/* * Copyright 2018 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "priv.h" #include #include #include #include void gv100_fault_buffer_process(struct work_struct *work) { struct nvkm_fault *fault = container_of(work, typeof(*fault), nrpfb_work); struct nvkm_fault_buffer *buffer = fault->buffer[0]; struct nvkm_device *device = fault->subdev.device; struct nvkm_memory *mem = buffer->mem; u32 get = nvkm_rd32(device, buffer->get); u32 put = nvkm_rd32(device, buffer->put); if (put == get) return; nvkm_kmap(mem); while (get != put) { const u32 base = get * buffer->fault->func->buffer.entry_size; const u32 instlo = nvkm_ro32(mem, base + 0x00); const u32 insthi = nvkm_ro32(mem, base + 0x04); const u32 addrlo = nvkm_ro32(mem, base + 0x08); const u32 addrhi = nvkm_ro32(mem, base + 0x0c); const u32 timelo = nvkm_ro32(mem, base + 0x10); const u32 timehi = nvkm_ro32(mem, base + 0x14); const u32 info0 = nvkm_ro32(mem, base + 0x18); const u32 info1 = nvkm_ro32(mem, base + 0x1c); struct nvkm_fault_data info; if (++get == buffer->entries) get = 0; nvkm_wr32(device, buffer->get, get); info.addr = ((u64)addrhi << 32) | addrlo; info.inst = ((u64)insthi << 32) | instlo; info.time = ((u64)timehi << 32) | timelo; info.engine = (info0 & 0x000000ff); info.valid = (info1 & 0x80000000) >> 31; info.gpc = (info1 & 0x1f000000) >> 24; info.hub = (info1 & 0x00100000) >> 20; info.access = (info1 & 0x000f0000) >> 16; info.client = (info1 & 0x00007f00) >> 8; info.reason = (info1 & 0x0000001f); nvkm_fifo_fault(device->fifo, &info); } nvkm_done(mem); } static void gv100_fault_buffer_intr(struct nvkm_fault_buffer *buffer, bool enable) { struct nvkm_device *device = buffer->fault->subdev.device; const u32 intr = buffer->id ? 0x08000000 : 0x20000000; if (enable) nvkm_mask(device, 0x100a2c, intr, intr); else nvkm_mask(device, 0x100a34, intr, intr); } static void gv100_fault_buffer_fini(struct nvkm_fault_buffer *buffer) { struct nvkm_device *device = buffer->fault->subdev.device; const u32 foff = buffer->id * 0x14; nvkm_mask(device, 0x100e34 + foff, 0x80000000, 0x00000000); } static void gv100_fault_buffer_init(struct nvkm_fault_buffer *buffer) { struct nvkm_device *device = buffer->fault->subdev.device; const u32 foff = buffer->id * 0x14; nvkm_mask(device, 0x100e34 + foff, 0xc0000000, 0x40000000); nvkm_wr32(device, 0x100e28 + foff, upper_32_bits(buffer->addr)); nvkm_wr32(device, 0x100e24 + foff, lower_32_bits(buffer->addr)); nvkm_mask(device, 0x100e34 + foff, 0x80000000, 0x80000000); } static void gv100_fault_buffer_info(struct nvkm_fault_buffer *buffer) { struct nvkm_device *device = buffer->fault->subdev.device; const u32 foff = buffer->id * 0x14; nvkm_mask(device, 0x100e34 + foff, 0x40000000, 0x40000000); buffer->entries = nvkm_rd32(device, 0x100e34 + foff) & 0x000fffff; buffer->get = 0x100e2c + foff; buffer->put = 0x100e30 + foff; } static int gv100_fault_ntfy_nrpfb(struct nvkm_event_ntfy *ntfy, u32 bits) { struct nvkm_fault *fault = container_of(ntfy, typeof(*fault), nrpfb); schedule_work(&fault->nrpfb_work); return NVKM_EVENT_KEEP; } static void gv100_fault_intr_fault(struct nvkm_fault *fault) { struct nvkm_subdev *subdev = &fault->subdev; struct nvkm_device *device = subdev->device; struct nvkm_fault_data info; const u32 addrlo = nvkm_rd32(device, 0x100e4c); const u32 addrhi = nvkm_rd32(device, 0x100e50); const u32 info0 = nvkm_rd32(device, 0x100e54); const u32 insthi = nvkm_rd32(device, 0x100e58); const u32 info1 = nvkm_rd32(device, 0x100e5c); info.addr = ((u64)addrhi << 32) | addrlo; info.inst = ((u64)insthi << 32) | (info0 & 0xfffff000); info.time = 0; info.engine = (info0 & 0x000000ff); info.valid = (info1 & 0x80000000) >> 31; info.gpc = (info1 & 0x1f000000) >> 24; info.hub = (info1 & 0x00100000) >> 20; info.access = (info1 & 0x000f0000) >> 16; info.client = (info1 & 0x00007f00) >> 8; info.reason = (info1 & 0x0000001f); nvkm_fifo_fault(device->fifo, &info); } static void gv100_fault_intr(struct nvkm_fault *fault) { struct nvkm_subdev *subdev = &fault->subdev; struct nvkm_device *device = subdev->device; u32 stat = nvkm_rd32(device, 0x100a20); if (stat & 0x80000000) { gv100_fault_intr_fault(fault); nvkm_wr32(device, 0x100e60, 0x80000000); stat &= ~0x80000000; } if (stat & 0x20000000) { if (fault->buffer[0]) { nvkm_event_ntfy(&fault->event, 0, NVKM_FAULT_BUFFER_EVENT_PENDING); stat &= ~0x20000000; } } if (stat & 0x08000000) { if (fault->buffer[1]) { nvkm_event_ntfy(&fault->event, 1, NVKM_FAULT_BUFFER_EVENT_PENDING); stat &= ~0x08000000; } } if (stat) { nvkm_debug(subdev, "intr %08x\n", stat); } } static void gv100_fault_fini(struct nvkm_fault *fault) { nvkm_event_ntfy_block(&fault->nrpfb); flush_work(&fault->nrpfb_work); if (fault->buffer[0]) fault->func->buffer.fini(fault->buffer[0]); nvkm_mask(fault->subdev.device, 0x100a34, 0x80000000, 0x80000000); } static void gv100_fault_init(struct nvkm_fault *fault) { nvkm_mask(fault->subdev.device, 0x100a2c, 0x80000000, 0x80000000); fault->func->buffer.init(fault->buffer[0]); nvkm_event_ntfy_allow(&fault->nrpfb); } int gv100_fault_oneinit(struct nvkm_fault *fault) { nvkm_event_ntfy_add(&fault->event, 0, NVKM_FAULT_BUFFER_EVENT_PENDING, true, gv100_fault_ntfy_nrpfb, &fault->nrpfb); return 0; } static const struct nvkm_fault_func gv100_fault = { .oneinit = gv100_fault_oneinit, .init = gv100_fault_init, .fini = gv100_fault_fini, .intr = gv100_fault_intr, .buffer.nr = 2, .buffer.entry_size = 32, .buffer.info = gv100_fault_buffer_info, .buffer.pin = gp100_fault_buffer_pin, .buffer.init = gv100_fault_buffer_init, .buffer.fini = gv100_fault_buffer_fini, .buffer.intr = gv100_fault_buffer_intr, /*TODO: Figure out how to expose non-replayable fault buffer, which, * for some reason, is where recoverable CE faults appear... * * It's a bit tricky, as both NVKM and SVM will need access to * the non-replayable fault buffer. */ .user = { { 0, 0, VOLTA_FAULT_BUFFER_A }, 1 }, }; int gv100_fault_new(struct nvkm_device *device, enum nvkm_subdev_type type, int inst, struct nvkm_fault **pfault) { int ret = nvkm_fault_new_(&gv100_fault, device, type, inst, pfault); if (ret) return ret; INIT_WORK(&(*pfault)->nrpfb_work, gv100_fault_buffer_process); return 0; }