/* * Copyright 2010 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Ben Skeggs */ #include "ummu.h" #include "vmm.h" #include #include #include #include struct nvkm_mmu_ptp { struct nvkm_mmu_pt *pt; struct list_head head; u8 shift; u16 mask; u16 free; }; static void nvkm_mmu_ptp_put(struct nvkm_mmu *mmu, bool force, struct nvkm_mmu_pt *pt) { const int slot = pt->base >> pt->ptp->shift; struct nvkm_mmu_ptp *ptp = pt->ptp; /* If there were no free slots in the parent allocation before, * there will be now, so return PTP to the cache. */ if (!ptp->free) list_add(&ptp->head, &mmu->ptp.list); ptp->free |= BIT(slot); /* If there's no more sub-allocations, destroy PTP. */ if (ptp->free == ptp->mask) { nvkm_mmu_ptc_put(mmu, force, &ptp->pt); list_del(&ptp->head); kfree(ptp); } kfree(pt); } static struct nvkm_mmu_pt * nvkm_mmu_ptp_get(struct nvkm_mmu *mmu, u32 size, bool zero) { struct nvkm_mmu_pt *pt; struct nvkm_mmu_ptp *ptp; int slot; if (!(pt = kzalloc(sizeof(*pt), GFP_KERNEL))) return NULL; ptp = list_first_entry_or_null(&mmu->ptp.list, typeof(*ptp), head); if (!ptp) { /* Need to allocate a new parent to sub-allocate from. */ if (!(ptp = kmalloc(sizeof(*ptp), GFP_KERNEL))) { kfree(pt); return NULL; } ptp->pt = nvkm_mmu_ptc_get(mmu, 0x1000, 0x1000, false); if (!ptp->pt) { kfree(ptp); kfree(pt); return NULL; } ptp->shift = order_base_2(size); slot = nvkm_memory_size(ptp->pt->memory) >> ptp->shift; ptp->mask = (1 << slot) - 1; ptp->free = ptp->mask; list_add(&ptp->head, &mmu->ptp.list); } pt->ptp = ptp; pt->sub = true; /* Sub-allocate from parent object, removing PTP from cache * if there's no more free slots left. */ slot = __ffs(ptp->free); ptp->free &= ~BIT(slot); if (!ptp->free) list_del(&ptp->head); pt->memory = pt->ptp->pt->memory; pt->base = slot << ptp->shift; pt->addr = pt->ptp->pt->addr + pt->base; return pt; } struct nvkm_mmu_ptc { struct list_head head; struct list_head item; u32 size; u32 refs; }; static inline struct nvkm_mmu_ptc * nvkm_mmu_ptc_find(struct nvkm_mmu *mmu, u32 size) { struct nvkm_mmu_ptc *ptc; list_for_each_entry(ptc, &mmu->ptc.list, head) { if (ptc->size == size) return ptc; } ptc = kmalloc(sizeof(*ptc), GFP_KERNEL); if (ptc) { INIT_LIST_HEAD(&ptc->item); ptc->size = size; ptc->refs = 0; list_add(&ptc->head, &mmu->ptc.list); } return ptc; } void nvkm_mmu_ptc_put(struct nvkm_mmu *mmu, bool force, struct nvkm_mmu_pt **ppt) { struct nvkm_mmu_pt *pt = *ppt; if (pt) { /* Handle sub-allocated page tables. */ if (pt->sub) { mutex_lock(&mmu->ptp.mutex); nvkm_mmu_ptp_put(mmu, force, pt); mutex_unlock(&mmu->ptp.mutex); return; } /* Either cache or free the object. */ mutex_lock(&mmu->ptc.mutex); if (pt->ptc->refs < 8 /* Heuristic. */ && !force) { list_add_tail(&pt->head, &pt->ptc->item); pt->ptc->refs++; } else { nvkm_memory_unref(&pt->memory); kfree(pt); } mutex_unlock(&mmu->ptc.mutex); } } struct nvkm_mmu_pt * nvkm_mmu_ptc_get(struct nvkm_mmu *mmu, u32 size, u32 align, bool zero) { struct nvkm_mmu_ptc *ptc; struct nvkm_mmu_pt *pt; int ret; /* Sub-allocated page table (ie. GP100 LPT). */ if (align < 0x1000) { mutex_lock(&mmu->ptp.mutex); pt = nvkm_mmu_ptp_get(mmu, align, zero); mutex_unlock(&mmu->ptp.mutex); return pt; } /* Lookup cache for this page table size. */ mutex_lock(&mmu->ptc.mutex); ptc = nvkm_mmu_ptc_find(mmu, size); if (!ptc) { mutex_unlock(&mmu->ptc.mutex); return NULL; } /* If there's a free PT in the cache, reuse it. */ pt = list_first_entry_or_null(&ptc->item, typeof(*pt), head); if (pt) { if (zero) nvkm_fo64(pt->memory, 0, 0, size >> 3); list_del(&pt->head); ptc->refs--; mutex_unlock(&mmu->ptc.mutex); return pt; } mutex_unlock(&mmu->ptc.mutex); /* No such luck, we need to allocate. */ if (!(pt = kmalloc(sizeof(*pt), GFP_KERNEL))) return NULL; pt->ptc = ptc; pt->sub = false; ret = nvkm_memory_new(mmu->subdev.device, NVKM_MEM_TARGET_INST, size, align, zero, &pt->memory); if (ret) { kfree(pt); return NULL; } pt->base = 0; pt->addr = nvkm_memory_addr(pt->memory); return pt; } void nvkm_mmu_ptc_dump(struct nvkm_mmu *mmu) { struct nvkm_mmu_ptc *ptc; list_for_each_entry(ptc, &mmu->ptc.list, head) { struct nvkm_mmu_pt *pt, *tt; list_for_each_entry_safe(pt, tt, &ptc->item, head) { nvkm_memory_unref(&pt->memory); list_del(&pt->head); kfree(pt); } } } static void nvkm_mmu_ptc_fini(struct nvkm_mmu *mmu) { struct nvkm_mmu_ptc *ptc, *ptct; list_for_each_entry_safe(ptc, ptct, &mmu->ptc.list, head) { WARN_ON(!list_empty(&ptc->item)); list_del(&ptc->head); kfree(ptc); } } static void nvkm_mmu_ptc_init(struct nvkm_mmu *mmu) { mutex_init(&mmu->ptc.mutex); INIT_LIST_HEAD(&mmu->ptc.list); mutex_init(&mmu->ptp.mutex); INIT_LIST_HEAD(&mmu->ptp.list); } static void nvkm_mmu_type(struct nvkm_mmu *mmu, int heap, u8 type) { if (heap >= 0 && !WARN_ON(mmu->type_nr == ARRAY_SIZE(mmu->type))) { mmu->type[mmu->type_nr].type = type | mmu->heap[heap].type; mmu->type[mmu->type_nr].heap = heap; mmu->type_nr++; } } static int nvkm_mmu_heap(struct nvkm_mmu *mmu, u8 type, u64 size) { if (size) { if (!WARN_ON(mmu->heap_nr == ARRAY_SIZE(mmu->heap))) { mmu->heap[mmu->heap_nr].type = type; mmu->heap[mmu->heap_nr].size = size; return mmu->heap_nr++; } } return -EINVAL; } static void nvkm_mmu_host(struct nvkm_mmu *mmu) { struct nvkm_device *device = mmu->subdev.device; u8 type = NVKM_MEM_KIND * !!mmu->func->kind_sys; int heap; /* Non-mappable system memory. */ heap = nvkm_mmu_heap(mmu, NVKM_MEM_HOST, ~0ULL); nvkm_mmu_type(mmu, heap, type); /* Non-coherent, cached, system memory. * * Block-linear mappings of system memory must be done through * BAR1, and cannot be supported on systems where we're unable * to map BAR1 with write-combining. */ type |= NVKM_MEM_MAPPABLE; if (!device->bar || device->bar->iomap_uncached) nvkm_mmu_type(mmu, heap, type & ~NVKM_MEM_KIND); else nvkm_mmu_type(mmu, heap, type); /* Coherent, cached, system memory. * * Unsupported on systems that aren't able to support snooped * mappings, and also for block-linear mappings which must be * done through BAR1. */ type |= NVKM_MEM_COHERENT; if (device->func->cpu_coherent) nvkm_mmu_type(mmu, heap, type & ~NVKM_MEM_KIND); /* Uncached system memory. */ nvkm_mmu_type(mmu, heap, type |= NVKM_MEM_UNCACHED); } static void nvkm_mmu_vram(struct nvkm_mmu *mmu) { struct nvkm_device *device = mmu->subdev.device; struct nvkm_mm *mm = &device->fb->ram->vram; const u64 sizeN = nvkm_mm_heap_size(mm, NVKM_RAM_MM_NORMAL); const u64 sizeU = nvkm_mm_heap_size(mm, NVKM_RAM_MM_NOMAP); const u64 sizeM = nvkm_mm_heap_size(mm, NVKM_RAM_MM_MIXED); u8 type = NVKM_MEM_KIND * !!mmu->func->kind; u8 heap = NVKM_MEM_VRAM; int heapM, heapN, heapU; /* Mixed-memory doesn't support compression or display. */ heapM = nvkm_mmu_heap(mmu, heap, sizeM << NVKM_RAM_MM_SHIFT); heap |= NVKM_MEM_COMP; heap |= NVKM_MEM_DISP; heapN = nvkm_mmu_heap(mmu, heap, sizeN << NVKM_RAM_MM_SHIFT); heapU = nvkm_mmu_heap(mmu, heap, sizeU << NVKM_RAM_MM_SHIFT); /* Add non-mappable VRAM types first so that they're preferred * over anything else. Mixed-memory will be slower than other * heaps, it's prioritised last. */ nvkm_mmu_type(mmu, heapU, type); nvkm_mmu_type(mmu, heapN, type); nvkm_mmu_type(mmu, heapM, type); /* Add host memory types next, under the assumption that users * wanting mappable memory want to use them as staging buffers * or the like. */ nvkm_mmu_host(mmu); /* Mappable VRAM types go last, as they're basically the worst * possible type to ask for unless there's no other choice. */ if (device->bar) { /* Write-combined BAR1 access. */ type |= NVKM_MEM_MAPPABLE; if (!device->bar->iomap_uncached) { nvkm_mmu_type(mmu, heapN, type); nvkm_mmu_type(mmu, heapM, type); } /* Uncached BAR1 access. */ type |= NVKM_MEM_COHERENT; type |= NVKM_MEM_UNCACHED; nvkm_mmu_type(mmu, heapN, type); nvkm_mmu_type(mmu, heapM, type); } } static int nvkm_mmu_oneinit(struct nvkm_subdev *subdev) { struct nvkm_mmu *mmu = nvkm_mmu(subdev); /* Determine available memory types. */ if (mmu->subdev.device->fb && mmu->subdev.device->fb->ram) nvkm_mmu_vram(mmu); else nvkm_mmu_host(mmu); if (mmu->func->vmm.global) { int ret = nvkm_vmm_new(subdev->device, 0, 0, NULL, 0, NULL, "gart", &mmu->vmm); if (ret) return ret; } return 0; } static int nvkm_mmu_init(struct nvkm_subdev *subdev) { struct nvkm_mmu *mmu = nvkm_mmu(subdev); if (mmu->func->init) mmu->func->init(mmu); return 0; } static void * nvkm_mmu_dtor(struct nvkm_subdev *subdev) { struct nvkm_mmu *mmu = nvkm_mmu(subdev); nvkm_vmm_unref(&mmu->vmm); nvkm_mmu_ptc_fini(mmu); mutex_destroy(&mmu->mutex); if (mmu->func->dtor) mmu->func->dtor(mmu); return mmu; } static const struct nvkm_subdev_func nvkm_mmu = { .dtor = nvkm_mmu_dtor, .oneinit = nvkm_mmu_oneinit, .init = nvkm_mmu_init, }; void nvkm_mmu_ctor(const struct nvkm_mmu_func *func, struct nvkm_device *device, enum nvkm_subdev_type type, int inst, struct nvkm_mmu *mmu) { nvkm_subdev_ctor(&nvkm_mmu, device, type, inst, &mmu->subdev); mmu->func = func; mmu->dma_bits = func->dma_bits; nvkm_mmu_ptc_init(mmu); mutex_init(&mmu->mutex); mmu->user.ctor = nvkm_ummu_new; mmu->user.base = func->mmu.user; } int nvkm_mmu_new_(const struct nvkm_mmu_func *func, struct nvkm_device *device, enum nvkm_subdev_type type, int inst, struct nvkm_mmu **pmmu) { if (!(*pmmu = kzalloc(sizeof(**pmmu), GFP_KERNEL))) return -ENOMEM; nvkm_mmu_ctor(func, device, type, inst, *pmmu); return 0; }