// SPDX-License-Identifier: GPL-2.0 /* * System Control and Management Interface(SCMI) based IIO sensor driver * * Copyright (C) 2021 Google LLC */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define SCMI_IIO_NUM_OF_AXIS 3 struct scmi_iio_priv { const struct scmi_sensor_proto_ops *sensor_ops; struct scmi_protocol_handle *ph; const struct scmi_sensor_info *sensor_info; struct iio_dev *indio_dev; /* lock to protect against multiple access to the device */ struct mutex lock; /* adding one additional channel for timestamp */ s64 iio_buf[SCMI_IIO_NUM_OF_AXIS + 1]; struct notifier_block sensor_update_nb; u32 *freq_avail; }; static int scmi_iio_sensor_update_cb(struct notifier_block *nb, unsigned long event, void *data) { struct scmi_sensor_update_report *sensor_update = data; struct iio_dev *scmi_iio_dev; struct scmi_iio_priv *sensor; s8 tstamp_scale; u64 time, time_ns; int i; if (sensor_update->readings_count == 0) return NOTIFY_DONE; sensor = container_of(nb, struct scmi_iio_priv, sensor_update_nb); for (i = 0; i < sensor_update->readings_count; i++) sensor->iio_buf[i] = sensor_update->readings[i].value; if (!sensor->sensor_info->timestamped) { time_ns = ktime_to_ns(sensor_update->timestamp); } else { /* * All the axes are supposed to have the same value for timestamp. * We are just using the values from the Axis 0 here. */ time = sensor_update->readings[0].timestamp; /* * Timestamp returned by SCMI is in seconds and is equal to * time * power-of-10 multiplier(tstamp_scale) seconds. * Converting the timestamp to nanoseconds below. */ tstamp_scale = sensor->sensor_info->tstamp_scale + const_ilog2(NSEC_PER_SEC) / const_ilog2(10); if (tstamp_scale < 0) { do_div(time, int_pow(10, abs(tstamp_scale))); time_ns = time; } else { time_ns = time * int_pow(10, tstamp_scale); } } scmi_iio_dev = sensor->indio_dev; iio_push_to_buffers_with_timestamp(scmi_iio_dev, sensor->iio_buf, time_ns); return NOTIFY_OK; } static int scmi_iio_buffer_preenable(struct iio_dev *iio_dev) { struct scmi_iio_priv *sensor = iio_priv(iio_dev); u32 sensor_config = 0; int err; if (sensor->sensor_info->timestamped) sensor_config |= FIELD_PREP(SCMI_SENS_CFG_TSTAMP_ENABLED_MASK, SCMI_SENS_CFG_TSTAMP_ENABLE); sensor_config |= FIELD_PREP(SCMI_SENS_CFG_SENSOR_ENABLED_MASK, SCMI_SENS_CFG_SENSOR_ENABLE); err = sensor->sensor_ops->config_set(sensor->ph, sensor->sensor_info->id, sensor_config); if (err) dev_err(&iio_dev->dev, "Error in enabling sensor %s err %d", sensor->sensor_info->name, err); return err; } static int scmi_iio_buffer_postdisable(struct iio_dev *iio_dev) { struct scmi_iio_priv *sensor = iio_priv(iio_dev); u32 sensor_config = 0; int err; sensor_config |= FIELD_PREP(SCMI_SENS_CFG_SENSOR_ENABLED_MASK, SCMI_SENS_CFG_SENSOR_DISABLE); err = sensor->sensor_ops->config_set(sensor->ph, sensor->sensor_info->id, sensor_config); if (err) { dev_err(&iio_dev->dev, "Error in disabling sensor %s with err %d", sensor->sensor_info->name, err); } return err; } static const struct iio_buffer_setup_ops scmi_iio_buffer_ops = { .preenable = scmi_iio_buffer_preenable, .postdisable = scmi_iio_buffer_postdisable, }; static int scmi_iio_set_odr_val(struct iio_dev *iio_dev, int val, int val2) { struct scmi_iio_priv *sensor = iio_priv(iio_dev); u64 sec, mult, uHz, sf; u32 sensor_config; char buf[32]; int err = sensor->sensor_ops->config_get(sensor->ph, sensor->sensor_info->id, &sensor_config); if (err) { dev_err(&iio_dev->dev, "Error in getting sensor config for sensor %s err %d", sensor->sensor_info->name, err); return err; } uHz = val * MICROHZ_PER_HZ + val2; /* * The seconds field in the sensor interval in SCMI is 16 bits long * Therefore seconds = 1/Hz <= 0xFFFF. As floating point calculations are * discouraged in the kernel driver code, to calculate the scale factor (sf) * (1* 1000000 * sf)/uHz <= 0xFFFF. Therefore, sf <= (uHz * 0xFFFF)/1000000 * To calculate the multiplier,we convert the sf into char string and * count the number of characters */ sf = (u64)uHz * 0xFFFF; do_div(sf, MICROHZ_PER_HZ); mult = scnprintf(buf, sizeof(buf), "%llu", sf) - 1; sec = int_pow(10, mult) * MICROHZ_PER_HZ; do_div(sec, uHz); if (sec == 0) { dev_err(&iio_dev->dev, "Trying to set invalid sensor update value for sensor %s", sensor->sensor_info->name); return -EINVAL; } sensor_config &= ~SCMI_SENS_CFG_UPDATE_SECS_MASK; sensor_config |= FIELD_PREP(SCMI_SENS_CFG_UPDATE_SECS_MASK, sec); sensor_config &= ~SCMI_SENS_CFG_UPDATE_EXP_MASK; sensor_config |= FIELD_PREP(SCMI_SENS_CFG_UPDATE_EXP_MASK, -mult); if (sensor->sensor_info->timestamped) { sensor_config &= ~SCMI_SENS_CFG_TSTAMP_ENABLED_MASK; sensor_config |= FIELD_PREP(SCMI_SENS_CFG_TSTAMP_ENABLED_MASK, SCMI_SENS_CFG_TSTAMP_ENABLE); } sensor_config &= ~SCMI_SENS_CFG_ROUND_MASK; sensor_config |= FIELD_PREP(SCMI_SENS_CFG_ROUND_MASK, SCMI_SENS_CFG_ROUND_AUTO); err = sensor->sensor_ops->config_set(sensor->ph, sensor->sensor_info->id, sensor_config); if (err) dev_err(&iio_dev->dev, "Error in setting sensor update interval for sensor %s value %u err %d", sensor->sensor_info->name, sensor_config, err); return err; } static int scmi_iio_write_raw(struct iio_dev *iio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct scmi_iio_priv *sensor = iio_priv(iio_dev); int err; switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: mutex_lock(&sensor->lock); err = scmi_iio_set_odr_val(iio_dev, val, val2); mutex_unlock(&sensor->lock); return err; default: return -EINVAL; } } static int scmi_iio_read_avail(struct iio_dev *iio_dev, struct iio_chan_spec const *chan, const int **vals, int *type, int *length, long mask) { struct scmi_iio_priv *sensor = iio_priv(iio_dev); switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: *vals = sensor->freq_avail; *type = IIO_VAL_INT_PLUS_MICRO; *length = sensor->sensor_info->intervals.count * 2; if (sensor->sensor_info->intervals.segmented) return IIO_AVAIL_RANGE; else return IIO_AVAIL_LIST; default: return -EINVAL; } } static void convert_ns_to_freq(u64 interval_ns, u64 *hz, u64 *uhz) { u64 rem, freq; freq = NSEC_PER_SEC; rem = do_div(freq, interval_ns); *hz = freq; *uhz = rem * 1000000UL; do_div(*uhz, interval_ns); } static int scmi_iio_get_odr_val(struct iio_dev *iio_dev, int *val, int *val2) { u64 sensor_update_interval, sensor_interval_mult, hz, uhz; struct scmi_iio_priv *sensor = iio_priv(iio_dev); u32 sensor_config; int mult; int err = sensor->sensor_ops->config_get(sensor->ph, sensor->sensor_info->id, &sensor_config); if (err) { dev_err(&iio_dev->dev, "Error in getting sensor config for sensor %s err %d", sensor->sensor_info->name, err); return err; } sensor_update_interval = SCMI_SENS_CFG_GET_UPDATE_SECS(sensor_config) * NSEC_PER_SEC; mult = SCMI_SENS_CFG_GET_UPDATE_EXP(sensor_config); if (mult < 0) { sensor_interval_mult = int_pow(10, abs(mult)); do_div(sensor_update_interval, sensor_interval_mult); } else { sensor_interval_mult = int_pow(10, mult); sensor_update_interval = sensor_update_interval * sensor_interval_mult; } convert_ns_to_freq(sensor_update_interval, &hz, &uhz); *val = hz; *val2 = uhz; return 0; } static int scmi_iio_read_channel_data(struct iio_dev *iio_dev, struct iio_chan_spec const *ch, int *val, int *val2) { struct scmi_iio_priv *sensor = iio_priv(iio_dev); u32 sensor_config; struct scmi_sensor_reading readings[SCMI_IIO_NUM_OF_AXIS]; int err; sensor_config = FIELD_PREP(SCMI_SENS_CFG_SENSOR_ENABLED_MASK, SCMI_SENS_CFG_SENSOR_ENABLE); err = sensor->sensor_ops->config_set( sensor->ph, sensor->sensor_info->id, sensor_config); if (err) { dev_err(&iio_dev->dev, "Error in enabling sensor %s err %d", sensor->sensor_info->name, err); return err; } err = sensor->sensor_ops->reading_get_timestamped( sensor->ph, sensor->sensor_info->id, sensor->sensor_info->num_axis, readings); if (err) { dev_err(&iio_dev->dev, "Error in reading raw attribute for sensor %s err %d", sensor->sensor_info->name, err); return err; } sensor_config = FIELD_PREP(SCMI_SENS_CFG_SENSOR_ENABLED_MASK, SCMI_SENS_CFG_SENSOR_DISABLE); err = sensor->sensor_ops->config_set( sensor->ph, sensor->sensor_info->id, sensor_config); if (err) { dev_err(&iio_dev->dev, "Error in disabling sensor %s err %d", sensor->sensor_info->name, err); return err; } *val = lower_32_bits(readings[ch->scan_index].value); *val2 = upper_32_bits(readings[ch->scan_index].value); return IIO_VAL_INT_64; } static int scmi_iio_read_raw(struct iio_dev *iio_dev, struct iio_chan_spec const *ch, int *val, int *val2, long mask) { struct scmi_iio_priv *sensor = iio_priv(iio_dev); s8 scale; int ret; switch (mask) { case IIO_CHAN_INFO_SCALE: scale = sensor->sensor_info->axis[ch->scan_index].scale; if (scale < 0) { *val = 1; *val2 = int_pow(10, abs(scale)); return IIO_VAL_FRACTIONAL; } *val = int_pow(10, scale); return IIO_VAL_INT; case IIO_CHAN_INFO_SAMP_FREQ: ret = scmi_iio_get_odr_val(iio_dev, val, val2); return ret ? ret : IIO_VAL_INT_PLUS_MICRO; case IIO_CHAN_INFO_RAW: ret = iio_device_claim_direct_mode(iio_dev); if (ret) return ret; ret = scmi_iio_read_channel_data(iio_dev, ch, val, val2); iio_device_release_direct_mode(iio_dev); return ret; default: return -EINVAL; } } static const struct iio_info scmi_iio_info = { .read_raw = scmi_iio_read_raw, .read_avail = scmi_iio_read_avail, .write_raw = scmi_iio_write_raw, }; static ssize_t scmi_iio_get_raw_available(struct iio_dev *iio_dev, uintptr_t private, const struct iio_chan_spec *chan, char *buf) { struct scmi_iio_priv *sensor = iio_priv(iio_dev); u64 resolution, rem; s64 min_range, max_range; s8 exponent, scale; int len = 0; /* * All the axes are supposed to have the same value for range and resolution. * We are just using the values from the Axis 0 here. */ if (sensor->sensor_info->axis[0].extended_attrs) { min_range = sensor->sensor_info->axis[0].attrs.min_range; max_range = sensor->sensor_info->axis[0].attrs.max_range; resolution = sensor->sensor_info->axis[0].resolution; exponent = sensor->sensor_info->axis[0].exponent; scale = sensor->sensor_info->axis[0].scale; /* * To provide the raw value for the resolution to the userspace, * need to divide the resolution exponent by the sensor scale */ exponent = exponent - scale; if (exponent < 0) { rem = do_div(resolution, int_pow(10, abs(exponent)) ); len = sysfs_emit(buf, "[%lld %llu.%llu %lld]\n", min_range, resolution, rem, max_range); } else { resolution = resolution * int_pow(10, exponent); len = sysfs_emit(buf, "[%lld %llu %lld]\n", min_range, resolution, max_range); } } return len; } static const struct iio_chan_spec_ext_info scmi_iio_ext_info[] = { { .name = "raw_available", .read = scmi_iio_get_raw_available, .shared = IIO_SHARED_BY_TYPE, }, {}, }; static void scmi_iio_set_timestamp_channel(struct iio_chan_spec *iio_chan, int scan_index) { iio_chan->type = IIO_TIMESTAMP; iio_chan->channel = -1; iio_chan->scan_index = scan_index; iio_chan->scan_type.sign = 'u'; iio_chan->scan_type.realbits = 64; iio_chan->scan_type.storagebits = 64; } static void scmi_iio_set_data_channel(struct iio_chan_spec *iio_chan, enum iio_chan_type type, enum iio_modifier mod, int scan_index) { iio_chan->type = type; iio_chan->modified = 1; iio_chan->channel2 = mod; iio_chan->info_mask_separate = BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_RAW); iio_chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SAMP_FREQ); iio_chan->info_mask_shared_by_type_available = BIT(IIO_CHAN_INFO_SAMP_FREQ); iio_chan->scan_index = scan_index; iio_chan->scan_type.sign = 's'; iio_chan->scan_type.realbits = 64; iio_chan->scan_type.storagebits = 64; iio_chan->scan_type.endianness = IIO_LE; iio_chan->ext_info = scmi_iio_ext_info; } static int scmi_iio_get_chan_modifier(const char *name, enum iio_modifier *modifier) { char *pch, mod; if (!name) return -EINVAL; pch = strrchr(name, '_'); if (!pch) return -EINVAL; mod = *(pch + 1); switch (mod) { case 'X': *modifier = IIO_MOD_X; return 0; case 'Y': *modifier = IIO_MOD_Y; return 0; case 'Z': *modifier = IIO_MOD_Z; return 0; default: return -EINVAL; } } static int scmi_iio_get_chan_type(u8 scmi_type, enum iio_chan_type *iio_type) { switch (scmi_type) { case METERS_SEC_SQUARED: *iio_type = IIO_ACCEL; return 0; case RADIANS_SEC: *iio_type = IIO_ANGL_VEL; return 0; default: return -EINVAL; } } static u64 scmi_iio_convert_interval_to_ns(u32 val) { u64 sensor_update_interval = SCMI_SENS_INTVL_GET_SECS(val) * NSEC_PER_SEC; u64 sensor_interval_mult; int mult; mult = SCMI_SENS_INTVL_GET_EXP(val); if (mult < 0) { sensor_interval_mult = int_pow(10, abs(mult)); do_div(sensor_update_interval, sensor_interval_mult); } else { sensor_interval_mult = int_pow(10, mult); sensor_update_interval = sensor_update_interval * sensor_interval_mult; } return sensor_update_interval; } static int scmi_iio_set_sampling_freq_avail(struct iio_dev *iio_dev) { u64 cur_interval_ns, low_interval_ns, high_interval_ns, step_size_ns, hz, uhz; unsigned int cur_interval, low_interval, high_interval, step_size; struct scmi_iio_priv *sensor = iio_priv(iio_dev); int i; sensor->freq_avail = devm_kzalloc(&iio_dev->dev, sizeof(*sensor->freq_avail) * (sensor->sensor_info->intervals.count * 2), GFP_KERNEL); if (!sensor->freq_avail) return -ENOMEM; if (sensor->sensor_info->intervals.segmented) { low_interval = sensor->sensor_info->intervals .desc[SCMI_SENS_INTVL_SEGMENT_LOW]; low_interval_ns = scmi_iio_convert_interval_to_ns(low_interval); convert_ns_to_freq(low_interval_ns, &hz, &uhz); sensor->freq_avail[0] = hz; sensor->freq_avail[1] = uhz; step_size = sensor->sensor_info->intervals .desc[SCMI_SENS_INTVL_SEGMENT_STEP]; step_size_ns = scmi_iio_convert_interval_to_ns(step_size); convert_ns_to_freq(step_size_ns, &hz, &uhz); sensor->freq_avail[2] = hz; sensor->freq_avail[3] = uhz; high_interval = sensor->sensor_info->intervals .desc[SCMI_SENS_INTVL_SEGMENT_HIGH]; high_interval_ns = scmi_iio_convert_interval_to_ns(high_interval); convert_ns_to_freq(high_interval_ns, &hz, &uhz); sensor->freq_avail[4] = hz; sensor->freq_avail[5] = uhz; } else { for (i = 0; i < sensor->sensor_info->intervals.count; i++) { cur_interval = sensor->sensor_info->intervals.desc[i]; cur_interval_ns = scmi_iio_convert_interval_to_ns(cur_interval); convert_ns_to_freq(cur_interval_ns, &hz, &uhz); sensor->freq_avail[i * 2] = hz; sensor->freq_avail[i * 2 + 1] = uhz; } } return 0; } static struct iio_dev * scmi_alloc_iiodev(struct scmi_device *sdev, const struct scmi_sensor_proto_ops *ops, struct scmi_protocol_handle *ph, const struct scmi_sensor_info *sensor_info) { struct iio_chan_spec *iio_channels; struct scmi_iio_priv *sensor; enum iio_modifier modifier; enum iio_chan_type type; struct iio_dev *iiodev; struct device *dev = &sdev->dev; const struct scmi_handle *handle = sdev->handle; int i, ret; iiodev = devm_iio_device_alloc(dev, sizeof(*sensor)); if (!iiodev) return ERR_PTR(-ENOMEM); iiodev->modes = INDIO_DIRECT_MODE; sensor = iio_priv(iiodev); sensor->sensor_ops = ops; sensor->ph = ph; sensor->sensor_info = sensor_info; sensor->sensor_update_nb.notifier_call = scmi_iio_sensor_update_cb; sensor->indio_dev = iiodev; mutex_init(&sensor->lock); /* adding one additional channel for timestamp */ iiodev->num_channels = sensor_info->num_axis + 1; iiodev->name = sensor_info->name; iiodev->info = &scmi_iio_info; iio_channels = devm_kzalloc(dev, sizeof(*iio_channels) * (iiodev->num_channels), GFP_KERNEL); if (!iio_channels) return ERR_PTR(-ENOMEM); ret = scmi_iio_set_sampling_freq_avail(iiodev); if (ret < 0) return ERR_PTR(ret); for (i = 0; i < sensor_info->num_axis; i++) { ret = scmi_iio_get_chan_type(sensor_info->axis[i].type, &type); if (ret < 0) return ERR_PTR(ret); ret = scmi_iio_get_chan_modifier(sensor_info->axis[i].name, &modifier); if (ret < 0) return ERR_PTR(ret); scmi_iio_set_data_channel(&iio_channels[i], type, modifier, sensor_info->axis[i].id); } ret = handle->notify_ops->devm_event_notifier_register(sdev, SCMI_PROTOCOL_SENSOR, SCMI_EVENT_SENSOR_UPDATE, &sensor->sensor_info->id, &sensor->sensor_update_nb); if (ret) { dev_err(&iiodev->dev, "Error in registering sensor update notifier for sensor %s err %d", sensor->sensor_info->name, ret); return ERR_PTR(ret); } scmi_iio_set_timestamp_channel(&iio_channels[i], i); iiodev->channels = iio_channels; return iiodev; } static int scmi_iio_dev_probe(struct scmi_device *sdev) { const struct scmi_sensor_info *sensor_info; struct scmi_handle *handle = sdev->handle; const struct scmi_sensor_proto_ops *sensor_ops; struct scmi_protocol_handle *ph; struct device *dev = &sdev->dev; struct iio_dev *scmi_iio_dev; u16 nr_sensors; int err = -ENODEV, i; if (!handle) return -ENODEV; sensor_ops = handle->devm_protocol_get(sdev, SCMI_PROTOCOL_SENSOR, &ph); if (IS_ERR(sensor_ops)) { dev_err(dev, "SCMI device has no sensor interface\n"); return PTR_ERR(sensor_ops); } nr_sensors = sensor_ops->count_get(ph); if (!nr_sensors) { dev_dbg(dev, "0 sensors found via SCMI bus\n"); return -ENODEV; } for (i = 0; i < nr_sensors; i++) { sensor_info = sensor_ops->info_get(ph, i); if (!sensor_info) { dev_err(dev, "SCMI sensor %d has missing info\n", i); return -EINVAL; } /* This driver only supports 3-axis accel and gyro, skipping other sensors */ if (sensor_info->num_axis != SCMI_IIO_NUM_OF_AXIS) continue; /* This driver only supports 3-axis accel and gyro, skipping other sensors */ if (sensor_info->axis[0].type != METERS_SEC_SQUARED && sensor_info->axis[0].type != RADIANS_SEC) continue; scmi_iio_dev = scmi_alloc_iiodev(sdev, sensor_ops, ph, sensor_info); if (IS_ERR(scmi_iio_dev)) { dev_err(dev, "failed to allocate IIO device for sensor %s: %ld\n", sensor_info->name, PTR_ERR(scmi_iio_dev)); return PTR_ERR(scmi_iio_dev); } err = devm_iio_kfifo_buffer_setup(&scmi_iio_dev->dev, scmi_iio_dev, &scmi_iio_buffer_ops); if (err < 0) { dev_err(dev, "IIO buffer setup error at sensor %s: %d\n", sensor_info->name, err); return err; } err = devm_iio_device_register(dev, scmi_iio_dev); if (err) { dev_err(dev, "IIO device registration failed at sensor %s: %d\n", sensor_info->name, err); return err; } } return err; } static const struct scmi_device_id scmi_id_table[] = { { SCMI_PROTOCOL_SENSOR, "iiodev" }, {}, }; MODULE_DEVICE_TABLE(scmi, scmi_id_table); static struct scmi_driver scmi_iiodev_driver = { .name = "scmi-sensor-iiodev", .probe = scmi_iio_dev_probe, .id_table = scmi_id_table, }; module_scmi_driver(scmi_iiodev_driver); MODULE_AUTHOR("Jyoti Bhayana "); MODULE_DESCRIPTION("SCMI IIO Driver"); MODULE_LICENSE("GPL v2");