// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause /* * Copyright(c) 2020 Cornelis Networks, Inc. * Copyright(c) 2015-2018 Intel Corporation. */ #include #include #include "mmu_rb.h" #include "user_exp_rcv.h" #include "trace.h" static void unlock_exp_tids(struct hfi1_ctxtdata *uctxt, struct exp_tid_set *set, struct hfi1_filedata *fd); static u32 find_phys_blocks(struct tid_user_buf *tidbuf, unsigned int npages); static int set_rcvarray_entry(struct hfi1_filedata *fd, struct tid_user_buf *tbuf, u32 rcventry, struct tid_group *grp, u16 pageidx, unsigned int npages); static void cacheless_tid_rb_remove(struct hfi1_filedata *fdata, struct tid_rb_node *tnode); static bool tid_rb_invalidate(struct mmu_interval_notifier *mni, const struct mmu_notifier_range *range, unsigned long cur_seq); static bool tid_cover_invalidate(struct mmu_interval_notifier *mni, const struct mmu_notifier_range *range, unsigned long cur_seq); static int program_rcvarray(struct hfi1_filedata *fd, struct tid_user_buf *, struct tid_group *grp, u16 count, u32 *tidlist, unsigned int *tididx, unsigned int *pmapped); static int unprogram_rcvarray(struct hfi1_filedata *fd, u32 tidinfo); static void __clear_tid_node(struct hfi1_filedata *fd, struct tid_rb_node *node); static void clear_tid_node(struct hfi1_filedata *fd, struct tid_rb_node *node); static const struct mmu_interval_notifier_ops tid_mn_ops = { .invalidate = tid_rb_invalidate, }; static const struct mmu_interval_notifier_ops tid_cover_ops = { .invalidate = tid_cover_invalidate, }; /* * Initialize context and file private data needed for Expected * receive caching. This needs to be done after the context has * been configured with the eager/expected RcvEntry counts. */ int hfi1_user_exp_rcv_init(struct hfi1_filedata *fd, struct hfi1_ctxtdata *uctxt) { int ret = 0; fd->entry_to_rb = kcalloc(uctxt->expected_count, sizeof(struct rb_node *), GFP_KERNEL); if (!fd->entry_to_rb) return -ENOMEM; if (!HFI1_CAP_UGET_MASK(uctxt->flags, TID_UNMAP)) { fd->invalid_tid_idx = 0; fd->invalid_tids = kcalloc(uctxt->expected_count, sizeof(*fd->invalid_tids), GFP_KERNEL); if (!fd->invalid_tids) { kfree(fd->entry_to_rb); fd->entry_to_rb = NULL; return -ENOMEM; } fd->use_mn = true; } /* * PSM does not have a good way to separate, count, and * effectively enforce a limit on RcvArray entries used by * subctxts (when context sharing is used) when TID caching * is enabled. To help with that, we calculate a per-process * RcvArray entry share and enforce that. * If TID caching is not in use, PSM deals with usage on its * own. In that case, we allow any subctxt to take all of the * entries. * * Make sure that we set the tid counts only after successful * init. */ spin_lock(&fd->tid_lock); if (uctxt->subctxt_cnt && fd->use_mn) { u16 remainder; fd->tid_limit = uctxt->expected_count / uctxt->subctxt_cnt; remainder = uctxt->expected_count % uctxt->subctxt_cnt; if (remainder && fd->subctxt < remainder) fd->tid_limit++; } else { fd->tid_limit = uctxt->expected_count; } spin_unlock(&fd->tid_lock); return ret; } void hfi1_user_exp_rcv_free(struct hfi1_filedata *fd) { struct hfi1_ctxtdata *uctxt = fd->uctxt; mutex_lock(&uctxt->exp_mutex); if (!EXP_TID_SET_EMPTY(uctxt->tid_full_list)) unlock_exp_tids(uctxt, &uctxt->tid_full_list, fd); if (!EXP_TID_SET_EMPTY(uctxt->tid_used_list)) unlock_exp_tids(uctxt, &uctxt->tid_used_list, fd); mutex_unlock(&uctxt->exp_mutex); kfree(fd->invalid_tids); fd->invalid_tids = NULL; kfree(fd->entry_to_rb); fd->entry_to_rb = NULL; } /* * Release pinned receive buffer pages. * * @mapped: true if the pages have been DMA mapped. false otherwise. * @idx: Index of the first page to unpin. * @npages: No of pages to unpin. * * If the pages have been DMA mapped (indicated by mapped parameter), their * info will be passed via a struct tid_rb_node. If they haven't been mapped, * their info will be passed via a struct tid_user_buf. */ static void unpin_rcv_pages(struct hfi1_filedata *fd, struct tid_user_buf *tidbuf, struct tid_rb_node *node, unsigned int idx, unsigned int npages, bool mapped) { struct page **pages; struct hfi1_devdata *dd = fd->uctxt->dd; struct mm_struct *mm; if (mapped) { dma_unmap_single(&dd->pcidev->dev, node->dma_addr, node->npages * PAGE_SIZE, DMA_FROM_DEVICE); pages = &node->pages[idx]; mm = mm_from_tid_node(node); } else { pages = &tidbuf->pages[idx]; mm = current->mm; } hfi1_release_user_pages(mm, pages, npages, mapped); fd->tid_n_pinned -= npages; } /* * Pin receive buffer pages. */ static int pin_rcv_pages(struct hfi1_filedata *fd, struct tid_user_buf *tidbuf) { int pinned; unsigned int npages = tidbuf->npages; unsigned long vaddr = tidbuf->vaddr; struct page **pages = NULL; struct hfi1_devdata *dd = fd->uctxt->dd; if (npages > fd->uctxt->expected_count) { dd_dev_err(dd, "Expected buffer too big\n"); return -EINVAL; } /* Allocate the array of struct page pointers needed for pinning */ pages = kcalloc(npages, sizeof(*pages), GFP_KERNEL); if (!pages) return -ENOMEM; /* * Pin all the pages of the user buffer. If we can't pin all the * pages, accept the amount pinned so far and program only that. * User space knows how to deal with partially programmed buffers. */ if (!hfi1_can_pin_pages(dd, current->mm, fd->tid_n_pinned, npages)) { kfree(pages); return -ENOMEM; } pinned = hfi1_acquire_user_pages(current->mm, vaddr, npages, true, pages); if (pinned <= 0) { kfree(pages); return pinned; } tidbuf->pages = pages; fd->tid_n_pinned += pinned; return pinned; } /* * RcvArray entry allocation for Expected Receives is done by the * following algorithm: * * The context keeps 3 lists of groups of RcvArray entries: * 1. List of empty groups - tid_group_list * This list is created during user context creation and * contains elements which describe sets (of 8) of empty * RcvArray entries. * 2. List of partially used groups - tid_used_list * This list contains sets of RcvArray entries which are * not completely used up. Another mapping request could * use some of all of the remaining entries. * 3. List of full groups - tid_full_list * This is the list where sets that are completely used * up go. * * An attempt to optimize the usage of RcvArray entries is * made by finding all sets of physically contiguous pages in a * user's buffer. * These physically contiguous sets are further split into * sizes supported by the receive engine of the HFI. The * resulting sets of pages are stored in struct tid_pageset, * which describes the sets as: * * .count - number of pages in this set * * .idx - starting index into struct page ** array * of this set * * From this point on, the algorithm deals with the page sets * described above. The number of pagesets is divided by the * RcvArray group size to produce the number of full groups * needed. * * Groups from the 3 lists are manipulated using the following * rules: * 1. For each set of 8 pagesets, a complete group from * tid_group_list is taken, programmed, and moved to * the tid_full_list list. * 2. For all remaining pagesets: * 2.1 If the tid_used_list is empty and the tid_group_list * is empty, stop processing pageset and return only * what has been programmed up to this point. * 2.2 If the tid_used_list is empty and the tid_group_list * is not empty, move a group from tid_group_list to * tid_used_list. * 2.3 For each group is tid_used_group, program as much as * can fit into the group. If the group becomes fully * used, move it to tid_full_list. */ int hfi1_user_exp_rcv_setup(struct hfi1_filedata *fd, struct hfi1_tid_info *tinfo) { int ret = 0, need_group = 0, pinned; struct hfi1_ctxtdata *uctxt = fd->uctxt; struct hfi1_devdata *dd = uctxt->dd; unsigned int ngroups, pageset_count, tididx = 0, mapped, mapped_pages = 0; u32 *tidlist = NULL; struct tid_user_buf *tidbuf; unsigned long mmu_seq = 0; if (!PAGE_ALIGNED(tinfo->vaddr)) return -EINVAL; if (tinfo->length == 0) return -EINVAL; tidbuf = kzalloc(sizeof(*tidbuf), GFP_KERNEL); if (!tidbuf) return -ENOMEM; mutex_init(&tidbuf->cover_mutex); tidbuf->vaddr = tinfo->vaddr; tidbuf->length = tinfo->length; tidbuf->npages = num_user_pages(tidbuf->vaddr, tidbuf->length); tidbuf->psets = kcalloc(uctxt->expected_count, sizeof(*tidbuf->psets), GFP_KERNEL); if (!tidbuf->psets) { ret = -ENOMEM; goto fail_release_mem; } if (fd->use_mn) { ret = mmu_interval_notifier_insert( &tidbuf->notifier, current->mm, tidbuf->vaddr, tidbuf->npages * PAGE_SIZE, &tid_cover_ops); if (ret) goto fail_release_mem; mmu_seq = mmu_interval_read_begin(&tidbuf->notifier); } pinned = pin_rcv_pages(fd, tidbuf); if (pinned <= 0) { ret = (pinned < 0) ? pinned : -ENOSPC; goto fail_unpin; } /* Find sets of physically contiguous pages */ tidbuf->n_psets = find_phys_blocks(tidbuf, pinned); /* Reserve the number of expected tids to be used. */ spin_lock(&fd->tid_lock); if (fd->tid_used + tidbuf->n_psets > fd->tid_limit) pageset_count = fd->tid_limit - fd->tid_used; else pageset_count = tidbuf->n_psets; fd->tid_used += pageset_count; spin_unlock(&fd->tid_lock); if (!pageset_count) { ret = -ENOSPC; goto fail_unreserve; } ngroups = pageset_count / dd->rcv_entries.group_size; tidlist = kcalloc(pageset_count, sizeof(*tidlist), GFP_KERNEL); if (!tidlist) { ret = -ENOMEM; goto fail_unreserve; } tididx = 0; /* * From this point on, we are going to be using shared (between master * and subcontexts) context resources. We need to take the lock. */ mutex_lock(&uctxt->exp_mutex); /* * The first step is to program the RcvArray entries which are complete * groups. */ while (ngroups && uctxt->tid_group_list.count) { struct tid_group *grp = tid_group_pop(&uctxt->tid_group_list); ret = program_rcvarray(fd, tidbuf, grp, dd->rcv_entries.group_size, tidlist, &tididx, &mapped); /* * If there was a failure to program the RcvArray * entries for the entire group, reset the grp fields * and add the grp back to the free group list. */ if (ret <= 0) { tid_group_add_tail(grp, &uctxt->tid_group_list); hfi1_cdbg(TID, "Failed to program RcvArray group %d", ret); goto unlock; } tid_group_add_tail(grp, &uctxt->tid_full_list); ngroups--; mapped_pages += mapped; } while (tididx < pageset_count) { struct tid_group *grp, *ptr; /* * If we don't have any partially used tid groups, check * if we have empty groups. If so, take one from there and * put in the partially used list. */ if (!uctxt->tid_used_list.count || need_group) { if (!uctxt->tid_group_list.count) goto unlock; grp = tid_group_pop(&uctxt->tid_group_list); tid_group_add_tail(grp, &uctxt->tid_used_list); need_group = 0; } /* * There is an optimization opportunity here - instead of * fitting as many page sets as we can, check for a group * later on in the list that could fit all of them. */ list_for_each_entry_safe(grp, ptr, &uctxt->tid_used_list.list, list) { unsigned use = min_t(unsigned, pageset_count - tididx, grp->size - grp->used); ret = program_rcvarray(fd, tidbuf, grp, use, tidlist, &tididx, &mapped); if (ret < 0) { hfi1_cdbg(TID, "Failed to program RcvArray entries %d", ret); goto unlock; } else if (ret > 0) { if (grp->used == grp->size) tid_group_move(grp, &uctxt->tid_used_list, &uctxt->tid_full_list); mapped_pages += mapped; need_group = 0; /* Check if we are done so we break out early */ if (tididx >= pageset_count) break; } else if (WARN_ON(ret == 0)) { /* * If ret is 0, we did not program any entries * into this group, which can only happen if * we've screwed up the accounting somewhere. * Warn and try to continue. */ need_group = 1; } } } unlock: mutex_unlock(&uctxt->exp_mutex); hfi1_cdbg(TID, "total mapped: tidpairs:%u pages:%u (%d)", tididx, mapped_pages, ret); /* fail if nothing was programmed, set error if none provided */ if (tididx == 0) { if (ret >= 0) ret = -ENOSPC; goto fail_unreserve; } /* adjust reserved tid_used to actual count */ spin_lock(&fd->tid_lock); fd->tid_used -= pageset_count - tididx; spin_unlock(&fd->tid_lock); /* unpin all pages not covered by a TID */ unpin_rcv_pages(fd, tidbuf, NULL, mapped_pages, pinned - mapped_pages, false); if (fd->use_mn) { /* check for an invalidate during setup */ bool fail = false; mutex_lock(&tidbuf->cover_mutex); fail = mmu_interval_read_retry(&tidbuf->notifier, mmu_seq); mutex_unlock(&tidbuf->cover_mutex); if (fail) { ret = -EBUSY; goto fail_unprogram; } } tinfo->tidcnt = tididx; tinfo->length = mapped_pages * PAGE_SIZE; if (copy_to_user(u64_to_user_ptr(tinfo->tidlist), tidlist, sizeof(tidlist[0]) * tididx)) { ret = -EFAULT; goto fail_unprogram; } if (fd->use_mn) mmu_interval_notifier_remove(&tidbuf->notifier); kfree(tidbuf->pages); kfree(tidbuf->psets); kfree(tidbuf); kfree(tidlist); return 0; fail_unprogram: /* unprogram, unmap, and unpin all allocated TIDs */ tinfo->tidlist = (unsigned long)tidlist; hfi1_user_exp_rcv_clear(fd, tinfo); tinfo->tidlist = 0; pinned = 0; /* nothing left to unpin */ pageset_count = 0; /* nothing left reserved */ fail_unreserve: spin_lock(&fd->tid_lock); fd->tid_used -= pageset_count; spin_unlock(&fd->tid_lock); fail_unpin: if (fd->use_mn) mmu_interval_notifier_remove(&tidbuf->notifier); if (pinned > 0) unpin_rcv_pages(fd, tidbuf, NULL, 0, pinned, false); fail_release_mem: kfree(tidbuf->pages); kfree(tidbuf->psets); kfree(tidbuf); kfree(tidlist); return ret; } int hfi1_user_exp_rcv_clear(struct hfi1_filedata *fd, struct hfi1_tid_info *tinfo) { int ret = 0; struct hfi1_ctxtdata *uctxt = fd->uctxt; u32 *tidinfo; unsigned tididx; if (unlikely(tinfo->tidcnt > fd->tid_used)) return -EINVAL; tidinfo = memdup_array_user(u64_to_user_ptr(tinfo->tidlist), tinfo->tidcnt, sizeof(tidinfo[0])); if (IS_ERR(tidinfo)) return PTR_ERR(tidinfo); mutex_lock(&uctxt->exp_mutex); for (tididx = 0; tididx < tinfo->tidcnt; tididx++) { ret = unprogram_rcvarray(fd, tidinfo[tididx]); if (ret) { hfi1_cdbg(TID, "Failed to unprogram rcv array %d", ret); break; } } spin_lock(&fd->tid_lock); fd->tid_used -= tididx; spin_unlock(&fd->tid_lock); tinfo->tidcnt = tididx; mutex_unlock(&uctxt->exp_mutex); kfree(tidinfo); return ret; } int hfi1_user_exp_rcv_invalid(struct hfi1_filedata *fd, struct hfi1_tid_info *tinfo) { struct hfi1_ctxtdata *uctxt = fd->uctxt; unsigned long *ev = uctxt->dd->events + (uctxt_offset(uctxt) + fd->subctxt); u32 *array; int ret = 0; /* * copy_to_user() can sleep, which will leave the invalid_lock * locked and cause the MMU notifier to be blocked on the lock * for a long time. * Copy the data to a local buffer so we can release the lock. */ array = kcalloc(uctxt->expected_count, sizeof(*array), GFP_KERNEL); if (!array) return -EFAULT; spin_lock(&fd->invalid_lock); if (fd->invalid_tid_idx) { memcpy(array, fd->invalid_tids, sizeof(*array) * fd->invalid_tid_idx); memset(fd->invalid_tids, 0, sizeof(*fd->invalid_tids) * fd->invalid_tid_idx); tinfo->tidcnt = fd->invalid_tid_idx; fd->invalid_tid_idx = 0; /* * Reset the user flag while still holding the lock. * Otherwise, PSM can miss events. */ clear_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT, ev); } else { tinfo->tidcnt = 0; } spin_unlock(&fd->invalid_lock); if (tinfo->tidcnt) { if (copy_to_user((void __user *)tinfo->tidlist, array, sizeof(*array) * tinfo->tidcnt)) ret = -EFAULT; } kfree(array); return ret; } static u32 find_phys_blocks(struct tid_user_buf *tidbuf, unsigned int npages) { unsigned pagecount, pageidx, setcount = 0, i; unsigned long pfn, this_pfn; struct page **pages = tidbuf->pages; struct tid_pageset *list = tidbuf->psets; if (!npages) return 0; /* * Look for sets of physically contiguous pages in the user buffer. * This will allow us to optimize Expected RcvArray entry usage by * using the bigger supported sizes. */ pfn = page_to_pfn(pages[0]); for (pageidx = 0, pagecount = 1, i = 1; i <= npages; i++) { this_pfn = i < npages ? page_to_pfn(pages[i]) : 0; /* * If the pfn's are not sequential, pages are not physically * contiguous. */ if (this_pfn != ++pfn) { /* * At this point we have to loop over the set of * physically contiguous pages and break them down it * sizes supported by the HW. * There are two main constraints: * 1. The max buffer size is MAX_EXPECTED_BUFFER. * If the total set size is bigger than that * program only a MAX_EXPECTED_BUFFER chunk. * 2. The buffer size has to be a power of two. If * it is not, round down to the closes power of * 2 and program that size. */ while (pagecount) { int maxpages = pagecount; u32 bufsize = pagecount * PAGE_SIZE; if (bufsize > MAX_EXPECTED_BUFFER) maxpages = MAX_EXPECTED_BUFFER >> PAGE_SHIFT; else if (!is_power_of_2(bufsize)) maxpages = rounddown_pow_of_two(bufsize) >> PAGE_SHIFT; list[setcount].idx = pageidx; list[setcount].count = maxpages; pagecount -= maxpages; pageidx += maxpages; setcount++; } pageidx = i; pagecount = 1; pfn = this_pfn; } else { pagecount++; } } return setcount; } /** * program_rcvarray() - program an RcvArray group with receive buffers * @fd: filedata pointer * @tbuf: pointer to struct tid_user_buf that has the user buffer starting * virtual address, buffer length, page pointers, pagesets (array of * struct tid_pageset holding information on physically contiguous * chunks from the user buffer), and other fields. * @grp: RcvArray group * @count: number of struct tid_pageset's to program * @tidlist: the array of u32 elements when the information about the * programmed RcvArray entries is to be encoded. * @tididx: starting offset into tidlist * @pmapped: (output parameter) number of pages programmed into the RcvArray * entries. * * This function will program up to 'count' number of RcvArray entries from the * group 'grp'. To make best use of write-combining writes, the function will * perform writes to the unused RcvArray entries which will be ignored by the * HW. Each RcvArray entry will be programmed with a physically contiguous * buffer chunk from the user's virtual buffer. * * Return: * -EINVAL if the requested count is larger than the size of the group, * -ENOMEM or -EFAULT on error from set_rcvarray_entry(), or * number of RcvArray entries programmed. */ static int program_rcvarray(struct hfi1_filedata *fd, struct tid_user_buf *tbuf, struct tid_group *grp, u16 count, u32 *tidlist, unsigned int *tididx, unsigned int *pmapped) { struct hfi1_ctxtdata *uctxt = fd->uctxt; struct hfi1_devdata *dd = uctxt->dd; u16 idx; unsigned int start = *tididx; u32 tidinfo = 0, rcventry, useidx = 0; int mapped = 0; /* Count should never be larger than the group size */ if (count > grp->size) return -EINVAL; /* Find the first unused entry in the group */ for (idx = 0; idx < grp->size; idx++) { if (!(grp->map & (1 << idx))) { useidx = idx; break; } rcv_array_wc_fill(dd, grp->base + idx); } idx = 0; while (idx < count) { u16 npages, pageidx, setidx = start + idx; int ret = 0; /* * If this entry in the group is used, move to the next one. * If we go past the end of the group, exit the loop. */ if (useidx >= grp->size) { break; } else if (grp->map & (1 << useidx)) { rcv_array_wc_fill(dd, grp->base + useidx); useidx++; continue; } rcventry = grp->base + useidx; npages = tbuf->psets[setidx].count; pageidx = tbuf->psets[setidx].idx; ret = set_rcvarray_entry(fd, tbuf, rcventry, grp, pageidx, npages); if (ret) return ret; mapped += npages; tidinfo = create_tid(rcventry - uctxt->expected_base, npages); tidlist[(*tididx)++] = tidinfo; grp->used++; grp->map |= 1 << useidx++; idx++; } /* Fill the rest of the group with "blank" writes */ for (; useidx < grp->size; useidx++) rcv_array_wc_fill(dd, grp->base + useidx); *pmapped = mapped; return idx; } static int set_rcvarray_entry(struct hfi1_filedata *fd, struct tid_user_buf *tbuf, u32 rcventry, struct tid_group *grp, u16 pageidx, unsigned int npages) { int ret; struct hfi1_ctxtdata *uctxt = fd->uctxt; struct tid_rb_node *node; struct hfi1_devdata *dd = uctxt->dd; dma_addr_t phys; struct page **pages = tbuf->pages + pageidx; /* * Allocate the node first so we can handle a potential * failure before we've programmed anything. */ node = kzalloc(struct_size(node, pages, npages), GFP_KERNEL); if (!node) return -ENOMEM; phys = dma_map_single(&dd->pcidev->dev, __va(page_to_phys(pages[0])), npages * PAGE_SIZE, DMA_FROM_DEVICE); if (dma_mapping_error(&dd->pcidev->dev, phys)) { dd_dev_err(dd, "Failed to DMA map Exp Rcv pages 0x%llx\n", phys); kfree(node); return -EFAULT; } node->fdata = fd; mutex_init(&node->invalidate_mutex); node->phys = page_to_phys(pages[0]); node->npages = npages; node->rcventry = rcventry; node->dma_addr = phys; node->grp = grp; node->freed = false; memcpy(node->pages, pages, flex_array_size(node, pages, npages)); if (fd->use_mn) { ret = mmu_interval_notifier_insert( &node->notifier, current->mm, tbuf->vaddr + (pageidx * PAGE_SIZE), npages * PAGE_SIZE, &tid_mn_ops); if (ret) goto out_unmap; } fd->entry_to_rb[node->rcventry - uctxt->expected_base] = node; hfi1_put_tid(dd, rcventry, PT_EXPECTED, phys, ilog2(npages) + 1); trace_hfi1_exp_tid_reg(uctxt->ctxt, fd->subctxt, rcventry, npages, node->notifier.interval_tree.start, node->phys, phys); return 0; out_unmap: hfi1_cdbg(TID, "Failed to insert RB node %u 0x%lx, 0x%lx %d", node->rcventry, node->notifier.interval_tree.start, node->phys, ret); dma_unmap_single(&dd->pcidev->dev, phys, npages * PAGE_SIZE, DMA_FROM_DEVICE); kfree(node); return -EFAULT; } static int unprogram_rcvarray(struct hfi1_filedata *fd, u32 tidinfo) { struct hfi1_ctxtdata *uctxt = fd->uctxt; struct hfi1_devdata *dd = uctxt->dd; struct tid_rb_node *node; u32 tidctrl = EXP_TID_GET(tidinfo, CTRL); u32 tididx = EXP_TID_GET(tidinfo, IDX) << 1, rcventry; if (tidctrl == 0x3 || tidctrl == 0x0) return -EINVAL; rcventry = tididx + (tidctrl - 1); if (rcventry >= uctxt->expected_count) { dd_dev_err(dd, "Invalid RcvArray entry (%u) index for ctxt %u\n", rcventry, uctxt->ctxt); return -EINVAL; } node = fd->entry_to_rb[rcventry]; if (!node || node->rcventry != (uctxt->expected_base + rcventry)) return -EBADF; if (fd->use_mn) mmu_interval_notifier_remove(&node->notifier); cacheless_tid_rb_remove(fd, node); return 0; } static void __clear_tid_node(struct hfi1_filedata *fd, struct tid_rb_node *node) { struct hfi1_ctxtdata *uctxt = fd->uctxt; struct hfi1_devdata *dd = uctxt->dd; mutex_lock(&node->invalidate_mutex); if (node->freed) goto done; node->freed = true; trace_hfi1_exp_tid_unreg(uctxt->ctxt, fd->subctxt, node->rcventry, node->npages, node->notifier.interval_tree.start, node->phys, node->dma_addr); /* Make sure device has seen the write before pages are unpinned */ hfi1_put_tid(dd, node->rcventry, PT_INVALID_FLUSH, 0, 0); unpin_rcv_pages(fd, NULL, node, 0, node->npages, true); done: mutex_unlock(&node->invalidate_mutex); } static void clear_tid_node(struct hfi1_filedata *fd, struct tid_rb_node *node) { struct hfi1_ctxtdata *uctxt = fd->uctxt; __clear_tid_node(fd, node); node->grp->used--; node->grp->map &= ~(1 << (node->rcventry - node->grp->base)); if (node->grp->used == node->grp->size - 1) tid_group_move(node->grp, &uctxt->tid_full_list, &uctxt->tid_used_list); else if (!node->grp->used) tid_group_move(node->grp, &uctxt->tid_used_list, &uctxt->tid_group_list); kfree(node); } /* * As a simple helper for hfi1_user_exp_rcv_free, this function deals with * clearing nodes in the non-cached case. */ static void unlock_exp_tids(struct hfi1_ctxtdata *uctxt, struct exp_tid_set *set, struct hfi1_filedata *fd) { struct tid_group *grp, *ptr; int i; list_for_each_entry_safe(grp, ptr, &set->list, list) { list_del_init(&grp->list); for (i = 0; i < grp->size; i++) { if (grp->map & (1 << i)) { u16 rcventry = grp->base + i; struct tid_rb_node *node; node = fd->entry_to_rb[rcventry - uctxt->expected_base]; if (!node || node->rcventry != rcventry) continue; if (fd->use_mn) mmu_interval_notifier_remove( &node->notifier); cacheless_tid_rb_remove(fd, node); } } } } static bool tid_rb_invalidate(struct mmu_interval_notifier *mni, const struct mmu_notifier_range *range, unsigned long cur_seq) { struct tid_rb_node *node = container_of(mni, struct tid_rb_node, notifier); struct hfi1_filedata *fdata = node->fdata; struct hfi1_ctxtdata *uctxt = fdata->uctxt; if (node->freed) return true; /* take action only if unmapping */ if (range->event != MMU_NOTIFY_UNMAP) return true; trace_hfi1_exp_tid_inval(uctxt->ctxt, fdata->subctxt, node->notifier.interval_tree.start, node->rcventry, node->npages, node->dma_addr); /* clear the hardware rcvarray entry */ __clear_tid_node(fdata, node); spin_lock(&fdata->invalid_lock); if (fdata->invalid_tid_idx < uctxt->expected_count) { fdata->invalid_tids[fdata->invalid_tid_idx] = create_tid(node->rcventry - uctxt->expected_base, node->npages); if (!fdata->invalid_tid_idx) { unsigned long *ev; /* * hfi1_set_uevent_bits() sets a user event flag * for all processes. Because calling into the * driver to process TID cache invalidations is * expensive and TID cache invalidations are * handled on a per-process basis, we can * optimize this to set the flag only for the * process in question. */ ev = uctxt->dd->events + (uctxt_offset(uctxt) + fdata->subctxt); set_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT, ev); } fdata->invalid_tid_idx++; } spin_unlock(&fdata->invalid_lock); return true; } static bool tid_cover_invalidate(struct mmu_interval_notifier *mni, const struct mmu_notifier_range *range, unsigned long cur_seq) { struct tid_user_buf *tidbuf = container_of(mni, struct tid_user_buf, notifier); /* take action only if unmapping */ if (range->event == MMU_NOTIFY_UNMAP) { mutex_lock(&tidbuf->cover_mutex); mmu_interval_set_seq(mni, cur_seq); mutex_unlock(&tidbuf->cover_mutex); } return true; } static void cacheless_tid_rb_remove(struct hfi1_filedata *fdata, struct tid_rb_node *tnode) { u32 base = fdata->uctxt->expected_base; fdata->entry_to_rb[tnode->rcventry - base] = NULL; clear_tid_node(fdata, tnode); }