeregdata(state, mb86a20s_reset_reception); mb86a20s_reset_counters(fe); mb86a20s_stats_not_ready(fe); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 1); return rc; } static int mb86a20s_read_status_and_stats(struct dvb_frontend *fe, enum fe_status *status) { struct mb86a20s_state *state = fe->demodulator_priv; int rc, status_nr; dev_dbg(&state->i2c->dev, "%s called.\n", __func__); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); /* Get lock */ status_nr = mb86a20s_read_status(fe, status); if (status_nr < 7) { mb86a20s_stats_not_ready(fe); mb86a20s_reset_frontend_cache(fe); } if (status_nr < 0) { dev_err(&state->i2c->dev, "%s: Can't read frontend lock status\n", __func__); rc = status_nr; goto error; } /* Get signal strength */ rc = mb86a20s_read_signal_strength(fe); if (rc < 0) { dev_err(&state->i2c->dev, "%s: Can't reset VBER registers.\n", __func__); mb86a20s_stats_not_ready(fe); mb86a20s_reset_frontend_cache(fe); rc = 0; /* Status is OK */ goto error; } if (status_nr >= 7) { /* Get TMCC info*/ rc = mb86a20s_get_frontend(fe); if (rc < 0) { dev_err(&state->i2c->dev, "%s: Can't get FE TMCC data.\n", __func__); rc = 0; /* Status is OK */ goto error; } /* Get statistics */ rc = mb86a20s_get_stats(fe, status_nr); if (rc < 0 && rc != -EBUSY) { dev_err(&state->i2c->dev, "%s: Can't get FE statistics.\n", __func__); rc = 0; goto error; } rc = 0; /* Don't return EBUSY to userspace */ } goto ok; error: mb86a20s_stats_not_ready(fe); ok: if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 1); return rc; } static int mb86a20s_read_signal_strength_from_cache(struct dvb_frontend *fe, u16 *strength) { struct dtv_frontend_properties *c = &fe->dtv_property_cache; *strength = c->strength.stat[0].uvalue; return 0; } static int mb86a20s_tune(struct dvb_frontend *fe, bool re_tune, unsigned int mode_flags, unsigned int *delay, enum fe_status *status) { struct mb86a20s_state *state = fe->demodulator_priv; int rc = 0; dev_dbg(&state->i2c->dev, "%s called.\n", __func__); if (re_tune) rc = mb86a20s_set_frontend(fe); if (!(mode_flags & FE_TUNE_MODE_ONESHOT)) mb86a20s_read_status_and_stats(fe, status); return rc; } static void mb86a20s_release(struct dvb_frontend *fe) { struct mb86a20s_state *state = fe->demodulator_priv; dev_dbg(&state->i2c->dev, "%s called.\n", __func__); kfree(state); } static enum dvbfe_algo mb86a20s_get_frontend_algo(struct dvb_frontend *fe) { return DVBFE_ALGO_HW; } static const struct dvb_frontend_ops mb86a20s_ops; struct dvb_frontend *mb86a20s_attach(const struct mb86a20s_config *config, struct i2c_adapter *i2c) { struct mb86a20s_state *state; u8 rev; dev_dbg(&i2c->dev, "%s called.\n", __func__); /* allocate memory for the internal state */ state = kzalloc(sizeof(*state), GFP_KERNEL); if (!state) return NULL; /* setup the state */ state->config = config; state->i2c = i2c; /* create dvb_frontend */ memcpy(&state->frontend.ops, &mb86a20s_ops, sizeof(struct dvb_frontend_ops)); state->frontend.demodulator_priv = state; /* Check if it is a mb86a20s frontend */ rev = mb86a20s_readreg(state, 0); if (rev != 0x13) { kfree(state); dev_dbg(&i2c->dev, "Frontend revision %d is unknown - aborting.\n", rev); return NULL; } dev_info(&i2c->dev, "Detected a Fujitsu mb86a20s frontend\n"); return &state->frontend; } EXPORT_SYMBOL_GPL(mb86a20s_attach); static const struct dvb_frontend_ops mb86a20s_ops = { .delsys = { SYS_ISDBT }, /* Use dib8000 values per default */ .info = { .name = "Fujitsu mb86A20s", .caps = FE_CAN_RECOVER | FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_QAM_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_HIERARCHY_AUTO, /* Actually, those values depend on the used tuner */ .frequency_min_hz = 45 * MHz, .frequency_max_hz = 864 * MHz, .frequency_stepsize_hz = 62500, }, .release = mb86a20s_release, .init = mb86a20s_initfe, .set_frontend = mb86a20s_set_frontend, .read_status = mb86a20s_read_status_and_stats, .read_signal_strength = mb86a20s_read_signal_strength_from_cache, .tune = mb86a20s_tune, .get_frontend_algo = mb86a20s_get_frontend_algo, }; MODULE_DESCRIPTION("DVB Frontend module for Fujitsu mb86A20s hardware"); MODULE_AUTHOR("Mauro Carvalho Chehab"); MODULE_LICENSE("GPL");