// SPDX-License-Identifier: GPL-2.0 /* * IOMMU API for s390 PCI devices * * Copyright IBM Corp. 2015 * Author(s): Gerald Schaefer */ #include #include #include #include #include #include #include #include "dma-iommu.h" static const struct iommu_ops s390_iommu_ops; static struct kmem_cache *dma_region_table_cache; static struct kmem_cache *dma_page_table_cache; static u64 s390_iommu_aperture; static u32 s390_iommu_aperture_factor = 1; struct s390_domain { struct iommu_domain domain; struct list_head devices; struct zpci_iommu_ctrs ctrs; unsigned long *dma_table; spinlock_t list_lock; struct rcu_head rcu; }; static inline unsigned int calc_rtx(dma_addr_t ptr) { return ((unsigned long)ptr >> ZPCI_RT_SHIFT) & ZPCI_INDEX_MASK; } static inline unsigned int calc_sx(dma_addr_t ptr) { return ((unsigned long)ptr >> ZPCI_ST_SHIFT) & ZPCI_INDEX_MASK; } static inline unsigned int calc_px(dma_addr_t ptr) { return ((unsigned long)ptr >> PAGE_SHIFT) & ZPCI_PT_MASK; } static inline void set_pt_pfaa(unsigned long *entry, phys_addr_t pfaa) { *entry &= ZPCI_PTE_FLAG_MASK; *entry |= (pfaa & ZPCI_PTE_ADDR_MASK); } static inline void set_rt_sto(unsigned long *entry, phys_addr_t sto) { *entry &= ZPCI_RTE_FLAG_MASK; *entry |= (sto & ZPCI_RTE_ADDR_MASK); *entry |= ZPCI_TABLE_TYPE_RTX; } static inline void set_st_pto(unsigned long *entry, phys_addr_t pto) { *entry &= ZPCI_STE_FLAG_MASK; *entry |= (pto & ZPCI_STE_ADDR_MASK); *entry |= ZPCI_TABLE_TYPE_SX; } static inline void validate_rt_entry(unsigned long *entry) { *entry &= ~ZPCI_TABLE_VALID_MASK; *entry &= ~ZPCI_TABLE_OFFSET_MASK; *entry |= ZPCI_TABLE_VALID; *entry |= ZPCI_TABLE_LEN_RTX; } static inline void validate_st_entry(unsigned long *entry) { *entry &= ~ZPCI_TABLE_VALID_MASK; *entry |= ZPCI_TABLE_VALID; } static inline void invalidate_pt_entry(unsigned long *entry) { WARN_ON_ONCE((*entry & ZPCI_PTE_VALID_MASK) == ZPCI_PTE_INVALID); *entry &= ~ZPCI_PTE_VALID_MASK; *entry |= ZPCI_PTE_INVALID; } static inline void validate_pt_entry(unsigned long *entry) { WARN_ON_ONCE((*entry & ZPCI_PTE_VALID_MASK) == ZPCI_PTE_VALID); *entry &= ~ZPCI_PTE_VALID_MASK; *entry |= ZPCI_PTE_VALID; } static inline void entry_set_protected(unsigned long *entry) { *entry &= ~ZPCI_TABLE_PROT_MASK; *entry |= ZPCI_TABLE_PROTECTED; } static inline void entry_clr_protected(unsigned long *entry) { *entry &= ~ZPCI_TABLE_PROT_MASK; *entry |= ZPCI_TABLE_UNPROTECTED; } static inline int reg_entry_isvalid(unsigned long entry) { return (entry & ZPCI_TABLE_VALID_MASK) == ZPCI_TABLE_VALID; } static inline int pt_entry_isvalid(unsigned long entry) { return (entry & ZPCI_PTE_VALID_MASK) == ZPCI_PTE_VALID; } static inline unsigned long *get_rt_sto(unsigned long entry) { if ((entry & ZPCI_TABLE_TYPE_MASK) == ZPCI_TABLE_TYPE_RTX) return phys_to_virt(entry & ZPCI_RTE_ADDR_MASK); else return NULL; } static inline unsigned long *get_st_pto(unsigned long entry) { if ((entry & ZPCI_TABLE_TYPE_MASK) == ZPCI_TABLE_TYPE_SX) return phys_to_virt(entry & ZPCI_STE_ADDR_MASK); else return NULL; } static int __init dma_alloc_cpu_table_caches(void) { dma_region_table_cache = kmem_cache_create("PCI_DMA_region_tables", ZPCI_TABLE_SIZE, ZPCI_TABLE_ALIGN, 0, NULL); if (!dma_region_table_cache) return -ENOMEM; dma_page_table_cache = kmem_cache_create("PCI_DMA_page_tables", ZPCI_PT_SIZE, ZPCI_PT_ALIGN, 0, NULL); if (!dma_page_table_cache) { kmem_cache_destroy(dma_region_table_cache); return -ENOMEM; } return 0; } static unsigned long *dma_alloc_cpu_table(gfp_t gfp) { unsigned long *table, *entry; table = kmem_cache_alloc(dma_region_table_cache, gfp); if (!table) return NULL; for (entry = table; entry < table + ZPCI_TABLE_ENTRIES; entry++) *entry = ZPCI_TABLE_INVALID; return table; } static void dma_free_cpu_table(void *table) { kmem_cache_free(dma_region_table_cache, table); } static void dma_free_page_table(void *table) { kmem_cache_free(dma_page_table_cache, table); } static void dma_free_seg_table(unsigned long entry) { unsigned long *sto = get_rt_sto(entry); int sx; for (sx = 0; sx < ZPCI_TABLE_ENTRIES; sx++) if (reg_entry_isvalid(sto[sx])) dma_free_page_table(get_st_pto(sto[sx])); dma_free_cpu_table(sto); } static void dma_cleanup_tables(unsigned long *table) { int rtx; if (!table) return; for (rtx = 0; rtx < ZPCI_TABLE_ENTRIES; rtx++) if (reg_entry_isvalid(table[rtx])) dma_free_seg_table(table[rtx]); dma_free_cpu_table(table); } static unsigned long *dma_alloc_page_table(gfp_t gfp) { unsigned long *table, *entry; table = kmem_cache_alloc(dma_page_table_cache, gfp); if (!table) return NULL; for (entry = table; entry < table + ZPCI_PT_ENTRIES; entry++) *entry = ZPCI_PTE_INVALID; return table; } static unsigned long *dma_get_seg_table_origin(unsigned long *rtep, gfp_t gfp) { unsigned long old_rte, rte; unsigned long *sto; rte = READ_ONCE(*rtep); if (reg_entry_isvalid(rte)) { sto = get_rt_sto(rte); } else { sto = dma_alloc_cpu_table(gfp); if (!sto) return NULL; set_rt_sto(&rte, virt_to_phys(sto)); validate_rt_entry(&rte); entry_clr_protected(&rte); old_rte = cmpxchg(rtep, ZPCI_TABLE_INVALID, rte); if (old_rte != ZPCI_TABLE_INVALID) { /* Somone else was faster, use theirs */ dma_free_cpu_table(sto); sto = get_rt_sto(old_rte); } } return sto; } static unsigned long *dma_get_page_table_origin(unsigned long *step, gfp_t gfp) { unsigned long old_ste, ste; unsigned long *pto; ste = READ_ONCE(*step); if (reg_entry_isvalid(ste)) { pto = get_st_pto(ste); } else { pto = dma_alloc_page_table(gfp); if (!pto) return NULL; set_st_pto(&ste, virt_to_phys(pto)); validate_st_entry(&ste); entry_clr_protected(&ste); old_ste = cmpxchg(step, ZPCI_TABLE_INVALID, ste); if (old_ste != ZPCI_TABLE_INVALID) { /* Somone else was faster, use theirs */ dma_free_page_table(pto); pto = get_st_pto(old_ste); } } return pto; } static unsigned long *dma_walk_cpu_trans(unsigned long *rto, dma_addr_t dma_addr, gfp_t gfp) { unsigned long *sto, *pto; unsigned int rtx, sx, px; rtx = calc_rtx(dma_addr); sto = dma_get_seg_table_origin(&rto[rtx], gfp); if (!sto) return NULL; sx = calc_sx(dma_addr); pto = dma_get_page_table_origin(&sto[sx], gfp); if (!pto) return NULL; px = calc_px(dma_addr); return &pto[px]; } static void dma_update_cpu_trans(unsigned long *ptep, phys_addr_t page_addr, int flags) { unsigned long pte; pte = READ_ONCE(*ptep); if (flags & ZPCI_PTE_INVALID) { invalidate_pt_entry(&pte); } else { set_pt_pfaa(&pte, page_addr); validate_pt_entry(&pte); } if (flags & ZPCI_TABLE_PROTECTED) entry_set_protected(&pte); else entry_clr_protected(&pte); xchg(ptep, pte); } static struct s390_domain *to_s390_domain(struct iommu_domain *dom) { return container_of(dom, struct s390_domain, domain); } static bool s390_iommu_capable(struct device *dev, enum iommu_cap cap) { struct zpci_dev *zdev = to_zpci_dev(dev); switch (cap) { case IOMMU_CAP_CACHE_COHERENCY: return true; case IOMMU_CAP_DEFERRED_FLUSH: return zdev->pft != PCI_FUNC_TYPE_ISM; default: return false; } } static struct iommu_domain *s390_domain_alloc_paging(struct device *dev) { struct s390_domain *s390_domain; s390_domain = kzalloc(sizeof(*s390_domain), GFP_KERNEL); if (!s390_domain) return NULL; s390_domain->dma_table = dma_alloc_cpu_table(GFP_KERNEL); if (!s390_domain->dma_table) { kfree(s390_domain); return NULL; } s390_domain->domain.geometry.force_aperture = true; s390_domain->domain.geometry.aperture_start = 0; s390_domain->domain.geometry.aperture_end = ZPCI_TABLE_SIZE_RT - 1; spin_lock_init(&s390_domain->list_lock); INIT_LIST_HEAD_RCU(&s390_domain->devices); return &s390_domain->domain; } static void s390_iommu_rcu_free_domain(struct rcu_head *head) { struct s390_domain *s390_domain = container_of(head, struct s390_domain, rcu); dma_cleanup_tables(s390_domain->dma_table); kfree(s390_domain); } static void s390_domain_free(struct iommu_domain *domain) { struct s390_domain *s390_domain = to_s390_domain(domain); rcu_read_lock(); WARN_ON(!list_empty(&s390_domain->devices)); rcu_read_unlock(); call_rcu(&s390_domain->rcu, s390_iommu_rcu_free_domain); } static void s390_iommu_detach_device(struct iommu_domain *domain, struct device *dev) { struct s390_domain *s390_domain = to_s390_domain(domain); struct zpci_dev *zdev = to_zpci_dev(dev); unsigned long flags; spin_lock_irqsave(&s390_domain->list_lock, flags); list_del_rcu(&zdev->iommu_list); spin_unlock_irqrestore(&s390_domain->list_lock, flags); zpci_unregister_ioat(zdev, 0); zdev->s390_domain = NULL; zdev->dma_table = NULL; } static int s390_iommu_attach_device(struct iommu_domain *domain, struct device *dev) { struct s390_domain *s390_domain = to_s390_domain(domain); struct zpci_dev *zdev = to_zpci_dev(dev); unsigned long flags; u8 status; int cc; if (!zdev) return -ENODEV; if (WARN_ON(domain->geometry.aperture_start > zdev->end_dma || domain->geometry.aperture_end < zdev->start_dma)) return -EINVAL; if (zdev->s390_domain) s390_iommu_detach_device(&zdev->s390_domain->domain, dev); cc = zpci_register_ioat(zdev, 0, zdev->start_dma, zdev->end_dma, virt_to_phys(s390_domain->dma_table), &status); /* * If the device is undergoing error recovery the reset code * will re-establish the new domain. */ if (cc && status != ZPCI_PCI_ST_FUNC_NOT_AVAIL) return -EIO; zdev->dma_table = s390_domain->dma_table; zdev->s390_domain = s390_domain; spin_lock_irqsave(&s390_domain->list_lock, flags); list_add_rcu(&zdev->iommu_list, &s390_domain->devices); spin_unlock_irqrestore(&s390_domain->list_lock, flags); return 0; } static void s390_iommu_get_resv_regions(struct device *dev, struct list_head *list) { struct zpci_dev *zdev = to_zpci_dev(dev); struct iommu_resv_region *region; if (zdev->start_dma) { region = iommu_alloc_resv_region(0, zdev->start_dma, 0, IOMMU_RESV_RESERVED, GFP_KERNEL); if (!region) return; list_add_tail(®ion->list, list); } if (zdev->end_dma < ZPCI_TABLE_SIZE_RT - 1) { region = iommu_alloc_resv_region(zdev->end_dma + 1, ZPCI_TABLE_SIZE_RT - zdev->end_dma - 1, 0, IOMMU_RESV_RESERVED, GFP_KERNEL); if (!region) return; list_add_tail(®ion->list, list); } } static struct iommu_device *s390_iommu_probe_device(struct device *dev) { struct zpci_dev *zdev; if (!dev_is_pci(dev)) return ERR_PTR(-ENODEV); zdev = to_zpci_dev(dev); if (zdev->start_dma > zdev->end_dma || zdev->start_dma > ZPCI_TABLE_SIZE_RT - 1) return ERR_PTR(-EINVAL); if (zdev->end_dma > ZPCI_TABLE_SIZE_RT - 1) zdev->end_dma = ZPCI_TABLE_SIZE_RT - 1; if (zdev->tlb_refresh) dev->iommu->shadow_on_flush = 1; return &zdev->iommu_dev; } static void s390_iommu_release_device(struct device *dev) { struct zpci_dev *zdev = to_zpci_dev(dev); /* * release_device is expected to detach any domain currently attached * to the device, but keep it attached to other devices in the group. */ if (zdev) s390_iommu_detach_device(&zdev->s390_domain->domain, dev); } static int zpci_refresh_all(struct zpci_dev *zdev) { return zpci_refresh_trans((u64)zdev->fh << 32, zdev->start_dma, zdev->end_dma - zdev->start_dma + 1); } static void s390_iommu_flush_iotlb_all(struct iommu_domain *domain) { struct s390_domain *s390_domain = to_s390_domain(domain); struct zpci_dev *zdev; rcu_read_lock(); list_for_each_entry_rcu(zdev, &s390_domain->devices, iommu_list) { atomic64_inc(&s390_domain->ctrs.global_rpcits); zpci_refresh_all(zdev); } rcu_read_unlock(); } static void s390_iommu_iotlb_sync(struct iommu_domain *domain, struct iommu_iotlb_gather *gather) { struct s390_domain *s390_domain = to_s390_domain(domain); size_t size = gather->end - gather->start + 1; struct zpci_dev *zdev; /* If gather was never added to there is nothing to flush */ if (!gather->end) return; rcu_read_lock(); list_for_each_entry_rcu(zdev, &s390_domain->devices, iommu_list) { atomic64_inc(&s390_domain->ctrs.sync_rpcits); zpci_refresh_trans((u64)zdev->fh << 32, gather->start, size); } rcu_read_unlock(); } static int s390_iommu_iotlb_sync_map(struct iommu_domain *domain, unsigned long iova, size_t size) { struct s390_domain *s390_domain = to_s390_domain(domain); struct zpci_dev *zdev; int ret = 0; rcu_read_lock(); list_for_each_entry_rcu(zdev, &s390_domain->devices, iommu_list) { if (!zdev->tlb_refresh) continue; atomic64_inc(&s390_domain->ctrs.sync_map_rpcits); ret = zpci_refresh_trans((u64)zdev->fh << 32, iova, size); /* * let the hypervisor discover invalidated entries * allowing it to free IOVAs and unpin pages */ if (ret == -ENOMEM) { ret = zpci_refresh_all(zdev); if (ret) break; } } rcu_read_unlock(); return ret; } static int s390_iommu_validate_trans(struct s390_domain *s390_domain, phys_addr_t pa, dma_addr_t dma_addr, unsigned long nr_pages, int flags, gfp_t gfp) { phys_addr_t page_addr = pa & PAGE_MASK; unsigned long *entry; unsigned long i; int rc; for (i = 0; i < nr_pages; i++) { entry = dma_walk_cpu_trans(s390_domain->dma_table, dma_addr, gfp); if (unlikely(!entry)) { rc = -ENOMEM; goto undo_cpu_trans; } dma_update_cpu_trans(entry, page_addr, flags); page_addr += PAGE_SIZE; dma_addr += PAGE_SIZE; } return 0; undo_cpu_trans: while (i-- > 0) { dma_addr -= PAGE_SIZE; entry = dma_walk_cpu_trans(s390_domain->dma_table, dma_addr, gfp); if (!entry) break; dma_update_cpu_trans(entry, 0, ZPCI_PTE_INVALID); } return rc; } static int s390_iommu_invalidate_trans(struct s390_domain *s390_domain, dma_addr_t dma_addr, unsigned long nr_pages) { unsigned long *entry; unsigned long i; int rc = 0; for (i = 0; i < nr_pages; i++) { entry = dma_walk_cpu_trans(s390_domain->dma_table, dma_addr, GFP_ATOMIC); if (unlikely(!entry)) { rc = -EINVAL; break; } dma_update_cpu_trans(entry, 0, ZPCI_PTE_INVALID); dma_addr += PAGE_SIZE; } return rc; } static int s390_iommu_map_pages(struct iommu_domain *domain, unsigned long iova, phys_addr_t paddr, size_t pgsize, size_t pgcount, int prot, gfp_t gfp, size_t *mapped) { struct s390_domain *s390_domain = to_s390_domain(domain); size_t size = pgcount << __ffs(pgsize); int flags = ZPCI_PTE_VALID, rc = 0; if (pgsize != SZ_4K) return -EINVAL; if (iova < s390_domain->domain.geometry.aperture_start || (iova + size - 1) > s390_domain->domain.geometry.aperture_end) return -EINVAL; if (!IS_ALIGNED(iova | paddr, pgsize)) return -EINVAL; if (!(prot & IOMMU_WRITE)) flags |= ZPCI_TABLE_PROTECTED; rc = s390_iommu_validate_trans(s390_domain, paddr, iova, pgcount, flags, gfp); if (!rc) { *mapped = size; atomic64_add(pgcount, &s390_domain->ctrs.mapped_pages); } return rc; } static phys_addr_t s390_iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova) { struct s390_domain *s390_domain = to_s390_domain(domain); unsigned long *rto, *sto, *pto; unsigned long ste, pte, rte; unsigned int rtx, sx, px; phys_addr_t phys = 0; if (iova < domain->geometry.aperture_start || iova > domain->geometry.aperture_end) return 0; rtx = calc_rtx(iova); sx = calc_sx(iova); px = calc_px(iova); rto = s390_domain->dma_table; rte = READ_ONCE(rto[rtx]); if (reg_entry_isvalid(rte)) { sto = get_rt_sto(rte); ste = READ_ONCE(sto[sx]); if (reg_entry_isvalid(ste)) { pto = get_st_pto(ste); pte = READ_ONCE(pto[px]); if (pt_entry_isvalid(pte)) phys = pte & ZPCI_PTE_ADDR_MASK; } } return phys; } static size_t s390_iommu_unmap_pages(struct iommu_domain *domain, unsigned long iova, size_t pgsize, size_t pgcount, struct iommu_iotlb_gather *gather) { struct s390_domain *s390_domain = to_s390_domain(domain); size_t size = pgcount << __ffs(pgsize); int rc; if (WARN_ON(iova < s390_domain->domain.geometry.aperture_start || (iova + size - 1) > s390_domain->domain.geometry.aperture_end)) return 0; rc = s390_iommu_invalidate_trans(s390_domain, iova, pgcount); if (rc) return 0; iommu_iotlb_gather_add_range(gather, iova, size); atomic64_add(pgcount, &s390_domain->ctrs.unmapped_pages); return size; } static void s390_iommu_probe_finalize(struct device *dev) { iommu_setup_dma_ops(dev, 0, U64_MAX); } struct zpci_iommu_ctrs *zpci_get_iommu_ctrs(struct zpci_dev *zdev) { if (!zdev || !zdev->s390_domain) return NULL; return &zdev->s390_domain->ctrs; } int zpci_init_iommu(struct zpci_dev *zdev) { u64 aperture_size; int rc = 0; rc = iommu_device_sysfs_add(&zdev->iommu_dev, NULL, NULL, "s390-iommu.%08x", zdev->fid); if (rc) goto out_err; rc = iommu_device_register(&zdev->iommu_dev, &s390_iommu_ops, NULL); if (rc) goto out_sysfs; zdev->start_dma = PAGE_ALIGN(zdev->start_dma); aperture_size = min3(s390_iommu_aperture, ZPCI_TABLE_SIZE_RT - zdev->start_dma, zdev->end_dma - zdev->start_dma + 1); zdev->end_dma = zdev->start_dma + aperture_size - 1; return 0; out_sysfs: iommu_device_sysfs_remove(&zdev->iommu_dev); out_err: return rc; } void zpci_destroy_iommu(struct zpci_dev *zdev) { iommu_device_unregister(&zdev->iommu_dev); iommu_device_sysfs_remove(&zdev->iommu_dev); } static int __init s390_iommu_setup(char *str) { if (!strcmp(str, "strict")) { pr_warn("s390_iommu=strict deprecated; use iommu.strict=1 instead\n"); iommu_set_dma_strict(); } return 1; } __setup("s390_iommu=", s390_iommu_setup); static int __init s390_iommu_aperture_setup(char *str) { if (kstrtou32(str, 10, &s390_iommu_aperture_factor)) s390_iommu_aperture_factor = 1; return 1; } __setup("s390_iommu_aperture=", s390_iommu_aperture_setup); static int __init s390_iommu_init(void) { int rc; iommu_dma_forcedac = true; s390_iommu_aperture = (u64)virt_to_phys(high_memory); if (!s390_iommu_aperture_factor) s390_iommu_aperture = ULONG_MAX; else s390_iommu_aperture *= s390_iommu_aperture_factor; rc = dma_alloc_cpu_table_caches(); if (rc) return rc; return rc; } subsys_initcall(s390_iommu_init); static const struct iommu_ops s390_iommu_ops = { .capable = s390_iommu_capable, .domain_alloc_paging = s390_domain_alloc_paging, .probe_device = s390_iommu_probe_device, .probe_finalize = s390_iommu_probe_finalize, .release_device = s390_iommu_release_device, .device_group = generic_device_group, .pgsize_bitmap = SZ_4K, .get_resv_regions = s390_iommu_get_resv_regions, .default_domain_ops = &(const struct iommu_domain_ops) { .attach_dev = s390_iommu_attach_device, .map_pages = s390_iommu_map_pages, .unmap_pages = s390_iommu_unmap_pages, .flush_iotlb_all = s390_iommu_flush_iotlb_all, .iotlb_sync = s390_iommu_iotlb_sync, .iotlb_sync_map = s390_iommu_iotlb_sync_map, .iova_to_phys = s390_iommu_iova_to_phys, .free = s390_domain_free, } };