// SPDX-License-Identifier: MIT /* * Copyright © 2023 Intel Corporation */ #include "xe_devcoredump.h" #include "xe_devcoredump_types.h" #include #include #include #include "xe_device.h" #include "xe_exec_queue.h" #include "xe_force_wake.h" #include "xe_gt.h" #include "xe_gt_printk.h" #include "xe_guc_ct.h" #include "xe_guc_submit.h" #include "xe_hw_engine.h" #include "xe_sched_job.h" #include "xe_vm.h" /** * DOC: Xe device coredump * * Devices overview: * Xe uses dev_coredump infrastructure for exposing the crash errors in a * standardized way. * devcoredump exposes a temporary device under /sys/class/devcoredump/ * which is linked with our card device directly. * The core dump can be accessed either from * /sys/class/drm/card/device/devcoredump/ or from * /sys/class/devcoredump/devcd where * /sys/class/devcoredump/devcd/failing_device is a link to * /sys/class/drm/card/device/. * * Snapshot at hang: * The 'data' file is printed with a drm_printer pointer at devcoredump read * time. For this reason, we need to take snapshots from when the hang has * happened, and not only when the user is reading the file. Otherwise the * information is outdated since the resets might have happened in between. * * 'First' failure snapshot: * In general, the first hang is the most critical one since the following hangs * can be a consequence of the initial hang. For this reason we only take the * snapshot of the 'first' failure and ignore subsequent calls of this function, * at least while the coredump device is alive. Dev_coredump has a delayed work * queue that will eventually delete the device and free all the dump * information. */ #ifdef CONFIG_DEV_COREDUMP static struct xe_device *coredump_to_xe(const struct xe_devcoredump *coredump) { return container_of(coredump, struct xe_device, devcoredump); } static struct xe_guc *exec_queue_to_guc(struct xe_exec_queue *q) { return &q->gt->uc.guc; } static void xe_devcoredump_deferred_snap_work(struct work_struct *work) { struct xe_devcoredump_snapshot *ss = container_of(work, typeof(*ss), work); /* keep going if fw fails as we still want to save the memory and SW data */ if (xe_force_wake_get(gt_to_fw(ss->gt), XE_FORCEWAKE_ALL)) xe_gt_info(ss->gt, "failed to get forcewake for coredump capture\n"); xe_vm_snapshot_capture_delayed(ss->vm); xe_guc_exec_queue_snapshot_capture_delayed(ss->ge); xe_force_wake_put(gt_to_fw(ss->gt), XE_FORCEWAKE_ALL); } static ssize_t xe_devcoredump_read(char *buffer, loff_t offset, size_t count, void *data, size_t datalen) { struct xe_devcoredump *coredump = data; struct xe_device *xe; struct xe_devcoredump_snapshot *ss; struct drm_printer p; struct drm_print_iterator iter; struct timespec64 ts; int i; if (!coredump) return -ENODEV; xe = coredump_to_xe(coredump); ss = &coredump->snapshot; /* Ensure delayed work is captured before continuing */ flush_work(&ss->work); iter.data = buffer; iter.offset = 0; iter.start = offset; iter.remain = count; p = drm_coredump_printer(&iter); drm_printf(&p, "**** Xe Device Coredump ****\n"); drm_printf(&p, "kernel: " UTS_RELEASE "\n"); drm_printf(&p, "module: " KBUILD_MODNAME "\n"); ts = ktime_to_timespec64(ss->snapshot_time); drm_printf(&p, "Snapshot time: %lld.%09ld\n", ts.tv_sec, ts.tv_nsec); ts = ktime_to_timespec64(ss->boot_time); drm_printf(&p, "Uptime: %lld.%09ld\n", ts.tv_sec, ts.tv_nsec); xe_device_snapshot_print(xe, &p); drm_printf(&p, "\n**** GuC CT ****\n"); xe_guc_ct_snapshot_print(coredump->snapshot.ct, &p); xe_guc_exec_queue_snapshot_print(coredump->snapshot.ge, &p); drm_printf(&p, "\n**** Job ****\n"); xe_sched_job_snapshot_print(coredump->snapshot.job, &p); drm_printf(&p, "\n**** HW Engines ****\n"); for (i = 0; i < XE_NUM_HW_ENGINES; i++) if (coredump->snapshot.hwe[i]) xe_hw_engine_snapshot_print(coredump->snapshot.hwe[i], &p); drm_printf(&p, "\n**** VM state ****\n"); xe_vm_snapshot_print(coredump->snapshot.vm, &p); return count - iter.remain; } static void xe_devcoredump_free(void *data) { struct xe_devcoredump *coredump = data; int i; /* Our device is gone. Nothing to do... */ if (!data || !coredump_to_xe(coredump)) return; cancel_work_sync(&coredump->snapshot.work); xe_guc_ct_snapshot_free(coredump->snapshot.ct); xe_guc_exec_queue_snapshot_free(coredump->snapshot.ge); xe_sched_job_snapshot_free(coredump->snapshot.job); for (i = 0; i < XE_NUM_HW_ENGINES; i++) if (coredump->snapshot.hwe[i]) xe_hw_engine_snapshot_free(coredump->snapshot.hwe[i]); xe_vm_snapshot_free(coredump->snapshot.vm); /* To prevent stale data on next snapshot, clear everything */ memset(&coredump->snapshot, 0, sizeof(coredump->snapshot)); coredump->captured = false; drm_info(&coredump_to_xe(coredump)->drm, "Xe device coredump has been deleted.\n"); } static void devcoredump_snapshot(struct xe_devcoredump *coredump, struct xe_sched_job *job) { struct xe_devcoredump_snapshot *ss = &coredump->snapshot; struct xe_exec_queue *q = job->q; struct xe_guc *guc = exec_queue_to_guc(q); struct xe_hw_engine *hwe; enum xe_hw_engine_id id; u32 adj_logical_mask = q->logical_mask; u32 width_mask = (0x1 << q->width) - 1; int i; bool cookie; ss->snapshot_time = ktime_get_real(); ss->boot_time = ktime_get_boottime(); ss->gt = q->gt; INIT_WORK(&ss->work, xe_devcoredump_deferred_snap_work); cookie = dma_fence_begin_signalling(); for (i = 0; q->width > 1 && i < XE_HW_ENGINE_MAX_INSTANCE;) { if (adj_logical_mask & BIT(i)) { adj_logical_mask |= width_mask << i; i += q->width; } else { ++i; } } /* keep going if fw fails as we still want to save the memory and SW data */ if (xe_force_wake_get(gt_to_fw(q->gt), XE_FORCEWAKE_ALL)) xe_gt_info(ss->gt, "failed to get forcewake for coredump capture\n"); coredump->snapshot.ct = xe_guc_ct_snapshot_capture(&guc->ct, true); coredump->snapshot.ge = xe_guc_exec_queue_snapshot_capture(q); coredump->snapshot.job = xe_sched_job_snapshot_capture(job); coredump->snapshot.vm = xe_vm_snapshot_capture(q->vm); for_each_hw_engine(hwe, q->gt, id) { if (hwe->class != q->hwe->class || !(BIT(hwe->logical_instance) & adj_logical_mask)) { coredump->snapshot.hwe[id] = NULL; continue; } coredump->snapshot.hwe[id] = xe_hw_engine_snapshot_capture(hwe); } queue_work(system_unbound_wq, &ss->work); xe_force_wake_put(gt_to_fw(q->gt), XE_FORCEWAKE_ALL); dma_fence_end_signalling(cookie); } /** * xe_devcoredump - Take the required snapshots and initialize coredump device. * @job: The faulty xe_sched_job, where the issue was detected. * * This function should be called at the crash time within the serialized * gt_reset. It is skipped if we still have the core dump device available * with the information of the 'first' snapshot. */ void xe_devcoredump(struct xe_sched_job *job) { struct xe_device *xe = gt_to_xe(job->q->gt); struct xe_devcoredump *coredump = &xe->devcoredump; if (coredump->captured) { drm_dbg(&xe->drm, "Multiple hangs are occurring, but only the first snapshot was taken\n"); return; } coredump->captured = true; devcoredump_snapshot(coredump, job); drm_info(&xe->drm, "Xe device coredump has been created\n"); drm_info(&xe->drm, "Check your /sys/class/drm/card%d/device/devcoredump/data\n", xe->drm.primary->index); dev_coredumpm(xe->drm.dev, THIS_MODULE, coredump, 0, GFP_KERNEL, xe_devcoredump_read, xe_devcoredump_free); } static void xe_driver_devcoredump_fini(struct drm_device *drm, void *arg) { dev_coredump_put(drm->dev); } int xe_devcoredump_init(struct xe_device *xe) { return drmm_add_action_or_reset(&xe->drm, xe_driver_devcoredump_fini, xe); } #endif