// SPDX-License-Identifier: MIT /* * Copyright © 2023 Intel Corporation */ #include "xe_gt_freq.h" #include #include #include #include #include "xe_device_types.h" #include "xe_gt_sysfs.h" #include "xe_gt_throttle_sysfs.h" #include "xe_guc_pc.h" #include "xe_pm.h" /** * DOC: Xe GT Frequency Management * * This component is responsible for the raw GT frequency management, including * the sysfs API. * * Underneath, Xe enables GuC SLPC automated frequency management. GuC is then * allowed to request PCODE any frequency between the Minimum and the Maximum * selected by this component. Furthermore, it is important to highlight that * PCODE is the ultimate decision maker of the actual running frequency, based * on thermal and other running conditions. * * Xe's Freq provides a sysfs API for frequency management: * * device/tile#/gt#/freq0/_freq *read-only* files: * - act_freq: The actual resolved frequency decided by PCODE. * - cur_freq: The current one requested by GuC PC to the PCODE. * - rpn_freq: The Render Performance (RP) N level, which is the minimal one. * - rpe_freq: The Render Performance (RP) E level, which is the efficient one. * - rp0_freq: The Render Performance (RP) 0 level, which is the maximum one. * * device/tile#/gt#/freq0/_freq *read-write* files: * - min_freq: Min frequency request. * - max_freq: Max frequency request. * If max <= min, then freq_min becomes a fixed frequency request. */ static struct xe_guc_pc * dev_to_pc(struct device *dev) { return &kobj_to_gt(dev->kobj.parent)->uc.guc.pc; } static struct xe_device * dev_to_xe(struct device *dev) { return gt_to_xe(kobj_to_gt(dev->kobj.parent)); } static ssize_t act_freq_show(struct device *dev, struct device_attribute *attr, char *buf) { struct xe_guc_pc *pc = dev_to_pc(dev); u32 freq; xe_pm_runtime_get(dev_to_xe(dev)); freq = xe_guc_pc_get_act_freq(pc); xe_pm_runtime_put(dev_to_xe(dev)); return sysfs_emit(buf, "%d\n", freq); } static DEVICE_ATTR_RO(act_freq); static ssize_t cur_freq_show(struct device *dev, struct device_attribute *attr, char *buf) { struct xe_guc_pc *pc = dev_to_pc(dev); u32 freq; ssize_t ret; xe_pm_runtime_get(dev_to_xe(dev)); ret = xe_guc_pc_get_cur_freq(pc, &freq); xe_pm_runtime_put(dev_to_xe(dev)); if (ret) return ret; return sysfs_emit(buf, "%d\n", freq); } static DEVICE_ATTR_RO(cur_freq); static ssize_t rp0_freq_show(struct device *dev, struct device_attribute *attr, char *buf) { struct xe_guc_pc *pc = dev_to_pc(dev); u32 freq; xe_pm_runtime_get(dev_to_xe(dev)); freq = xe_guc_pc_get_rp0_freq(pc); xe_pm_runtime_put(dev_to_xe(dev)); return sysfs_emit(buf, "%d\n", freq); } static DEVICE_ATTR_RO(rp0_freq); static ssize_t rpe_freq_show(struct device *dev, struct device_attribute *attr, char *buf) { struct xe_guc_pc *pc = dev_to_pc(dev); u32 freq; xe_pm_runtime_get(dev_to_xe(dev)); freq = xe_guc_pc_get_rpe_freq(pc); xe_pm_runtime_put(dev_to_xe(dev)); return sysfs_emit(buf, "%d\n", freq); } static DEVICE_ATTR_RO(rpe_freq); static ssize_t rpn_freq_show(struct device *dev, struct device_attribute *attr, char *buf) { struct xe_guc_pc *pc = dev_to_pc(dev); return sysfs_emit(buf, "%d\n", xe_guc_pc_get_rpn_freq(pc)); } static DEVICE_ATTR_RO(rpn_freq); static ssize_t min_freq_show(struct device *dev, struct device_attribute *attr, char *buf) { struct xe_guc_pc *pc = dev_to_pc(dev); u32 freq; ssize_t ret; xe_pm_runtime_get(dev_to_xe(dev)); ret = xe_guc_pc_get_min_freq(pc, &freq); xe_pm_runtime_put(dev_to_xe(dev)); if (ret) return ret; return sysfs_emit(buf, "%d\n", freq); } static ssize_t min_freq_store(struct device *dev, struct device_attribute *attr, const char *buff, size_t count) { struct xe_guc_pc *pc = dev_to_pc(dev); u32 freq; ssize_t ret; ret = kstrtou32(buff, 0, &freq); if (ret) return ret; xe_pm_runtime_get(dev_to_xe(dev)); ret = xe_guc_pc_set_min_freq(pc, freq); xe_pm_runtime_put(dev_to_xe(dev)); if (ret) return ret; return count; } static DEVICE_ATTR_RW(min_freq); static ssize_t max_freq_show(struct device *dev, struct device_attribute *attr, char *buf) { struct xe_guc_pc *pc = dev_to_pc(dev); u32 freq; ssize_t ret; xe_pm_runtime_get(dev_to_xe(dev)); ret = xe_guc_pc_get_max_freq(pc, &freq); xe_pm_runtime_put(dev_to_xe(dev)); if (ret) return ret; return sysfs_emit(buf, "%d\n", freq); } static ssize_t max_freq_store(struct device *dev, struct device_attribute *attr, const char *buff, size_t count) { struct xe_guc_pc *pc = dev_to_pc(dev); u32 freq; ssize_t ret; ret = kstrtou32(buff, 0, &freq); if (ret) return ret; xe_pm_runtime_get(dev_to_xe(dev)); ret = xe_guc_pc_set_max_freq(pc, freq); xe_pm_runtime_put(dev_to_xe(dev)); if (ret) return ret; return count; } static DEVICE_ATTR_RW(max_freq); static const struct attribute *freq_attrs[] = { &dev_attr_act_freq.attr, &dev_attr_cur_freq.attr, &dev_attr_rp0_freq.attr, &dev_attr_rpe_freq.attr, &dev_attr_rpn_freq.attr, &dev_attr_min_freq.attr, &dev_attr_max_freq.attr, NULL }; static void freq_fini(struct drm_device *drm, void *arg) { struct kobject *kobj = arg; sysfs_remove_files(kobj, freq_attrs); kobject_put(kobj); } /** * xe_gt_freq_init - Initialize Xe Freq component * @gt: Xe GT object * * It needs to be initialized after GT Sysfs and GuC PC components are ready. * * Returns: Returns error value for failure and 0 for success. */ int xe_gt_freq_init(struct xe_gt *gt) { struct xe_device *xe = gt_to_xe(gt); int err; if (xe->info.skip_guc_pc) return 0; gt->freq = kobject_create_and_add("freq0", gt->sysfs); if (!gt->freq) return -ENOMEM; err = drmm_add_action_or_reset(&xe->drm, freq_fini, gt->freq); if (err) return err; err = sysfs_create_files(gt->freq, freq_attrs); if (err) return err; return xe_gt_throttle_sysfs_init(gt); }