// SPDX-License-Identifier: GPL-2.0 /* * AD7280A Lithium Ion Battery Monitoring System * * Copyright 2011 Analog Devices Inc. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Registers */ #define AD7280A_CELL_VOLTAGE_1_REG 0x0 /* D11 to D0, Read only */ #define AD7280A_CELL_VOLTAGE_2_REG 0x1 /* D11 to D0, Read only */ #define AD7280A_CELL_VOLTAGE_3_REG 0x2 /* D11 to D0, Read only */ #define AD7280A_CELL_VOLTAGE_4_REG 0x3 /* D11 to D0, Read only */ #define AD7280A_CELL_VOLTAGE_5_REG 0x4 /* D11 to D0, Read only */ #define AD7280A_CELL_VOLTAGE_6_REG 0x5 /* D11 to D0, Read only */ #define AD7280A_AUX_ADC_1_REG 0x6 /* D11 to D0, Read only */ #define AD7280A_AUX_ADC_2_REG 0x7 /* D11 to D0, Read only */ #define AD7280A_AUX_ADC_3_REG 0x8 /* D11 to D0, Read only */ #define AD7280A_AUX_ADC_4_REG 0x9 /* D11 to D0, Read only */ #define AD7280A_AUX_ADC_5_REG 0xA /* D11 to D0, Read only */ #define AD7280A_AUX_ADC_6_REG 0xB /* D11 to D0, Read only */ #define AD7280A_SELF_TEST_REG 0xC /* D11 to D0, Read only */ #define AD7280A_CTRL_HB_REG 0xD /* D15 to D8, Read/write */ #define AD7280A_CTRL_HB_CONV_INPUT_MSK GENMASK(7, 6) #define AD7280A_CTRL_HB_CONV_INPUT_ALL 0 #define AD7280A_CTRL_HB_CONV_INPUT_6CELL_AUX1_3_5 1 #define AD7280A_CTRL_HB_CONV_INPUT_6CELL 2 #define AD7280A_CTRL_HB_CONV_INPUT_SELF_TEST 3 #define AD7280A_CTRL_HB_CONV_RREAD_MSK GENMASK(5, 4) #define AD7280A_CTRL_HB_CONV_RREAD_ALL 0 #define AD7280A_CTRL_HB_CONV_RREAD_6CELL_AUX1_3_5 1 #define AD7280A_CTRL_HB_CONV_RREAD_6CELL 2 #define AD7280A_CTRL_HB_CONV_RREAD_NO 3 #define AD7280A_CTRL_HB_CONV_START_MSK BIT(3) #define AD7280A_CTRL_HB_CONV_START_CNVST 0 #define AD7280A_CTRL_HB_CONV_START_CS 1 #define AD7280A_CTRL_HB_CONV_AVG_MSK GENMASK(2, 1) #define AD7280A_CTRL_HB_CONV_AVG_DIS 0 #define AD7280A_CTRL_HB_CONV_AVG_2 1 #define AD7280A_CTRL_HB_CONV_AVG_4 2 #define AD7280A_CTRL_HB_CONV_AVG_8 3 #define AD7280A_CTRL_HB_PWRDN_SW BIT(0) #define AD7280A_CTRL_LB_REG 0xE /* D7 to D0, Read/write */ #define AD7280A_CTRL_LB_SWRST_MSK BIT(7) #define AD7280A_CTRL_LB_ACQ_TIME_MSK GENMASK(6, 5) #define AD7280A_CTRL_LB_ACQ_TIME_400ns 0 #define AD7280A_CTRL_LB_ACQ_TIME_800ns 1 #define AD7280A_CTRL_LB_ACQ_TIME_1200ns 2 #define AD7280A_CTRL_LB_ACQ_TIME_1600ns 3 #define AD7280A_CTRL_LB_MUST_SET BIT(4) #define AD7280A_CTRL_LB_THERMISTOR_MSK BIT(3) #define AD7280A_CTRL_LB_LOCK_DEV_ADDR_MSK BIT(2) #define AD7280A_CTRL_LB_INC_DEV_ADDR_MSK BIT(1) #define AD7280A_CTRL_LB_DAISY_CHAIN_RB_MSK BIT(0) #define AD7280A_CELL_OVERVOLTAGE_REG 0xF /* D7 to D0, Read/write */ #define AD7280A_CELL_UNDERVOLTAGE_REG 0x10 /* D7 to D0, Read/write */ #define AD7280A_AUX_ADC_OVERVOLTAGE_REG 0x11 /* D7 to D0, Read/write */ #define AD7280A_AUX_ADC_UNDERVOLTAGE_REG 0x12 /* D7 to D0, Read/write */ #define AD7280A_ALERT_REG 0x13 /* D7 to D0, Read/write */ #define AD7280A_ALERT_REMOVE_MSK GENMASK(3, 0) #define AD7280A_ALERT_REMOVE_AUX5 BIT(0) #define AD7280A_ALERT_REMOVE_AUX3_AUX5 BIT(1) #define AD7280A_ALERT_REMOVE_VIN5 BIT(2) #define AD7280A_ALERT_REMOVE_VIN4_VIN5 BIT(3) #define AD7280A_ALERT_GEN_STATIC_HIGH BIT(6) #define AD7280A_ALERT_RELAY_SIG_CHAIN_DOWN (BIT(7) | BIT(6)) #define AD7280A_CELL_BALANCE_REG 0x14 /* D7 to D0, Read/write */ #define AD7280A_CELL_BALANCE_CHAN_BITMAP_MSK GENMASK(7, 2) #define AD7280A_CB1_TIMER_REG 0x15 /* D7 to D0, Read/write */ #define AD7280A_CB_TIMER_VAL_MSK GENMASK(7, 3) #define AD7280A_CB2_TIMER_REG 0x16 /* D7 to D0, Read/write */ #define AD7280A_CB3_TIMER_REG 0x17 /* D7 to D0, Read/write */ #define AD7280A_CB4_TIMER_REG 0x18 /* D7 to D0, Read/write */ #define AD7280A_CB5_TIMER_REG 0x19 /* D7 to D0, Read/write */ #define AD7280A_CB6_TIMER_REG 0x1A /* D7 to D0, Read/write */ #define AD7280A_PD_TIMER_REG 0x1B /* D7 to D0, Read/write */ #define AD7280A_READ_REG 0x1C /* D7 to D0, Read/write */ #define AD7280A_READ_ADDR_MSK GENMASK(7, 2) #define AD7280A_CNVST_CTRL_REG 0x1D /* D7 to D0, Read/write */ /* Transfer fields */ #define AD7280A_TRANS_WRITE_DEVADDR_MSK GENMASK(31, 27) #define AD7280A_TRANS_WRITE_ADDR_MSK GENMASK(26, 21) #define AD7280A_TRANS_WRITE_VAL_MSK GENMASK(20, 13) #define AD7280A_TRANS_WRITE_ALL_MSK BIT(12) #define AD7280A_TRANS_WRITE_CRC_MSK GENMASK(10, 3) #define AD7280A_TRANS_WRITE_RES_PATTERN 0x2 /* Layouts differ for channel vs other registers */ #define AD7280A_TRANS_READ_DEVADDR_MSK GENMASK(31, 27) #define AD7280A_TRANS_READ_CONV_CHANADDR_MSK GENMASK(26, 23) #define AD7280A_TRANS_READ_CONV_DATA_MSK GENMASK(22, 11) #define AD7280A_TRANS_READ_REG_REGADDR_MSK GENMASK(26, 21) #define AD7280A_TRANS_READ_REG_DATA_MSK GENMASK(20, 13) #define AD7280A_TRANS_READ_WRITE_ACK_MSK BIT(10) #define AD7280A_TRANS_READ_CRC_MSK GENMASK(9, 2) /* Magic value used to indicate this special case */ #define AD7280A_ALL_CELLS (0xAD << 16) #define AD7280A_MAX_SPI_CLK_HZ 700000 /* < 1MHz */ #define AD7280A_MAX_CHAIN 8 #define AD7280A_CELLS_PER_DEV 6 #define AD7280A_BITS 12 #define AD7280A_NUM_CH (AD7280A_AUX_ADC_6_REG - \ AD7280A_CELL_VOLTAGE_1_REG + 1) #define AD7280A_CALC_VOLTAGE_CHAN_NUM(d, c) (((d) * AD7280A_CELLS_PER_DEV) + \ (c)) #define AD7280A_CALC_TEMP_CHAN_NUM(d, c) (((d) * AD7280A_CELLS_PER_DEV) + \ (c) - AD7280A_CELLS_PER_DEV) #define AD7280A_DEVADDR_MASTER 0 #define AD7280A_DEVADDR_ALL 0x1F static const unsigned short ad7280a_n_avg[4] = {1, 2, 4, 8}; static const unsigned short ad7280a_t_acq_ns[4] = {470, 1030, 1510, 1945}; /* 5-bit device address is sent LSB first */ static unsigned int ad7280a_devaddr(unsigned int addr) { return ((addr & 0x1) << 4) | ((addr & 0x2) << 2) | (addr & 0x4) | ((addr & 0x8) >> 2) | ((addr & 0x10) >> 4); } /* * During a read a valid write is mandatory. * So writing to the highest available address (Address 0x1F) and setting the * address all parts bit to 0 is recommended. * So the TXVAL is AD7280A_DEVADDR_ALL + CRC */ #define AD7280A_READ_TXVAL 0xF800030A /* * AD7280 CRC * * P(x) = x^8 + x^5 + x^3 + x^2 + x^1 + x^0 = 0b100101111 => 0x2F */ #define POLYNOM 0x2F struct ad7280_state { struct spi_device *spi; struct iio_chan_spec *channels; unsigned int chain_last_alert_ignore; bool thermistor_term_en; int slave_num; int scan_cnt; int readback_delay_us; unsigned char crc_tab[CRC8_TABLE_SIZE]; u8 oversampling_ratio; u8 acquisition_time; unsigned char ctrl_lb; unsigned char cell_threshhigh; unsigned char cell_threshlow; unsigned char aux_threshhigh; unsigned char aux_threshlow; unsigned char cb_mask[AD7280A_MAX_CHAIN]; struct mutex lock; /* protect sensor state */ __be32 tx __aligned(IIO_DMA_MINALIGN); __be32 rx; }; static unsigned char ad7280_calc_crc8(unsigned char *crc_tab, unsigned int val) { unsigned char crc; crc = crc_tab[val >> 16 & 0xFF]; crc = crc_tab[crc ^ (val >> 8 & 0xFF)]; return crc ^ (val & 0xFF); } static int ad7280_check_crc(struct ad7280_state *st, unsigned int val) { unsigned char crc = ad7280_calc_crc8(st->crc_tab, val >> 10); if (crc != ((val >> 2) & 0xFF)) return -EIO; return 0; } /* * After initiating a conversion sequence we need to wait until the conversion * is done. The delay is typically in the range of 15..30us however depending on * the number of devices in the daisy chain, the number of averages taken, * conversion delays and acquisition time options it may take up to 250us, in * this case we better sleep instead of busy wait. */ static void ad7280_delay(struct ad7280_state *st) { if (st->readback_delay_us < 50) udelay(st->readback_delay_us); else usleep_range(250, 500); } static int __ad7280_read32(struct ad7280_state *st, unsigned int *val) { int ret; struct spi_transfer t = { .tx_buf = &st->tx, .rx_buf = &st->rx, .len = sizeof(st->tx), }; st->tx = cpu_to_be32(AD7280A_READ_TXVAL); ret = spi_sync_transfer(st->spi, &t, 1); if (ret) return ret; *val = be32_to_cpu(st->rx); return 0; } static int ad7280_write(struct ad7280_state *st, unsigned int devaddr, unsigned int addr, bool all, unsigned int val) { unsigned int reg = FIELD_PREP(AD7280A_TRANS_WRITE_DEVADDR_MSK, devaddr) | FIELD_PREP(AD7280A_TRANS_WRITE_ADDR_MSK, addr) | FIELD_PREP(AD7280A_TRANS_WRITE_VAL_MSK, val) | FIELD_PREP(AD7280A_TRANS_WRITE_ALL_MSK, all); reg |= FIELD_PREP(AD7280A_TRANS_WRITE_CRC_MSK, ad7280_calc_crc8(st->crc_tab, reg >> 11)); /* Reserved b010 pattern not included crc calc */ reg |= AD7280A_TRANS_WRITE_RES_PATTERN; st->tx = cpu_to_be32(reg); return spi_write(st->spi, &st->tx, sizeof(st->tx)); } static int ad7280_read_reg(struct ad7280_state *st, unsigned int devaddr, unsigned int addr) { int ret; unsigned int tmp; /* turns off the read operation on all parts */ ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_CTRL_HB_REG, 1, FIELD_PREP(AD7280A_CTRL_HB_CONV_INPUT_MSK, AD7280A_CTRL_HB_CONV_INPUT_ALL) | FIELD_PREP(AD7280A_CTRL_HB_CONV_RREAD_MSK, AD7280A_CTRL_HB_CONV_RREAD_NO) | FIELD_PREP(AD7280A_CTRL_HB_CONV_AVG_MSK, st->oversampling_ratio)); if (ret) return ret; /* turns on the read operation on the addressed part */ ret = ad7280_write(st, devaddr, AD7280A_CTRL_HB_REG, 0, FIELD_PREP(AD7280A_CTRL_HB_CONV_INPUT_MSK, AD7280A_CTRL_HB_CONV_INPUT_ALL) | FIELD_PREP(AD7280A_CTRL_HB_CONV_RREAD_MSK, AD7280A_CTRL_HB_CONV_RREAD_ALL) | FIELD_PREP(AD7280A_CTRL_HB_CONV_AVG_MSK, st->oversampling_ratio)); if (ret) return ret; /* Set register address on the part to be read from */ ret = ad7280_write(st, devaddr, AD7280A_READ_REG, 0, FIELD_PREP(AD7280A_READ_ADDR_MSK, addr)); if (ret) return ret; ret = __ad7280_read32(st, &tmp); if (ret) return ret; if (ad7280_check_crc(st, tmp)) return -EIO; if ((FIELD_GET(AD7280A_TRANS_READ_DEVADDR_MSK, tmp) != devaddr) || (FIELD_GET(AD7280A_TRANS_READ_REG_REGADDR_MSK, tmp) != addr)) return -EFAULT; return FIELD_GET(AD7280A_TRANS_READ_REG_DATA_MSK, tmp); } static int ad7280_read_channel(struct ad7280_state *st, unsigned int devaddr, unsigned int addr) { int ret; unsigned int tmp; ret = ad7280_write(st, devaddr, AD7280A_READ_REG, 0, FIELD_PREP(AD7280A_READ_ADDR_MSK, addr)); if (ret) return ret; ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_CTRL_HB_REG, 1, FIELD_PREP(AD7280A_CTRL_HB_CONV_INPUT_MSK, AD7280A_CTRL_HB_CONV_INPUT_ALL) | FIELD_PREP(AD7280A_CTRL_HB_CONV_RREAD_MSK, AD7280A_CTRL_HB_CONV_RREAD_NO) | FIELD_PREP(AD7280A_CTRL_HB_CONV_AVG_MSK, st->oversampling_ratio)); if (ret) return ret; ret = ad7280_write(st, devaddr, AD7280A_CTRL_HB_REG, 0, FIELD_PREP(AD7280A_CTRL_HB_CONV_INPUT_MSK, AD7280A_CTRL_HB_CONV_INPUT_ALL) | FIELD_PREP(AD7280A_CTRL_HB_CONV_RREAD_MSK, AD7280A_CTRL_HB_CONV_RREAD_ALL) | FIELD_PREP(AD7280A_CTRL_HB_CONV_START_MSK, AD7280A_CTRL_HB_CONV_START_CS) | FIELD_PREP(AD7280A_CTRL_HB_CONV_AVG_MSK, st->oversampling_ratio)); if (ret) return ret; ad7280_delay(st); ret = __ad7280_read32(st, &tmp); if (ret) return ret; if (ad7280_check_crc(st, tmp)) return -EIO; if ((FIELD_GET(AD7280A_TRANS_READ_DEVADDR_MSK, tmp) != devaddr) || (FIELD_GET(AD7280A_TRANS_READ_CONV_CHANADDR_MSK, tmp) != addr)) return -EFAULT; return FIELD_GET(AD7280A_TRANS_READ_CONV_DATA_MSK, tmp); } static int ad7280_read_all_channels(struct ad7280_state *st, unsigned int cnt, unsigned int *array) { int i, ret; unsigned int tmp, sum = 0; ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_READ_REG, 1, AD7280A_CELL_VOLTAGE_1_REG << 2); if (ret) return ret; ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_CTRL_HB_REG, 1, FIELD_PREP(AD7280A_CTRL_HB_CONV_INPUT_MSK, AD7280A_CTRL_HB_CONV_INPUT_ALL) | FIELD_PREP(AD7280A_CTRL_HB_CONV_RREAD_MSK, AD7280A_CTRL_HB_CONV_RREAD_ALL) | FIELD_PREP(AD7280A_CTRL_HB_CONV_START_MSK, AD7280A_CTRL_HB_CONV_START_CS) | FIELD_PREP(AD7280A_CTRL_HB_CONV_AVG_MSK, st->oversampling_ratio)); if (ret) return ret; ad7280_delay(st); for (i = 0; i < cnt; i++) { ret = __ad7280_read32(st, &tmp); if (ret) return ret; if (ad7280_check_crc(st, tmp)) return -EIO; if (array) array[i] = tmp; /* only sum cell voltages */ if (FIELD_GET(AD7280A_TRANS_READ_CONV_CHANADDR_MSK, tmp) <= AD7280A_CELL_VOLTAGE_6_REG) sum += FIELD_GET(AD7280A_TRANS_READ_CONV_DATA_MSK, tmp); } return sum; } static void ad7280_sw_power_down(void *data) { struct ad7280_state *st = data; ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_CTRL_HB_REG, 1, AD7280A_CTRL_HB_PWRDN_SW | FIELD_PREP(AD7280A_CTRL_HB_CONV_AVG_MSK, st->oversampling_ratio)); } static int ad7280_chain_setup(struct ad7280_state *st) { unsigned int val, n; int ret; ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_CTRL_LB_REG, 1, FIELD_PREP(AD7280A_CTRL_LB_DAISY_CHAIN_RB_MSK, 1) | FIELD_PREP(AD7280A_CTRL_LB_LOCK_DEV_ADDR_MSK, 1) | AD7280A_CTRL_LB_MUST_SET | FIELD_PREP(AD7280A_CTRL_LB_SWRST_MSK, 1) | st->ctrl_lb); if (ret) return ret; ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_CTRL_LB_REG, 1, FIELD_PREP(AD7280A_CTRL_LB_DAISY_CHAIN_RB_MSK, 1) | FIELD_PREP(AD7280A_CTRL_LB_LOCK_DEV_ADDR_MSK, 1) | AD7280A_CTRL_LB_MUST_SET | FIELD_PREP(AD7280A_CTRL_LB_SWRST_MSK, 0) | st->ctrl_lb); if (ret) goto error_power_down; ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_READ_REG, 1, FIELD_PREP(AD7280A_READ_ADDR_MSK, AD7280A_CTRL_LB_REG)); if (ret) goto error_power_down; for (n = 0; n <= AD7280A_MAX_CHAIN; n++) { ret = __ad7280_read32(st, &val); if (ret) goto error_power_down; if (val == 0) return n - 1; if (ad7280_check_crc(st, val)) { ret = -EIO; goto error_power_down; } if (n != ad7280a_devaddr(FIELD_GET(AD7280A_TRANS_READ_DEVADDR_MSK, val))) { ret = -EIO; goto error_power_down; } } ret = -EFAULT; error_power_down: ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_CTRL_HB_REG, 1, AD7280A_CTRL_HB_PWRDN_SW | FIELD_PREP(AD7280A_CTRL_HB_CONV_AVG_MSK, st->oversampling_ratio)); return ret; } static ssize_t ad7280_show_balance_sw(struct iio_dev *indio_dev, uintptr_t private, const struct iio_chan_spec *chan, char *buf) { struct ad7280_state *st = iio_priv(indio_dev); return sysfs_emit(buf, "%d\n", !!(st->cb_mask[chan->address >> 8] & BIT(chan->address & 0xFF))); } static ssize_t ad7280_store_balance_sw(struct iio_dev *indio_dev, uintptr_t private, const struct iio_chan_spec *chan, const char *buf, size_t len) { struct ad7280_state *st = iio_priv(indio_dev); unsigned int devaddr, ch; bool readin; int ret; ret = kstrtobool(buf, &readin); if (ret) return ret; devaddr = chan->address >> 8; ch = chan->address & 0xFF; mutex_lock(&st->lock); if (readin) st->cb_mask[devaddr] |= BIT(ch); else st->cb_mask[devaddr] &= ~BIT(ch); ret = ad7280_write(st, devaddr, AD7280A_CELL_BALANCE_REG, 0, FIELD_PREP(AD7280A_CELL_BALANCE_CHAN_BITMAP_MSK, st->cb_mask[devaddr])); mutex_unlock(&st->lock); return ret ? ret : len; } static ssize_t ad7280_show_balance_timer(struct iio_dev *indio_dev, uintptr_t private, const struct iio_chan_spec *chan, char *buf) { struct ad7280_state *st = iio_priv(indio_dev); unsigned int msecs; int ret; mutex_lock(&st->lock); ret = ad7280_read_reg(st, chan->address >> 8, (chan->address & 0xFF) + AD7280A_CB1_TIMER_REG); mutex_unlock(&st->lock); if (ret < 0) return ret; msecs = FIELD_GET(AD7280A_CB_TIMER_VAL_MSK, ret) * 71500; return sysfs_emit(buf, "%u.%u\n", msecs / 1000, msecs % 1000); } static ssize_t ad7280_store_balance_timer(struct iio_dev *indio_dev, uintptr_t private, const struct iio_chan_spec *chan, const char *buf, size_t len) { struct ad7280_state *st = iio_priv(indio_dev); int val, val2; int ret; ret = iio_str_to_fixpoint(buf, 1000, &val, &val2); if (ret) return ret; val = val * 1000 + val2; val /= 71500; if (val > 31) return -EINVAL; mutex_lock(&st->lock); ret = ad7280_write(st, chan->address >> 8, (chan->address & 0xFF) + AD7280A_CB1_TIMER_REG, 0, FIELD_PREP(AD7280A_CB_TIMER_VAL_MSK, val)); mutex_unlock(&st->lock); return ret ? ret : len; } static const struct iio_chan_spec_ext_info ad7280_cell_ext_info[] = { { .name = "balance_switch_en", .read = ad7280_show_balance_sw, .write = ad7280_store_balance_sw, .shared = IIO_SEPARATE, }, { .name = "balance_switch_timer", .read = ad7280_show_balance_timer, .write = ad7280_store_balance_timer, .shared = IIO_SEPARATE, }, {} }; static const struct iio_event_spec ad7280_events[] = { { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_RISING, .mask_shared_by_type = BIT(IIO_EV_INFO_VALUE), }, { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_FALLING, .mask_shared_by_type = BIT(IIO_EV_INFO_VALUE), }, }; static void ad7280_voltage_channel_init(struct iio_chan_spec *chan, int i, bool irq_present) { chan->type = IIO_VOLTAGE; chan->differential = 1; chan->channel = i; chan->channel2 = chan->channel + 1; if (irq_present) { chan->event_spec = ad7280_events; chan->num_event_specs = ARRAY_SIZE(ad7280_events); } chan->ext_info = ad7280_cell_ext_info; } static void ad7280_temp_channel_init(struct iio_chan_spec *chan, int i, bool irq_present) { chan->type = IIO_TEMP; chan->channel = i; if (irq_present) { chan->event_spec = ad7280_events; chan->num_event_specs = ARRAY_SIZE(ad7280_events); } } static void ad7280_common_fields_init(struct iio_chan_spec *chan, int addr, int cnt) { chan->indexed = 1; chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW); chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE); chan->info_mask_shared_by_all = BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO); chan->address = addr; chan->scan_index = cnt; chan->scan_type.sign = 'u'; chan->scan_type.realbits = 12; chan->scan_type.storagebits = 32; } static void ad7280_total_voltage_channel_init(struct iio_chan_spec *chan, int cnt, int dev) { chan->type = IIO_VOLTAGE; chan->differential = 1; chan->channel = 0; chan->channel2 = dev * AD7280A_CELLS_PER_DEV; chan->address = AD7280A_ALL_CELLS; chan->indexed = 1; chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW); chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE); chan->scan_index = cnt; chan->scan_type.sign = 'u'; chan->scan_type.realbits = 32; chan->scan_type.storagebits = 32; } static void ad7280_init_dev_channels(struct ad7280_state *st, int dev, int *cnt, bool irq_present) { int addr, ch, i; struct iio_chan_spec *chan; for (ch = AD7280A_CELL_VOLTAGE_1_REG; ch <= AD7280A_AUX_ADC_6_REG; ch++) { chan = &st->channels[*cnt]; if (ch < AD7280A_AUX_ADC_1_REG) { i = AD7280A_CALC_VOLTAGE_CHAN_NUM(dev, ch); ad7280_voltage_channel_init(chan, i, irq_present); } else { i = AD7280A_CALC_TEMP_CHAN_NUM(dev, ch); ad7280_temp_channel_init(chan, i, irq_present); } addr = ad7280a_devaddr(dev) << 8 | ch; ad7280_common_fields_init(chan, addr, *cnt); (*cnt)++; } } static int ad7280_channel_init(struct ad7280_state *st, bool irq_present) { int dev, cnt = 0; st->channels = devm_kcalloc(&st->spi->dev, (st->slave_num + 1) * 12 + 1, sizeof(*st->channels), GFP_KERNEL); if (!st->channels) return -ENOMEM; for (dev = 0; dev <= st->slave_num; dev++) ad7280_init_dev_channels(st, dev, &cnt, irq_present); ad7280_total_voltage_channel_init(&st->channels[cnt], cnt, dev); return cnt + 1; } static int ad7280a_read_thresh(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int *val, int *val2) { struct ad7280_state *st = iio_priv(indio_dev); switch (chan->type) { case IIO_VOLTAGE: switch (dir) { case IIO_EV_DIR_RISING: *val = 1000 + (st->cell_threshhigh * 1568L) / 100; return IIO_VAL_INT; case IIO_EV_DIR_FALLING: *val = 1000 + (st->cell_threshlow * 1568L) / 100; return IIO_VAL_INT; default: return -EINVAL; } break; case IIO_TEMP: switch (dir) { case IIO_EV_DIR_RISING: *val = ((st->aux_threshhigh) * 196L) / 10; return IIO_VAL_INT; case IIO_EV_DIR_FALLING: *val = (st->aux_threshlow * 196L) / 10; return IIO_VAL_INT; default: return -EINVAL; } break; default: return -EINVAL; } } static int ad7280a_write_thresh(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int val, int val2) { struct ad7280_state *st = iio_priv(indio_dev); unsigned int addr; long value; int ret; if (val2 != 0) return -EINVAL; mutex_lock(&st->lock); switch (chan->type) { case IIO_VOLTAGE: value = ((val - 1000) * 100) / 1568; /* LSB 15.68mV */ value = clamp(value, 0L, 0xFFL); switch (dir) { case IIO_EV_DIR_RISING: addr = AD7280A_CELL_OVERVOLTAGE_REG; ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, addr, 1, value); if (ret) break; st->cell_threshhigh = value; break; case IIO_EV_DIR_FALLING: addr = AD7280A_CELL_UNDERVOLTAGE_REG; ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, addr, 1, value); if (ret) break; st->cell_threshlow = value; break; default: ret = -EINVAL; goto err_unlock; } break; case IIO_TEMP: value = (val * 10) / 196; /* LSB 19.6mV */ value = clamp(value, 0L, 0xFFL); switch (dir) { case IIO_EV_DIR_RISING: addr = AD7280A_AUX_ADC_OVERVOLTAGE_REG; ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, addr, 1, value); if (ret) break; st->aux_threshhigh = value; break; case IIO_EV_DIR_FALLING: addr = AD7280A_AUX_ADC_UNDERVOLTAGE_REG; ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, addr, 1, value); if (ret) break; st->aux_threshlow = value; break; default: ret = -EINVAL; goto err_unlock; } break; default: ret = -EINVAL; goto err_unlock; } err_unlock: mutex_unlock(&st->lock); return ret; } static irqreturn_t ad7280_event_handler(int irq, void *private) { struct iio_dev *indio_dev = private; struct ad7280_state *st = iio_priv(indio_dev); unsigned int *channels; int i, ret; channels = kcalloc(st->scan_cnt, sizeof(*channels), GFP_KERNEL); if (!channels) return IRQ_HANDLED; ret = ad7280_read_all_channels(st, st->scan_cnt, channels); if (ret < 0) goto out; for (i = 0; i < st->scan_cnt; i++) { unsigned int val; val = FIELD_GET(AD7280A_TRANS_READ_CONV_DATA_MSK, channels[i]); if (FIELD_GET(AD7280A_TRANS_READ_CONV_CHANADDR_MSK, channels[i]) <= AD7280A_CELL_VOLTAGE_6_REG) { if (val >= st->cell_threshhigh) { u64 tmp = IIO_EVENT_CODE(IIO_VOLTAGE, 1, 0, IIO_EV_DIR_RISING, IIO_EV_TYPE_THRESH, 0, 0, 0); iio_push_event(indio_dev, tmp, iio_get_time_ns(indio_dev)); } else if (val <= st->cell_threshlow) { u64 tmp = IIO_EVENT_CODE(IIO_VOLTAGE, 1, 0, IIO_EV_DIR_FALLING, IIO_EV_TYPE_THRESH, 0, 0, 0); iio_push_event(indio_dev, tmp, iio_get_time_ns(indio_dev)); } } else { if (val >= st->aux_threshhigh) { u64 tmp = IIO_UNMOD_EVENT_CODE(IIO_TEMP, 0, IIO_EV_TYPE_THRESH, IIO_EV_DIR_RISING); iio_push_event(indio_dev, tmp, iio_get_time_ns(indio_dev)); } else if (val <= st->aux_threshlow) { u64 tmp = IIO_UNMOD_EVENT_CODE(IIO_TEMP, 0, IIO_EV_TYPE_THRESH, IIO_EV_DIR_FALLING); iio_push_event(indio_dev, tmp, iio_get_time_ns(indio_dev)); } } } out: kfree(channels); return IRQ_HANDLED; } static void ad7280_update_delay(struct ad7280_state *st) { /* * Total Conversion Time = ((tACQ + tCONV) * * (Number of Conversions per Part)) − * tACQ + ((N - 1) * tDELAY) * * Readback Delay = Total Conversion Time + tWAIT */ st->readback_delay_us = ((ad7280a_t_acq_ns[st->acquisition_time & 0x3] + 720) * (AD7280A_NUM_CH * ad7280a_n_avg[st->oversampling_ratio & 0x3])) - ad7280a_t_acq_ns[st->acquisition_time & 0x3] + st->slave_num * 250; /* Convert to usecs */ st->readback_delay_us = DIV_ROUND_UP(st->readback_delay_us, 1000); st->readback_delay_us += 5; /* Add tWAIT */ } static int ad7280_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long m) { struct ad7280_state *st = iio_priv(indio_dev); int ret; switch (m) { case IIO_CHAN_INFO_RAW: mutex_lock(&st->lock); if (chan->address == AD7280A_ALL_CELLS) ret = ad7280_read_all_channels(st, st->scan_cnt, NULL); else ret = ad7280_read_channel(st, chan->address >> 8, chan->address & 0xFF); mutex_unlock(&st->lock); if (ret < 0) return ret; *val = ret; return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: if ((chan->address & 0xFF) <= AD7280A_CELL_VOLTAGE_6_REG) *val = 4000; else *val = 5000; *val2 = AD7280A_BITS; return IIO_VAL_FRACTIONAL_LOG2; case IIO_CHAN_INFO_OVERSAMPLING_RATIO: *val = ad7280a_n_avg[st->oversampling_ratio]; return IIO_VAL_INT; } return -EINVAL; } static int ad7280_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct ad7280_state *st = iio_priv(indio_dev); int i; switch (mask) { case IIO_CHAN_INFO_OVERSAMPLING_RATIO: if (val2 != 0) return -EINVAL; for (i = 0; i < ARRAY_SIZE(ad7280a_n_avg); i++) { if (val == ad7280a_n_avg[i]) { st->oversampling_ratio = i; ad7280_update_delay(st); return 0; } } return -EINVAL; default: return -EINVAL; } } static const struct iio_info ad7280_info = { .read_raw = ad7280_read_raw, .write_raw = ad7280_write_raw, .read_event_value = &ad7280a_read_thresh, .write_event_value = &ad7280a_write_thresh, }; static const struct iio_info ad7280_info_no_irq = { .read_raw = ad7280_read_raw, .write_raw = ad7280_write_raw, }; static int ad7280_probe(struct spi_device *spi) { struct device *dev = &spi->dev; struct ad7280_state *st; int ret; struct iio_dev *indio_dev; indio_dev = devm_iio_device_alloc(dev, sizeof(*st)); if (!indio_dev) return -ENOMEM; st = iio_priv(indio_dev); spi_set_drvdata(spi, indio_dev); st->spi = spi; mutex_init(&st->lock); st->thermistor_term_en = device_property_read_bool(dev, "adi,thermistor-termination"); if (device_property_present(dev, "adi,acquisition-time-ns")) { u32 val; ret = device_property_read_u32(dev, "adi,acquisition-time-ns", &val); if (ret) return ret; switch (val) { case 400: st->acquisition_time = AD7280A_CTRL_LB_ACQ_TIME_400ns; break; case 800: st->acquisition_time = AD7280A_CTRL_LB_ACQ_TIME_800ns; break; case 1200: st->acquisition_time = AD7280A_CTRL_LB_ACQ_TIME_1200ns; break; case 1600: st->acquisition_time = AD7280A_CTRL_LB_ACQ_TIME_1600ns; break; default: dev_err(dev, "Firmware provided acquisition time is invalid\n"); return -EINVAL; } } else { st->acquisition_time = AD7280A_CTRL_LB_ACQ_TIME_400ns; } /* Alert masks are intended for when particular inputs are not wired up */ if (device_property_present(dev, "adi,voltage-alert-last-chan")) { u32 val; ret = device_property_read_u32(dev, "adi,voltage-alert-last-chan", &val); if (ret) return ret; switch (val) { case 3: st->chain_last_alert_ignore |= AD7280A_ALERT_REMOVE_VIN4_VIN5; break; case 4: st->chain_last_alert_ignore |= AD7280A_ALERT_REMOVE_VIN5; break; case 5: break; default: dev_err(dev, "Firmware provided last voltage alert channel invalid\n"); break; } } crc8_populate_msb(st->crc_tab, POLYNOM); st->spi->max_speed_hz = AD7280A_MAX_SPI_CLK_HZ; st->spi->mode = SPI_MODE_1; spi_setup(st->spi); st->ctrl_lb = FIELD_PREP(AD7280A_CTRL_LB_ACQ_TIME_MSK, st->acquisition_time) | FIELD_PREP(AD7280A_CTRL_LB_THERMISTOR_MSK, st->thermistor_term_en); st->oversampling_ratio = 0; /* No oversampling */ ret = ad7280_chain_setup(st); if (ret < 0) return ret; st->slave_num = ret; st->scan_cnt = (st->slave_num + 1) * AD7280A_NUM_CH; st->cell_threshhigh = 0xFF; st->aux_threshhigh = 0xFF; ret = devm_add_action_or_reset(dev, ad7280_sw_power_down, st); if (ret) return ret; ad7280_update_delay(st); indio_dev->name = spi_get_device_id(spi)->name; indio_dev->modes = INDIO_DIRECT_MODE; ret = ad7280_channel_init(st, spi->irq > 0); if (ret < 0) return ret; indio_dev->num_channels = ret; indio_dev->channels = st->channels; if (spi->irq > 0) { ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_ALERT_REG, 1, AD7280A_ALERT_RELAY_SIG_CHAIN_DOWN); if (ret) return ret; ret = ad7280_write(st, ad7280a_devaddr(st->slave_num), AD7280A_ALERT_REG, 0, AD7280A_ALERT_GEN_STATIC_HIGH | FIELD_PREP(AD7280A_ALERT_REMOVE_MSK, st->chain_last_alert_ignore)); if (ret) return ret; ret = devm_request_threaded_irq(dev, spi->irq, NULL, ad7280_event_handler, IRQF_TRIGGER_FALLING | IRQF_ONESHOT, indio_dev->name, indio_dev); if (ret) return ret; indio_dev->info = &ad7280_info; } else { indio_dev->info = &ad7280_info_no_irq; } return devm_iio_device_register(dev, indio_dev); } static const struct spi_device_id ad7280_id[] = { {"ad7280a", 0}, {} }; MODULE_DEVICE_TABLE(spi, ad7280_id); static struct spi_driver ad7280_driver = { .driver = { .name = "ad7280", }, .probe = ad7280_probe, .id_table = ad7280_id, }; module_spi_driver(ad7280_driver); MODULE_AUTHOR("Michael Hennerich "); MODULE_DESCRIPTION("Analog Devices AD7280A"); MODULE_LICENSE("GPL v2");