// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2023 Red Hat */ #include "sparse-cache.h" #include #include #include #include "logger.h" #include "memory-alloc.h" #include "permassert.h" #include "chapter-index.h" #include "config.h" #include "index.h" /* * Since the cache is small, it is implemented as a simple array of cache entries. Searching for a * specific virtual chapter is implemented as a linear search. The cache replacement policy is * least-recently-used (LRU). Again, the small size of the cache allows the LRU order to be * maintained by shifting entries in an array list. * * Changing the contents of the cache requires the coordinated participation of all zone threads * via the careful use of barrier messages sent to all the index zones by the triage queue worker * thread. The critical invariant for coordination is that the cache membership must not change * between updates, so that all calls to uds_sparse_cache_contains() from the zone threads must all * receive the same results for every virtual chapter number. To ensure that critical invariant, * state changes such as "that virtual chapter is no longer in the volume" and "skip searching that * chapter because it has had too many cache misses" are represented separately from the cache * membership information (the virtual chapter number). * * As a result of this invariant, we have the guarantee that every zone thread will call * uds_update_sparse_cache() once and exactly once to request a chapter that is not in the cache, * and the serialization of the barrier requests from the triage queue ensures they will all * request the same chapter number. This means the only synchronization we need can be provided by * a pair of thread barriers used only in the uds_update_sparse_cache() call, providing a critical * section where a single zone thread can drive the cache update while all the other zone threads * are known to be blocked, waiting in the second barrier. Outside that critical section, all the * zone threads implicitly hold a shared lock. Inside it, the thread for zone zero holds an * exclusive lock. No other threads may access or modify the cache entries. * * Chapter statistics must only be modified by a single thread, which is also the zone zero thread. * All fields that might be frequently updated by that thread are kept in separate cache-aligned * structures so they will not cause cache contention via "false sharing" with the fields that are * frequently accessed by all of the zone threads. * * The LRU order is managed independently by each zone thread, and each zone uses its own list for * searching and cache membership queries. The zone zero list is used to decide which chapter to * evict when the cache is updated, and its search list is copied to the other threads at that * time. * * The virtual chapter number field of the cache entry is the single field indicating whether a * chapter is a member of the cache or not. The value NO_CHAPTER is used to represent a null or * undefined chapter number. When present in the virtual chapter number field of a * cached_chapter_index, it indicates that the cache entry is dead, and all the other fields of * that entry (other than immutable pointers to cache memory) are undefined and irrelevant. Any * cache entry that is not marked as dead is fully defined and a member of the cache, and * uds_sparse_cache_contains() will always return true for any virtual chapter number that appears * in any of the cache entries. * * A chapter index that is a member of the cache may be excluded from searches between calls to * uds_update_sparse_cache() in two different ways. First, when a chapter falls off the end of the * volume, its virtual chapter number will be less that the oldest virtual chapter number. Since * that chapter is no longer part of the volume, there's no point in continuing to search that * chapter index. Once invalidated, that virtual chapter will still be considered a member of the * cache, but it will no longer be searched for matching names. * * The second mechanism is a heuristic based on keeping track of the number of consecutive search * misses in a given chapter index. Once that count exceeds a threshold, the skip_search flag will * be set to true, causing the chapter to be skipped when searching the entire cache, but still * allowing it to be found when searching for a hook in that specific chapter. Finding a hook will * clear the skip_search flag, once again allowing the non-hook searches to use that cache entry. * Again, regardless of the state of the skip_search flag, the virtual chapter must still * considered to be a member of the cache for uds_sparse_cache_contains(). */ #define SKIP_SEARCH_THRESHOLD 20000 #define ZONE_ZERO 0 /* * These counters are essentially fields of the struct cached_chapter_index, but are segregated * into this structure because they are frequently modified. They are grouped and aligned to keep * them on different cache lines from the chapter fields that are accessed far more often than they * are updated. */ struct __aligned(L1_CACHE_BYTES) cached_index_counters { u64 consecutive_misses; }; struct __aligned(L1_CACHE_BYTES) cached_chapter_index { /* * The virtual chapter number of the cached chapter index. NO_CHAPTER means this cache * entry is unused. This field must only be modified in the critical section in * uds_update_sparse_cache(). */ u64 virtual_chapter; u32 index_pages_count; /* * These pointers are immutable during the life of the cache. The contents of the arrays * change when the cache entry is replaced. */ struct delta_index_page *index_pages; struct dm_buffer **page_buffers; /* * If set, skip the chapter when searching the entire cache. This flag is just a * performance optimization. This flag is mutable between cache updates, but it rarely * changes and is frequently accessed, so it groups with the immutable fields. */ bool skip_search; /* * The cache-aligned counters change often and are placed at the end of the structure to * prevent false sharing with the more stable fields above. */ struct cached_index_counters counters; }; /* * A search_list represents an ordering of the sparse chapter index cache entry array, from most * recently accessed to least recently accessed, which is the order in which the indexes should be * searched and the reverse order in which they should be evicted from the cache. * * Cache entries that are dead or empty are kept at the end of the list, avoiding the need to even * iterate over them to search, and ensuring that dead entries are replaced before any live entries * are evicted. * * The search list is instantiated for each zone thread, avoiding any need for synchronization. The * structure is allocated on a cache boundary to avoid false sharing of memory cache lines between * zone threads. */ struct search_list { u8 capacity; u8 first_dead_entry; struct cached_chapter_index *entries[]; }; struct threads_barrier { /* Lock for this barrier object */ struct semaphore lock; /* Semaphore for threads waiting at this barrier */ struct semaphore wait; /* Number of threads which have arrived */ int arrived; /* Total number of threads using this barrier */ int thread_count; }; struct sparse_cache { const struct index_geometry *geometry; unsigned int capacity; unsigned int zone_count; unsigned int skip_threshold; struct search_list *search_lists[MAX_ZONES]; struct cached_chapter_index **scratch_entries; struct threads_barrier begin_update_barrier; struct threads_barrier end_update_barrier; struct cached_chapter_index chapters[]; }; static void initialize_threads_barrier(struct threads_barrier *barrier, unsigned int thread_count) { sema_init(&barrier->lock, 1); barrier->arrived = 0; barrier->thread_count = thread_count; sema_init(&barrier->wait, 0); } static inline void __down(struct semaphore *semaphore) { /* * Do not use down(semaphore). Instead use down_interruptible so that * we do not get 120 second stall messages in kern.log. */ while (down_interruptible(semaphore) != 0) { /* * If we're called from a user-mode process (e.g., "dmsetup * remove") while waiting for an operation that may take a * while (e.g., UDS index save), and a signal is sent (SIGINT, * SIGUSR2), then down_interruptible will not block. If that * happens, sleep briefly to avoid keeping the CPU locked up in * this loop. We could just call cond_resched, but then we'd * still keep consuming CPU time slices and swamp other threads * trying to do computational work. */ fsleep(1000); } } static void enter_threads_barrier(struct threads_barrier *barrier) { __down(&barrier->lock); if (++barrier->arrived == barrier->thread_count) { /* last thread */ int i; for (i = 1; i < barrier->thread_count; i++) up(&barrier->wait); barrier->arrived = 0; up(&barrier->lock); } else { up(&barrier->lock); __down(&barrier->wait); } } static int __must_check initialize_cached_chapter_index(struct cached_chapter_index *chapter, const struct index_geometry *geometry) { int result; chapter->virtual_chapter = NO_CHAPTER; chapter->index_pages_count = geometry->index_pages_per_chapter; result = vdo_allocate(chapter->index_pages_count, struct delta_index_page, __func__, &chapter->index_pages); if (result != VDO_SUCCESS) return result; return vdo_allocate(chapter->index_pages_count, struct dm_buffer *, "sparse index volume pages", &chapter->page_buffers); } static int __must_check make_search_list(struct sparse_cache *cache, struct search_list **list_ptr) { struct search_list *list; unsigned int bytes; u8 i; int result; bytes = (sizeof(struct search_list) + (cache->capacity * sizeof(struct cached_chapter_index *))); result = vdo_allocate_cache_aligned(bytes, "search list", &list); if (result != VDO_SUCCESS) return result; list->capacity = cache->capacity; list->first_dead_entry = 0; for (i = 0; i < list->capacity; i++) list->entries[i] = &cache->chapters[i]; *list_ptr = list; return UDS_SUCCESS; } int uds_make_sparse_cache(const struct index_geometry *geometry, unsigned int capacity, unsigned int zone_count, struct sparse_cache **cache_ptr) { int result; unsigned int i; struct sparse_cache *cache; unsigned int bytes; bytes = (sizeof(struct sparse_cache) + (capacity * sizeof(struct cached_chapter_index))); result = vdo_allocate_cache_aligned(bytes, "sparse cache", &cache); if (result != VDO_SUCCESS) return result; cache->geometry = geometry; cache->capacity = capacity; cache->zone_count = zone_count; /* * Scale down the skip threshold since the cache only counts cache misses in zone zero, but * requests are being handled in all zones. */ cache->skip_threshold = (SKIP_SEARCH_THRESHOLD / zone_count); initialize_threads_barrier(&cache->begin_update_barrier, zone_count); initialize_threads_barrier(&cache->end_update_barrier, zone_count); for (i = 0; i < capacity; i++) { result = initialize_cached_chapter_index(&cache->chapters[i], geometry); if (result != UDS_SUCCESS) goto out; } for (i = 0; i < zone_count; i++) { result = make_search_list(cache, &cache->search_lists[i]); if (result != UDS_SUCCESS) goto out; } /* purge_search_list() needs some temporary lists for sorting. */ result = vdo_allocate(capacity * 2, struct cached_chapter_index *, "scratch entries", &cache->scratch_entries); if (result != VDO_SUCCESS) goto out; *cache_ptr = cache; return UDS_SUCCESS; out: uds_free_sparse_cache(cache); return result; } static inline void set_skip_search(struct cached_chapter_index *chapter, bool skip_search) { /* Check before setting to reduce cache line contention. */ if (READ_ONCE(chapter->skip_search) != skip_search) WRITE_ONCE(chapter->skip_search, skip_search); } static void score_search_hit(struct cached_chapter_index *chapter) { chapter->counters.consecutive_misses = 0; set_skip_search(chapter, false); } static void score_search_miss(struct sparse_cache *cache, struct cached_chapter_index *chapter) { chapter->counters.consecutive_misses++; if (chapter->counters.consecutive_misses > cache->skip_threshold) set_skip_search(chapter, true); } static void release_cached_chapter_index(struct cached_chapter_index *chapter) { unsigned int i; chapter->virtual_chapter = NO_CHAPTER; if (chapter->page_buffers == NULL) return; for (i = 0; i < chapter->index_pages_count; i++) { if (chapter->page_buffers[i] != NULL) dm_bufio_release(vdo_forget(chapter->page_buffers[i])); } } void uds_free_sparse_cache(struct sparse_cache *cache) { unsigned int i; if (cache == NULL) return; vdo_free(cache->scratch_entries); for (i = 0; i < cache->zone_count; i++) vdo_free(cache->search_lists[i]); for (i = 0; i < cache->capacity; i++) { release_cached_chapter_index(&cache->chapters[i]); vdo_free(cache->chapters[i].index_pages); vdo_free(cache->chapters[i].page_buffers); } vdo_free(cache); } /* * Take the indicated element of the search list and move it to the start, pushing the pointers * previously before it back down the list. */ static inline void set_newest_entry(struct search_list *search_list, u8 index) { struct cached_chapter_index *newest; if (index > 0) { newest = search_list->entries[index]; memmove(&search_list->entries[1], &search_list->entries[0], index * sizeof(struct cached_chapter_index *)); search_list->entries[0] = newest; } /* * This function may have moved a dead chapter to the front of the list for reuse, in which * case the set of dead chapters becomes smaller. */ if (search_list->first_dead_entry <= index) search_list->first_dead_entry++; } bool uds_sparse_cache_contains(struct sparse_cache *cache, u64 virtual_chapter, unsigned int zone_number) { struct search_list *search_list; struct cached_chapter_index *chapter; u8 i; /* * The correctness of the barriers depends on the invariant that between calls to * uds_update_sparse_cache(), the answers this function returns must never vary: the result * for a given chapter must be identical across zones. That invariant must be maintained * even if the chapter falls off the end of the volume, or if searching it is disabled * because of too many search misses. */ search_list = cache->search_lists[zone_number]; for (i = 0; i < search_list->first_dead_entry; i++) { chapter = search_list->entries[i]; if (virtual_chapter == chapter->virtual_chapter) { if (zone_number == ZONE_ZERO) score_search_hit(chapter); set_newest_entry(search_list, i); return true; } } return false; } /* * Re-sort cache entries into three sets (active, skippable, and dead) while maintaining the LRU * ordering that already existed. This operation must only be called during the critical section in * uds_update_sparse_cache(). */ static void purge_search_list(struct search_list *search_list, struct sparse_cache *cache, u64 oldest_virtual_chapter) { struct cached_chapter_index **entries; struct cached_chapter_index **skipped; struct cached_chapter_index **dead; struct cached_chapter_index *chapter; unsigned int next_alive = 0; unsigned int next_skipped = 0; unsigned int next_dead = 0; unsigned int i; entries = &search_list->entries[0]; skipped = &cache->scratch_entries[0]; dead = &cache->scratch_entries[search_list->capacity]; for (i = 0; i < search_list->first_dead_entry; i++) { chapter = search_list->entries[i]; if ((chapter->virtual_chapter < oldest_virtual_chapter) || (chapter->virtual_chapter == NO_CHAPTER)) dead[next_dead++] = chapter; else if (chapter->skip_search) skipped[next_skipped++] = chapter; else entries[next_alive++] = chapter; } memcpy(&entries[next_alive], skipped, next_skipped * sizeof(struct cached_chapter_index *)); memcpy(&entries[next_alive + next_skipped], dead, next_dead * sizeof(struct cached_chapter_index *)); search_list->first_dead_entry = next_alive + next_skipped; } static int __must_check cache_chapter_index(struct cached_chapter_index *chapter, u64 virtual_chapter, const struct volume *volume) { int result; release_cached_chapter_index(chapter); result = uds_read_chapter_index_from_volume(volume, virtual_chapter, chapter->page_buffers, chapter->index_pages); if (result != UDS_SUCCESS) return result; chapter->counters.consecutive_misses = 0; chapter->virtual_chapter = virtual_chapter; chapter->skip_search = false; return UDS_SUCCESS; } static inline void copy_search_list(const struct search_list *source, struct search_list *target) { *target = *source; memcpy(target->entries, source->entries, source->capacity * sizeof(struct cached_chapter_index *)); } /* * Update the sparse cache to contain a chapter index. This function must be called by all the zone * threads with the same chapter number to correctly enter the thread barriers used to synchronize * the cache updates. */ int uds_update_sparse_cache(struct index_zone *zone, u64 virtual_chapter) { int result = UDS_SUCCESS; const struct uds_index *index = zone->index; struct sparse_cache *cache = index->volume->sparse_cache; if (uds_sparse_cache_contains(cache, virtual_chapter, zone->id)) return UDS_SUCCESS; /* * Wait for every zone thread to reach its corresponding barrier request and invoke this * function before starting to modify the cache. */ enter_threads_barrier(&cache->begin_update_barrier); /* * This is the start of the critical section: the zone zero thread is captain, effectively * holding an exclusive lock on the sparse cache. All the other zone threads must do * nothing between the two barriers. They will wait at the end_update_barrier again for the * captain to finish the update. */ if (zone->id == ZONE_ZERO) { unsigned int z; struct search_list *list = cache->search_lists[ZONE_ZERO]; purge_search_list(list, cache, zone->oldest_virtual_chapter); if (virtual_chapter >= index->oldest_virtual_chapter) { set_newest_entry(list, list->capacity - 1); result = cache_chapter_index(list->entries[0], virtual_chapter, index->volume); } for (z = 1; z < cache->zone_count; z++) copy_search_list(list, cache->search_lists[z]); } /* * This is the end of the critical section. All cache invariants must have been restored. */ enter_threads_barrier(&cache->end_update_barrier); return result; } void uds_invalidate_sparse_cache(struct sparse_cache *cache) { unsigned int i; for (i = 0; i < cache->capacity; i++) release_cached_chapter_index(&cache->chapters[i]); } static inline bool should_skip_chapter(struct cached_chapter_index *chapter, u64 oldest_chapter, u64 requested_chapter) { if ((chapter->virtual_chapter == NO_CHAPTER) || (chapter->virtual_chapter < oldest_chapter)) return true; if (requested_chapter != NO_CHAPTER) return requested_chapter != chapter->virtual_chapter; else return READ_ONCE(chapter->skip_search); } static int __must_check search_cached_chapter_index(struct cached_chapter_index *chapter, const struct index_geometry *geometry, const struct index_page_map *index_page_map, const struct uds_record_name *name, u16 *record_page_ptr) { u32 physical_chapter = uds_map_to_physical_chapter(geometry, chapter->virtual_chapter); u32 index_page_number = uds_find_index_page_number(index_page_map, name, physical_chapter); struct delta_index_page *index_page = &chapter->index_pages[index_page_number]; return uds_search_chapter_index_page(index_page, geometry, name, record_page_ptr); } int uds_search_sparse_cache(struct index_zone *zone, const struct uds_record_name *name, u64 *virtual_chapter_ptr, u16 *record_page_ptr) { int result; struct volume *volume = zone->index->volume; struct sparse_cache *cache = volume->sparse_cache; struct cached_chapter_index *chapter; struct search_list *search_list; u8 i; /* Search the entire cache unless a specific chapter was requested. */ bool search_one = (*virtual_chapter_ptr != NO_CHAPTER); *record_page_ptr = NO_CHAPTER_INDEX_ENTRY; search_list = cache->search_lists[zone->id]; for (i = 0; i < search_list->first_dead_entry; i++) { chapter = search_list->entries[i]; if (should_skip_chapter(chapter, zone->oldest_virtual_chapter, *virtual_chapter_ptr)) continue; result = search_cached_chapter_index(chapter, cache->geometry, volume->index_page_map, name, record_page_ptr); if (result != UDS_SUCCESS) return result; if (*record_page_ptr != NO_CHAPTER_INDEX_ENTRY) { /* * In theory, this might be a false match while a true match exists in * another chapter, but that's a very rare case and not worth the extra * search complexity. */ set_newest_entry(search_list, i); if (zone->id == ZONE_ZERO) score_search_hit(chapter); *virtual_chapter_ptr = chapter->virtual_chapter; return UDS_SUCCESS; } if (zone->id == ZONE_ZERO) score_search_miss(cache, chapter); if (search_one) break; } return UDS_SUCCESS; }