// SPDX-License-Identifier: GPL-2.0-only /* Copyright (c) 2010-2015, The Linux Foundation. All rights reserved. */ #include "hdmi.h" #include #define HDCP_REG_ENABLE 0x01 #define HDCP_REG_DISABLE 0x00 #define HDCP_PORT_ADDR 0x74 #define HDCP_INT_STATUS_MASK ( \ HDMI_HDCP_INT_CTRL_AUTH_SUCCESS_INT | \ HDMI_HDCP_INT_CTRL_AUTH_FAIL_INT | \ HDMI_HDCP_INT_CTRL_AUTH_XFER_REQ_INT | \ HDMI_HDCP_INT_CTRL_AUTH_XFER_DONE_INT) #define AUTH_WORK_RETRIES_TIME 100 #define AUTH_RETRIES_TIME 30 /* QFPROM Registers for HDMI/HDCP */ #define QFPROM_RAW_FEAT_CONFIG_ROW0_LSB 0x000000F8 #define QFPROM_RAW_FEAT_CONFIG_ROW0_MSB 0x000000FC #define HDCP_KSV_LSB 0x000060D8 #define HDCP_KSV_MSB 0x000060DC enum DS_TYPE { /* type of downstream device */ DS_UNKNOWN, DS_RECEIVER, DS_REPEATER, }; enum hdmi_hdcp_state { HDCP_STATE_NO_AKSV, HDCP_STATE_INACTIVE, HDCP_STATE_AUTHENTICATING, HDCP_STATE_AUTHENTICATED, HDCP_STATE_AUTH_FAILED }; struct hdmi_hdcp_reg_data { u32 reg_id; u32 off; char *name; u32 reg_val; }; struct hdmi_hdcp_ctrl { struct hdmi *hdmi; u32 auth_retries; bool tz_hdcp; enum hdmi_hdcp_state hdcp_state; struct work_struct hdcp_auth_work; struct work_struct hdcp_reauth_work; #define AUTH_ABORT_EV 1 #define AUTH_RESULT_RDY_EV 2 unsigned long auth_event; wait_queue_head_t auth_event_queue; u32 ksv_fifo_w_index; /* * store aksv from qfprom */ u32 aksv_lsb; u32 aksv_msb; bool aksv_valid; u32 ds_type; u32 bksv_lsb; u32 bksv_msb; u8 dev_count; u8 depth; u8 ksv_list[5 * 127]; bool max_cascade_exceeded; bool max_dev_exceeded; }; static int msm_hdmi_ddc_read(struct hdmi *hdmi, u16 addr, u8 offset, u8 *data, u16 data_len) { int rc; int retry = 5; struct i2c_msg msgs[] = { { .addr = addr >> 1, .flags = 0, .len = 1, .buf = &offset, }, { .addr = addr >> 1, .flags = I2C_M_RD, .len = data_len, .buf = data, } }; DBG("Start DDC read"); retry: rc = i2c_transfer(hdmi->i2c, msgs, 2); retry--; if (rc == 2) rc = 0; else if (retry > 0) goto retry; else rc = -EIO; DBG("End DDC read %d", rc); return rc; } #define HDCP_DDC_WRITE_MAX_BYTE_NUM 32 static int msm_hdmi_ddc_write(struct hdmi *hdmi, u16 addr, u8 offset, u8 *data, u16 data_len) { int rc; int retry = 10; u8 buf[HDCP_DDC_WRITE_MAX_BYTE_NUM]; struct i2c_msg msgs[] = { { .addr = addr >> 1, .flags = 0, .len = 1, } }; DBG("Start DDC write"); if (data_len > (HDCP_DDC_WRITE_MAX_BYTE_NUM - 1)) { pr_err("%s: write size too big\n", __func__); return -ERANGE; } buf[0] = offset; memcpy(&buf[1], data, data_len); msgs[0].buf = buf; msgs[0].len = data_len + 1; retry: rc = i2c_transfer(hdmi->i2c, msgs, 1); retry--; if (rc == 1) rc = 0; else if (retry > 0) goto retry; else rc = -EIO; DBG("End DDC write %d", rc); return rc; } static int msm_hdmi_hdcp_scm_wr(struct hdmi_hdcp_ctrl *hdcp_ctrl, u32 *preg, u32 *pdata, u32 count) { struct hdmi *hdmi = hdcp_ctrl->hdmi; struct qcom_scm_hdcp_req scm_buf[QCOM_SCM_HDCP_MAX_REQ_CNT]; u32 resp, phy_addr, idx = 0; int i, ret = 0; WARN_ON(!pdata || !preg || (count == 0)); if (hdcp_ctrl->tz_hdcp) { phy_addr = (u32)hdmi->mmio_phy_addr; while (count) { memset(scm_buf, 0, sizeof(scm_buf)); for (i = 0; i < count && i < QCOM_SCM_HDCP_MAX_REQ_CNT; i++) { scm_buf[i].addr = phy_addr + preg[idx]; scm_buf[i].val = pdata[idx]; idx++; } ret = qcom_scm_hdcp_req(scm_buf, i, &resp); if (ret || resp) { pr_err("%s: error: scm_call ret=%d resp=%u\n", __func__, ret, resp); ret = -EINVAL; break; } count -= i; } } else { for (i = 0; i < count; i++) hdmi_write(hdmi, preg[i], pdata[i]); } return ret; } void msm_hdmi_hdcp_irq(struct hdmi_hdcp_ctrl *hdcp_ctrl) { struct hdmi *hdmi = hdcp_ctrl->hdmi; u32 reg_val, hdcp_int_status; unsigned long flags; spin_lock_irqsave(&hdmi->reg_lock, flags); reg_val = hdmi_read(hdmi, REG_HDMI_HDCP_INT_CTRL); hdcp_int_status = reg_val & HDCP_INT_STATUS_MASK; if (!hdcp_int_status) { spin_unlock_irqrestore(&hdmi->reg_lock, flags); return; } /* Clear Interrupts */ reg_val |= hdcp_int_status << 1; /* Clear AUTH_FAIL_INFO as well */ if (hdcp_int_status & HDMI_HDCP_INT_CTRL_AUTH_FAIL_INT) reg_val |= HDMI_HDCP_INT_CTRL_AUTH_FAIL_INFO_ACK; hdmi_write(hdmi, REG_HDMI_HDCP_INT_CTRL, reg_val); spin_unlock_irqrestore(&hdmi->reg_lock, flags); DBG("hdcp irq %x", hdcp_int_status); if (hdcp_int_status & HDMI_HDCP_INT_CTRL_AUTH_SUCCESS_INT) { pr_info("%s:AUTH_SUCCESS_INT received\n", __func__); if (HDCP_STATE_AUTHENTICATING == hdcp_ctrl->hdcp_state) { set_bit(AUTH_RESULT_RDY_EV, &hdcp_ctrl->auth_event); wake_up_all(&hdcp_ctrl->auth_event_queue); } } if (hdcp_int_status & HDMI_HDCP_INT_CTRL_AUTH_FAIL_INT) { reg_val = hdmi_read(hdmi, REG_HDMI_HDCP_LINK0_STATUS); pr_info("%s: AUTH_FAIL_INT rcvd, LINK0_STATUS=0x%08x\n", __func__, reg_val); if (HDCP_STATE_AUTHENTICATED == hdcp_ctrl->hdcp_state) queue_work(hdmi->workq, &hdcp_ctrl->hdcp_reauth_work); else if (HDCP_STATE_AUTHENTICATING == hdcp_ctrl->hdcp_state) { set_bit(AUTH_RESULT_RDY_EV, &hdcp_ctrl->auth_event); wake_up_all(&hdcp_ctrl->auth_event_queue); } } } static int msm_hdmi_hdcp_msleep(struct hdmi_hdcp_ctrl *hdcp_ctrl, u32 ms, u32 ev) { int rc; rc = wait_event_timeout(hdcp_ctrl->auth_event_queue, !!test_bit(ev, &hdcp_ctrl->auth_event), msecs_to_jiffies(ms)); if (rc) { pr_info("%s: msleep is canceled by event %d\n", __func__, ev); clear_bit(ev, &hdcp_ctrl->auth_event); return -ECANCELED; } return 0; } static int msm_hdmi_hdcp_read_validate_aksv(struct hdmi_hdcp_ctrl *hdcp_ctrl) { struct hdmi *hdmi = hdcp_ctrl->hdmi; /* Fetch aksv from QFPROM, this info should be public. */ hdcp_ctrl->aksv_lsb = hdmi_qfprom_read(hdmi, HDCP_KSV_LSB); hdcp_ctrl->aksv_msb = hdmi_qfprom_read(hdmi, HDCP_KSV_MSB); /* check there are 20 ones in AKSV */ if ((hweight32(hdcp_ctrl->aksv_lsb) + hweight32(hdcp_ctrl->aksv_msb)) != 20) { pr_err("%s: AKSV QFPROM doesn't have 20 1's, 20 0's\n", __func__); pr_err("%s: QFPROM AKSV chk failed (AKSV=%02x%08x)\n", __func__, hdcp_ctrl->aksv_msb, hdcp_ctrl->aksv_lsb); return -EINVAL; } DBG("AKSV=%02x%08x", hdcp_ctrl->aksv_msb, hdcp_ctrl->aksv_lsb); return 0; } static int msm_reset_hdcp_ddc_failures(struct hdmi_hdcp_ctrl *hdcp_ctrl) { struct hdmi *hdmi = hdcp_ctrl->hdmi; u32 reg_val, failure, nack0; int rc = 0; /* Check for any DDC transfer failures */ reg_val = hdmi_read(hdmi, REG_HDMI_HDCP_DDC_STATUS); failure = reg_val & HDMI_HDCP_DDC_STATUS_FAILED; nack0 = reg_val & HDMI_HDCP_DDC_STATUS_NACK0; DBG("HDCP_DDC_STATUS=0x%x, FAIL=%d, NACK0=%d", reg_val, failure, nack0); if (failure) { /* * Indicates that the last HDCP HW DDC transfer failed. * This occurs when a transfer is attempted with HDCP DDC * disabled (HDCP_DDC_DISABLE=1) or the number of retries * matches HDCP_DDC_RETRY_CNT. * Failure occurred, let's clear it. */ DBG("DDC failure detected"); /* First, Disable DDC */ hdmi_write(hdmi, REG_HDMI_HDCP_DDC_CTRL_0, HDMI_HDCP_DDC_CTRL_0_DISABLE); /* ACK the Failure to Clear it */ reg_val = hdmi_read(hdmi, REG_HDMI_HDCP_DDC_CTRL_1); reg_val |= HDMI_HDCP_DDC_CTRL_1_FAILED_ACK; hdmi_write(hdmi, REG_HDMI_HDCP_DDC_CTRL_1, reg_val); /* Check if the FAILURE got Cleared */ reg_val = hdmi_read(hdmi, REG_HDMI_HDCP_DDC_STATUS); if (reg_val & HDMI_HDCP_DDC_STATUS_FAILED) pr_info("%s: Unable to clear HDCP DDC Failure\n", __func__); /* Re-Enable HDCP DDC */ hdmi_write(hdmi, REG_HDMI_HDCP_DDC_CTRL_0, 0); } if (nack0) { DBG("Before: HDMI_DDC_SW_STATUS=0x%08x", hdmi_read(hdmi, REG_HDMI_DDC_SW_STATUS)); /* Reset HDMI DDC software status */ reg_val = hdmi_read(hdmi, REG_HDMI_DDC_CTRL); reg_val |= HDMI_DDC_CTRL_SW_STATUS_RESET; hdmi_write(hdmi, REG_HDMI_DDC_CTRL, reg_val); rc = msm_hdmi_hdcp_msleep(hdcp_ctrl, 20, AUTH_ABORT_EV); reg_val = hdmi_read(hdmi, REG_HDMI_DDC_CTRL); reg_val &= ~HDMI_DDC_CTRL_SW_STATUS_RESET; hdmi_write(hdmi, REG_HDMI_DDC_CTRL, reg_val); /* Reset HDMI DDC Controller */ reg_val = hdmi_read(hdmi, REG_HDMI_DDC_CTRL); reg_val |= HDMI_DDC_CTRL_SOFT_RESET; hdmi_write(hdmi, REG_HDMI_DDC_CTRL, reg_val); /* If previous msleep is aborted, skip this msleep */ if (!rc) rc = msm_hdmi_hdcp_msleep(hdcp_ctrl, 20, AUTH_ABORT_EV); reg_val = hdmi_read(hdmi, REG_HDMI_DDC_CTRL); reg_val &= ~HDMI_DDC_CTRL_SOFT_RESET; hdmi_write(hdmi, REG_HDMI_DDC_CTRL, reg_val); DBG("After: HDMI_DDC_SW_STATUS=0x%08x", hdmi_read(hdmi, REG_HDMI_DDC_SW_STATUS)); } return rc; } static int msm_hdmi_hdcp_hw_ddc_clean(struct hdmi_hdcp_ctrl *hdcp_ctrl) { int rc; u32 hdcp_ddc_status, ddc_hw_status; u32 xfer_done, xfer_req, hw_done; bool hw_not_ready; u32 timeout_count; struct hdmi *hdmi = hdcp_ctrl->hdmi; if (hdmi_read(hdmi, REG_HDMI_DDC_HW_STATUS) == 0) return 0; /* Wait to be clean on DDC HW engine */ timeout_count = 100; do { hdcp_ddc_status = hdmi_read(hdmi, REG_HDMI_HDCP_DDC_STATUS); ddc_hw_status = hdmi_read(hdmi, REG_HDMI_DDC_HW_STATUS); xfer_done = hdcp_ddc_status & HDMI_HDCP_DDC_STATUS_XFER_DONE; xfer_req = hdcp_ddc_status & HDMI_HDCP_DDC_STATUS_XFER_REQ; hw_done = ddc_hw_status & HDMI_DDC_HW_STATUS_DONE; hw_not_ready = !xfer_done || xfer_req || !hw_done; if (hw_not_ready) break; timeout_count--; if (!timeout_count) { pr_warn("%s: hw_ddc_clean failed\n", __func__); return -ETIMEDOUT; } rc = msm_hdmi_hdcp_msleep(hdcp_ctrl, 20, AUTH_ABORT_EV); if (rc) return rc; } while (1); return 0; } static void msm_hdmi_hdcp_reauth_work(struct work_struct *work) { struct hdmi_hdcp_ctrl *hdcp_ctrl = container_of(work, struct hdmi_hdcp_ctrl, hdcp_reauth_work); struct hdmi *hdmi = hdcp_ctrl->hdmi; unsigned long flags; u32 reg_val; DBG("HDCP REAUTH WORK"); /* * Disable HPD circuitry. * This is needed to reset the HDCP cipher engine so that when we * attempt a re-authentication, HW would clear the AN0_READY and * AN1_READY bits in HDMI_HDCP_LINK0_STATUS register */ spin_lock_irqsave(&hdmi->reg_lock, flags); reg_val = hdmi_read(hdmi, REG_HDMI_HPD_CTRL); reg_val &= ~HDMI_HPD_CTRL_ENABLE; hdmi_write(hdmi, REG_HDMI_HPD_CTRL, reg_val); /* Disable HDCP interrupts */ hdmi_write(hdmi, REG_HDMI_HDCP_INT_CTRL, 0); spin_unlock_irqrestore(&hdmi->reg_lock, flags); hdmi_write(hdmi, REG_HDMI_HDCP_RESET, HDMI_HDCP_RESET_LINK0_DEAUTHENTICATE); /* Wait to be clean on DDC HW engine */ if (msm_hdmi_hdcp_hw_ddc_clean(hdcp_ctrl)) { pr_info("%s: reauth work aborted\n", __func__); return; } /* Disable encryption and disable the HDCP block */ hdmi_write(hdmi, REG_HDMI_HDCP_CTRL, 0); /* Enable HPD circuitry */ spin_lock_irqsave(&hdmi->reg_lock, flags); reg_val = hdmi_read(hdmi, REG_HDMI_HPD_CTRL); reg_val |= HDMI_HPD_CTRL_ENABLE; hdmi_write(hdmi, REG_HDMI_HPD_CTRL, reg_val); spin_unlock_irqrestore(&hdmi->reg_lock, flags); /* * Only retry defined times then abort current authenticating process */ if (++hdcp_ctrl->auth_retries == AUTH_RETRIES_TIME) { hdcp_ctrl->hdcp_state = HDCP_STATE_INACTIVE; hdcp_ctrl->auth_retries = 0; pr_info("%s: abort reauthentication!\n", __func__); return; } DBG("Queue AUTH WORK"); hdcp_ctrl->hdcp_state = HDCP_STATE_AUTHENTICATING; queue_work(hdmi->workq, &hdcp_ctrl->hdcp_auth_work); } static int msm_hdmi_hdcp_auth_prepare(struct hdmi_hdcp_ctrl *hdcp_ctrl) { struct hdmi *hdmi = hdcp_ctrl->hdmi; u32 link0_status; u32 reg_val; unsigned long flags; int rc; if (!hdcp_ctrl->aksv_valid) { rc = msm_hdmi_hdcp_read_validate_aksv(hdcp_ctrl); if (rc) { pr_err("%s: ASKV validation failed\n", __func__); hdcp_ctrl->hdcp_state = HDCP_STATE_NO_AKSV; return -ENOTSUPP; } hdcp_ctrl->aksv_valid = true; } spin_lock_irqsave(&hdmi->reg_lock, flags); /* disable HDMI Encrypt */ reg_val = hdmi_read(hdmi, REG_HDMI_CTRL); reg_val &= ~HDMI_CTRL_ENCRYPTED; hdmi_write(hdmi, REG_HDMI_CTRL, reg_val); /* Enabling Software DDC */ reg_val = hdmi_read(hdmi, REG_HDMI_DDC_ARBITRATION); reg_val &= ~HDMI_DDC_ARBITRATION_HW_ARBITRATION; hdmi_write(hdmi, REG_HDMI_DDC_ARBITRATION, reg_val); spin_unlock_irqrestore(&hdmi->reg_lock, flags); /* * Write AKSV read from QFPROM to the HDCP registers. * This step is needed for HDCP authentication and must be * written before enabling HDCP. */ hdmi_write(hdmi, REG_HDMI_HDCP_SW_LOWER_AKSV, hdcp_ctrl->aksv_lsb); hdmi_write(hdmi, REG_HDMI_HDCP_SW_UPPER_AKSV, hdcp_ctrl->aksv_msb); /* * HDCP setup prior to enabling HDCP_CTRL. * Setup seed values for random number An. */ hdmi_write(hdmi, REG_HDMI_HDCP_ENTROPY_CTRL0, 0xB1FFB0FF); hdmi_write(hdmi, REG_HDMI_HDCP_ENTROPY_CTRL1, 0xF00DFACE); /* Disable the RngCipher state */ reg_val = hdmi_read(hdmi, REG_HDMI_HDCP_DEBUG_CTRL); reg_val &= ~HDMI_HDCP_DEBUG_CTRL_RNG_CIPHER; hdmi_write(hdmi, REG_HDMI_HDCP_DEBUG_CTRL, reg_val); DBG("HDCP_DEBUG_CTRL=0x%08x", hdmi_read(hdmi, REG_HDMI_HDCP_DEBUG_CTRL)); /* * Ensure that all register writes are completed before * enabling HDCP cipher */ wmb(); /* * Enable HDCP * This needs to be done as early as possible in order for the * hardware to make An available to read */ hdmi_write(hdmi, REG_HDMI_HDCP_CTRL, HDMI_HDCP_CTRL_ENABLE); /* * If we had stale values for the An ready bit, it should most * likely be cleared now after enabling HDCP cipher */ link0_status = hdmi_read(hdmi, REG_HDMI_HDCP_LINK0_STATUS); DBG("After enabling HDCP Link0_Status=0x%08x", link0_status); if (!(link0_status & (HDMI_HDCP_LINK0_STATUS_AN_0_READY | HDMI_HDCP_LINK0_STATUS_AN_1_READY))) DBG("An not ready after enabling HDCP"); /* Clear any DDC failures from previous tries before enable HDCP*/ rc = msm_reset_hdcp_ddc_failures(hdcp_ctrl); return rc; } static void msm_hdmi_hdcp_auth_fail(struct hdmi_hdcp_ctrl *hdcp_ctrl) { struct hdmi *hdmi = hdcp_ctrl->hdmi; u32 reg_val; unsigned long flags; DBG("hdcp auth failed, queue reauth work"); /* clear HDMI Encrypt */ spin_lock_irqsave(&hdmi->reg_lock, flags); reg_val = hdmi_read(hdmi, REG_HDMI_CTRL); reg_val &= ~HDMI_CTRL_ENCRYPTED; hdmi_write(hdmi, REG_HDMI_CTRL, reg_val); spin_unlock_irqrestore(&hdmi->reg_lock, flags); hdcp_ctrl->hdcp_state = HDCP_STATE_AUTH_FAILED; queue_work(hdmi->workq, &hdcp_ctrl->hdcp_reauth_work); } static void msm_hdmi_hdcp_auth_done(struct hdmi_hdcp_ctrl *hdcp_ctrl) { struct hdmi *hdmi = hdcp_ctrl->hdmi; u32 reg_val; unsigned long flags; /* * Disable software DDC before going into part3 to make sure * there is no Arbitration between software and hardware for DDC */ spin_lock_irqsave(&hdmi->reg_lock, flags); reg_val = hdmi_read(hdmi, REG_HDMI_DDC_ARBITRATION); reg_val |= HDMI_DDC_ARBITRATION_HW_ARBITRATION; hdmi_write(hdmi, REG_HDMI_DDC_ARBITRATION, reg_val); spin_unlock_irqrestore(&hdmi->reg_lock, flags); /* enable HDMI Encrypt */ spin_lock_irqsave(&hdmi->reg_lock, flags); reg_val = hdmi_read(hdmi, REG_HDMI_CTRL); reg_val |= HDMI_CTRL_ENCRYPTED; hdmi_write(hdmi, REG_HDMI_CTRL, reg_val); spin_unlock_irqrestore(&hdmi->reg_lock, flags); hdcp_ctrl->hdcp_state = HDCP_STATE_AUTHENTICATED; hdcp_ctrl->auth_retries = 0; } /* * hdcp authenticating part 1 * Wait Key/An ready * Read BCAPS from sink * Write BCAPS and AKSV into HDCP engine * Write An and AKSV to sink * Read BKSV from sink and write into HDCP engine */ static int msm_hdmi_hdcp_wait_key_an_ready(struct hdmi_hdcp_ctrl *hdcp_ctrl) { int rc; struct hdmi *hdmi = hdcp_ctrl->hdmi; u32 link0_status, keys_state; u32 timeout_count; bool an_ready; /* Wait for HDCP keys to be checked and validated */ timeout_count = 100; do { link0_status = hdmi_read(hdmi, REG_HDMI_HDCP_LINK0_STATUS); keys_state = (link0_status >> 28) & 0x7; if (keys_state == HDCP_KEYS_STATE_VALID) break; DBG("Keys not ready(%d). s=%d, l0=%0x08x", timeout_count, keys_state, link0_status); timeout_count--; if (!timeout_count) { pr_err("%s: Wait key state timedout", __func__); return -ETIMEDOUT; } rc = msm_hdmi_hdcp_msleep(hdcp_ctrl, 20, AUTH_ABORT_EV); if (rc) return rc; } while (1); timeout_count = 100; do { link0_status = hdmi_read(hdmi, REG_HDMI_HDCP_LINK0_STATUS); an_ready = (link0_status & HDMI_HDCP_LINK0_STATUS_AN_0_READY) && (link0_status & HDMI_HDCP_LINK0_STATUS_AN_1_READY); if (an_ready) break; DBG("An not ready(%d). l0_status=0x%08x", timeout_count, link0_status); timeout_count--; if (!timeout_count) { pr_err("%s: Wait An timedout", __func__); return -ETIMEDOUT; } rc = msm_hdmi_hdcp_msleep(hdcp_ctrl, 20, AUTH_ABORT_EV); if (rc) return rc; } while (1); return 0; } static int msm_hdmi_hdcp_send_aksv_an(struct hdmi_hdcp_ctrl *hdcp_ctrl) { int rc = 0; struct hdmi *hdmi = hdcp_ctrl->hdmi; u32 link0_aksv_0, link0_aksv_1; u32 link0_an[2]; u8 aksv[5]; /* Read An0 and An1 */ link0_an[0] = hdmi_read(hdmi, REG_HDMI_HDCP_RCVPORT_DATA5); link0_an[1] = hdmi_read(hdmi, REG_HDMI_HDCP_RCVPORT_DATA6); /* Read AKSV */ link0_aksv_0 = hdmi_read(hdmi, REG_HDMI_HDCP_RCVPORT_DATA3); link0_aksv_1 = hdmi_read(hdmi, REG_HDMI_HDCP_RCVPORT_DATA4); DBG("Link ASKV=%08x%08x", link0_aksv_0, link0_aksv_1); /* Copy An and AKSV to byte arrays for transmission */ aksv[0] = link0_aksv_0 & 0xFF; aksv[1] = (link0_aksv_0 >> 8) & 0xFF; aksv[2] = (link0_aksv_0 >> 16) & 0xFF; aksv[3] = (link0_aksv_0 >> 24) & 0xFF; aksv[4] = link0_aksv_1 & 0xFF; /* Write An to offset 0x18 */ rc = msm_hdmi_ddc_write(hdmi, HDCP_PORT_ADDR, 0x18, (u8 *)link0_an, (u16)sizeof(link0_an)); if (rc) { pr_err("%s:An write failed\n", __func__); return rc; } DBG("Link0-An=%08x%08x", link0_an[0], link0_an[1]); /* Write AKSV to offset 0x10 */ rc = msm_hdmi_ddc_write(hdmi, HDCP_PORT_ADDR, 0x10, aksv, 5); if (rc) { pr_err("%s:AKSV write failed\n", __func__); return rc; } DBG("Link0-AKSV=%02x%08x", link0_aksv_1 & 0xFF, link0_aksv_0); return 0; } static int msm_hdmi_hdcp_recv_bksv(struct hdmi_hdcp_ctrl *hdcp_ctrl) { int rc = 0; struct hdmi *hdmi = hdcp_ctrl->hdmi; u8 bksv[5]; u32 reg[2], data[2]; /* Read BKSV at offset 0x00 */ rc = msm_hdmi_ddc_read(hdmi, HDCP_PORT_ADDR, 0x00, bksv, 5); if (rc) { pr_err("%s:BKSV read failed\n", __func__); return rc; } hdcp_ctrl->bksv_lsb = bksv[0] | (bksv[1] << 8) | (bksv[2] << 16) | (bksv[3] << 24); hdcp_ctrl->bksv_msb = bksv[4]; DBG(":BKSV=%02x%08x", hdcp_ctrl->bksv_msb, hdcp_ctrl->bksv_lsb); /* check there are 20 ones in BKSV */ if ((hweight32(hdcp_ctrl->bksv_lsb) + hweight32(hdcp_ctrl->bksv_msb)) != 20) { pr_err(": BKSV doesn't have 20 1's and 20 0's\n"); pr_err(": BKSV chk fail. BKSV=%02x%02x%02x%02x%02x\n", bksv[4], bksv[3], bksv[2], bksv[1], bksv[0]); return -EINVAL; } /* Write BKSV read from sink to HDCP registers */ reg[0] = REG_HDMI_HDCP_RCVPORT_DATA0; data[0] = hdcp_ctrl->bksv_lsb; reg[1] = REG_HDMI_HDCP_RCVPORT_DATA1; data[1] = hdcp_ctrl->bksv_msb; rc = msm_hdmi_hdcp_scm_wr(hdcp_ctrl, reg, data, 2); return rc; } static int msm_hdmi_hdcp_recv_bcaps(struct hdmi_hdcp_ctrl *hdcp_ctrl) { int rc = 0; struct hdmi *hdmi = hdcp_ctrl->hdmi; u32 reg, data; u8 bcaps; rc = msm_hdmi_ddc_read(hdmi, HDCP_PORT_ADDR, 0x40, &bcaps, 1); if (rc) { pr_err("%s:BCAPS read failed\n", __func__); return rc; } DBG("BCAPS=%02x", bcaps); /* receiver (0), repeater (1) */ hdcp_ctrl->ds_type = (bcaps & BIT(6)) ? DS_REPEATER : DS_RECEIVER; /* Write BCAPS to the hardware */ reg = REG_HDMI_HDCP_RCVPORT_DATA12; data = (u32)bcaps; rc = msm_hdmi_hdcp_scm_wr(hdcp_ctrl, ®, &data, 1); return rc; } static int msm_hdmi_hdcp_auth_part1_key_exchange(struct hdmi_hdcp_ctrl *hdcp_ctrl) { struct hdmi *hdmi = hdcp_ctrl->hdmi; unsigned long flags; int rc; /* Wait for AKSV key and An ready */ rc = msm_hdmi_hdcp_wait_key_an_ready(hdcp_ctrl); if (rc) { pr_err("%s: wait key and an ready failed\n", __func__); return rc; } /* Read BCAPS and send to HDCP engine */ rc = msm_hdmi_hdcp_recv_bcaps(hdcp_ctrl); if (rc) { pr_err("%s: read bcaps error, abort\n", __func__); return rc; } /* * 1.1_Features turned off by default. * No need to write AInfo since 1.1_Features is disabled. */ hdmi_write(hdmi, REG_HDMI_HDCP_RCVPORT_DATA4, 0); /* Send AKSV and An to sink */ rc = msm_hdmi_hdcp_send_aksv_an(hdcp_ctrl); if (rc) { pr_err("%s:An/Aksv write failed\n", __func__); return rc; } /* Read BKSV and send to HDCP engine*/ rc = msm_hdmi_hdcp_recv_bksv(hdcp_ctrl); if (rc) { pr_err("%s:BKSV Process failed\n", __func__); return rc; } /* Enable HDCP interrupts and ack/clear any stale interrupts */ spin_lock_irqsave(&hdmi->reg_lock, flags); hdmi_write(hdmi, REG_HDMI_HDCP_INT_CTRL, HDMI_HDCP_INT_CTRL_AUTH_SUCCESS_ACK | HDMI_HDCP_INT_CTRL_AUTH_SUCCESS_MASK | HDMI_HDCP_INT_CTRL_AUTH_FAIL_ACK | HDMI_HDCP_INT_CTRL_AUTH_FAIL_MASK | HDMI_HDCP_INT_CTRL_AUTH_FAIL_INFO_ACK); spin_unlock_irqrestore(&hdmi->reg_lock, flags); return 0; } /* read R0' from sink and pass it to HDCP engine */ static int msm_hdmi_hdcp_auth_part1_recv_r0(struct hdmi_hdcp_ctrl *hdcp_ctrl) { struct hdmi *hdmi = hdcp_ctrl->hdmi; int rc = 0; u8 buf[2]; /* * HDCP Compliance Test case 1A-01: * Wait here at least 100ms before reading R0' */ rc = msm_hdmi_hdcp_msleep(hdcp_ctrl, 125, AUTH_ABORT_EV); if (rc) return rc; /* Read R0' at offset 0x08 */ rc = msm_hdmi_ddc_read(hdmi, HDCP_PORT_ADDR, 0x08, buf, 2); if (rc) { pr_err("%s:R0' read failed\n", __func__); return rc; } DBG("R0'=%02x%02x", buf[1], buf[0]); /* Write R0' to HDCP registers and check to see if it is a match */ hdmi_write(hdmi, REG_HDMI_HDCP_RCVPORT_DATA2_0, (((u32)buf[1]) << 8) | buf[0]); return 0; } /* Wait for authenticating result: R0/R0' are matched or not */ static int msm_hdmi_hdcp_auth_part1_verify_r0(struct hdmi_hdcp_ctrl *hdcp_ctrl) { struct hdmi *hdmi = hdcp_ctrl->hdmi; u32 link0_status; int rc; /* wait for hdcp irq, 10 sec should be long enough */ rc = msm_hdmi_hdcp_msleep(hdcp_ctrl, 10000, AUTH_RESULT_RDY_EV); if (!rc) { pr_err("%s: Wait Auth IRQ timeout\n", __func__); return -ETIMEDOUT; } link0_status = hdmi_read(hdmi, REG_HDMI_HDCP_LINK0_STATUS); if (!(link0_status & HDMI_HDCP_LINK0_STATUS_RI_MATCHES)) { pr_err("%s: Authentication Part I failed\n", __func__); return -EINVAL; } /* Enable HDCP Encryption */ hdmi_write(hdmi, REG_HDMI_HDCP_CTRL, HDMI_HDCP_CTRL_ENABLE | HDMI_HDCP_CTRL_ENCRYPTION_ENABLE); return 0; } static int msm_hdmi_hdcp_recv_check_bstatus(struct hdmi_hdcp_ctrl *hdcp_ctrl, u16 *pbstatus) { int rc; struct hdmi *hdmi = hdcp_ctrl->hdmi; bool max_devs_exceeded = false, max_cascade_exceeded = false; u32 repeater_cascade_depth = 0, down_stream_devices = 0; u16 bstatus; u8 buf[2]; /* Read BSTATUS at offset 0x41 */ rc = msm_hdmi_ddc_read(hdmi, HDCP_PORT_ADDR, 0x41, buf, 2); if (rc) { pr_err("%s: BSTATUS read failed\n", __func__); goto error; } *pbstatus = bstatus = (buf[1] << 8) | buf[0]; down_stream_devices = bstatus & 0x7F; repeater_cascade_depth = (bstatus >> 8) & 0x7; max_devs_exceeded = (bstatus & BIT(7)) ? true : false; max_cascade_exceeded = (bstatus & BIT(11)) ? true : false; if (down_stream_devices == 0) { /* * If no downstream devices are attached to the repeater * then part II fails. * todo: The other approach would be to continue PART II. */ pr_err("%s: No downstream devices\n", __func__); rc = -EINVAL; goto error; } /* * HDCP Compliance 1B-05: * Check if no. of devices connected to repeater * exceed max_devices_connected from bit 7 of Bstatus. */ if (max_devs_exceeded) { pr_err("%s: no. of devs connected exceeds max allowed", __func__); rc = -EINVAL; goto error; } /* * HDCP Compliance 1B-06: * Check if no. of cascade connected to repeater * exceed max_cascade_connected from bit 11 of Bstatus. */ if (max_cascade_exceeded) { pr_err("%s: no. of cascade conn exceeds max allowed", __func__); rc = -EINVAL; goto error; } error: hdcp_ctrl->dev_count = down_stream_devices; hdcp_ctrl->max_cascade_exceeded = max_cascade_exceeded; hdcp_ctrl->max_dev_exceeded = max_devs_exceeded; hdcp_ctrl->depth = repeater_cascade_depth; return rc; } static int msm_hdmi_hdcp_auth_part2_wait_ksv_fifo_ready( struct hdmi_hdcp_ctrl *hdcp_ctrl) { int rc; struct hdmi *hdmi = hdcp_ctrl->hdmi; u32 reg, data; u32 timeout_count; u16 bstatus; u8 bcaps; /* * Wait until READY bit is set in BCAPS, as per HDCP specifications * maximum permitted time to check for READY bit is five seconds. */ timeout_count = 100; do { /* Read BCAPS at offset 0x40 */ rc = msm_hdmi_ddc_read(hdmi, HDCP_PORT_ADDR, 0x40, &bcaps, 1); if (rc) { pr_err("%s: BCAPS read failed\n", __func__); return rc; } if (bcaps & BIT(5)) break; timeout_count--; if (!timeout_count) { pr_err("%s: Wait KSV fifo ready timedout", __func__); return -ETIMEDOUT; } rc = msm_hdmi_hdcp_msleep(hdcp_ctrl, 20, AUTH_ABORT_EV); if (rc) return rc; } while (1); rc = msm_hdmi_hdcp_recv_check_bstatus(hdcp_ctrl, &bstatus); if (rc) { pr_err("%s: bstatus error\n", __func__); return rc; } /* Write BSTATUS and BCAPS to HDCP registers */ reg = REG_HDMI_HDCP_RCVPORT_DATA12; data = bcaps | (bstatus << 8); rc = msm_hdmi_hdcp_scm_wr(hdcp_ctrl, ®, &data, 1); if (rc) { pr_err("%s: BSTATUS write failed\n", __func__); return rc; } return 0; } /* * hdcp authenticating part 2: 2nd * read ksv fifo from sink * transfer V' from sink to HDCP engine * reset SHA engine */ static int msm_hdmi_hdcp_transfer_v_h(struct hdmi_hdcp_ctrl *hdcp_ctrl) { struct hdmi *hdmi = hdcp_ctrl->hdmi; int rc = 0; struct hdmi_hdcp_reg_data reg_data[] = { {REG_HDMI_HDCP_RCVPORT_DATA7, 0x20, "V' H0"}, {REG_HDMI_HDCP_RCVPORT_DATA8, 0x24, "V' H1"}, {REG_HDMI_HDCP_RCVPORT_DATA9, 0x28, "V' H2"}, {REG_HDMI_HDCP_RCVPORT_DATA10, 0x2C, "V' H3"}, {REG_HDMI_HDCP_RCVPORT_DATA11, 0x30, "V' H4"}, }; struct hdmi_hdcp_reg_data *rd; u32 size = ARRAY_SIZE(reg_data); u32 reg[ARRAY_SIZE(reg_data)]; u32 data[ARRAY_SIZE(reg_data)]; int i; for (i = 0; i < size; i++) { rd = ®_data[i]; rc = msm_hdmi_ddc_read(hdmi, HDCP_PORT_ADDR, rd->off, (u8 *)&data[i], (u16)sizeof(data[i])); if (rc) { pr_err("%s: Read %s failed\n", __func__, rd->name); goto error; } DBG("%s =%x", rd->name, data[i]); reg[i] = reg_data[i].reg_id; } rc = msm_hdmi_hdcp_scm_wr(hdcp_ctrl, reg, data, size); error: return rc; } static int msm_hdmi_hdcp_recv_ksv_fifo(struct hdmi_hdcp_ctrl *hdcp_ctrl) { int rc; struct hdmi *hdmi = hdcp_ctrl->hdmi; u32 ksv_bytes; ksv_bytes = 5 * hdcp_ctrl->dev_count; rc = msm_hdmi_ddc_read(hdmi, HDCP_PORT_ADDR, 0x43, hdcp_ctrl->ksv_list, ksv_bytes); if (rc) pr_err("%s: KSV FIFO read failed\n", __func__); return rc; } static int msm_hdmi_hdcp_reset_sha_engine(struct hdmi_hdcp_ctrl *hdcp_ctrl) { u32 reg[2], data[2]; u32 rc = 0; reg[0] = REG_HDMI_HDCP_SHA_CTRL; data[0] = HDCP_REG_ENABLE; reg[1] = REG_HDMI_HDCP_SHA_CTRL; data[1] = HDCP_REG_DISABLE; rc = msm_hdmi_hdcp_scm_wr(hdcp_ctrl, reg, data, 2); return rc; } static int msm_hdmi_hdcp_auth_part2_recv_ksv_fifo( struct hdmi_hdcp_ctrl *hdcp_ctrl) { int rc; u32 timeout_count; /* * Read KSV FIFO over DDC * Key Selection vector FIFO Used to pull downstream KSVs * from HDCP Repeaters. * All bytes (DEVICE_COUNT * 5) must be read in a single, * auto incrementing access. * All bytes read as 0x00 for HDCP Receivers that are not * HDCP Repeaters (REPEATER == 0). */ timeout_count = 100; do { rc = msm_hdmi_hdcp_recv_ksv_fifo(hdcp_ctrl); if (!rc) break; timeout_count--; if (!timeout_count) { pr_err("%s: Recv ksv fifo timedout", __func__); return -ETIMEDOUT; } rc = msm_hdmi_hdcp_msleep(hdcp_ctrl, 25, AUTH_ABORT_EV); if (rc) return rc; } while (1); rc = msm_hdmi_hdcp_transfer_v_h(hdcp_ctrl); if (rc) { pr_err("%s: transfer V failed\n", __func__); return rc; } /* reset SHA engine before write ksv fifo */ rc = msm_hdmi_hdcp_reset_sha_engine(hdcp_ctrl); if (rc) { pr_err("%s: fail to reset sha engine\n", __func__); return rc; } return 0; } /* * Write KSV FIFO to HDCP_SHA_DATA. * This is done 1 byte at time starting with the LSB. * Once 64 bytes have been written, we need to poll for * HDCP_SHA_BLOCK_DONE before writing any further * If the last byte is written, we need to poll for * HDCP_SHA_COMP_DONE to wait until HW finish */ static int msm_hdmi_hdcp_write_ksv_fifo(struct hdmi_hdcp_ctrl *hdcp_ctrl) { int i; struct hdmi *hdmi = hdcp_ctrl->hdmi; u32 ksv_bytes, last_byte = 0; u8 *ksv_fifo = NULL; u32 reg_val, data, reg; u32 rc = 0; ksv_bytes = 5 * hdcp_ctrl->dev_count; /* Check if need to wait for HW completion */ if (hdcp_ctrl->ksv_fifo_w_index) { reg_val = hdmi_read(hdmi, REG_HDMI_HDCP_SHA_STATUS); DBG("HDCP_SHA_STATUS=%08x", reg_val); if (hdcp_ctrl->ksv_fifo_w_index == ksv_bytes) { /* check COMP_DONE if last write */ if (reg_val & HDMI_HDCP_SHA_STATUS_COMP_DONE) { DBG("COMP_DONE"); return 0; } else { return -EAGAIN; } } else { /* check BLOCK_DONE if not last write */ if (!(reg_val & HDMI_HDCP_SHA_STATUS_BLOCK_DONE)) return -EAGAIN; DBG("BLOCK_DONE"); } } ksv_bytes -= hdcp_ctrl->ksv_fifo_w_index; if (ksv_bytes <= 64) last_byte = 1; else ksv_bytes = 64; ksv_fifo = hdcp_ctrl->ksv_list; ksv_fifo += hdcp_ctrl->ksv_fifo_w_index; for (i = 0; i < ksv_bytes; i++) { /* Write KSV byte and set DONE bit[0] for last byte*/ reg_val = ksv_fifo[i] << 16; if ((i == (ksv_bytes - 1)) && last_byte) reg_val |= HDMI_HDCP_SHA_DATA_DONE; reg = REG_HDMI_HDCP_SHA_DATA; data = reg_val; rc = msm_hdmi_hdcp_scm_wr(hdcp_ctrl, ®, &data, 1); if (rc) return rc; } hdcp_ctrl->ksv_fifo_w_index += ksv_bytes; /* *return -EAGAIN to notify caller to wait for COMP_DONE or BLOCK_DONE */ return -EAGAIN; } /* write ksv fifo into HDCP engine */ static int msm_hdmi_hdcp_auth_part2_write_ksv_fifo( struct hdmi_hdcp_ctrl *hdcp_ctrl) { int rc; u32 timeout_count; hdcp_ctrl->ksv_fifo_w_index = 0; timeout_count = 100; do { rc = msm_hdmi_hdcp_write_ksv_fifo(hdcp_ctrl); if (!rc) break; if (rc != -EAGAIN) return rc; timeout_count--; if (!timeout_count) { pr_err("%s: Write KSV fifo timedout", __func__); return -ETIMEDOUT; } rc = msm_hdmi_hdcp_msleep(hdcp_ctrl, 20, AUTH_ABORT_EV); if (rc) return rc; } while (1); return 0; } static int msm_hdmi_hdcp_auth_part2_check_v_match(struct hdmi_hdcp_ctrl *hdcp_ctrl) { int rc = 0; struct hdmi *hdmi = hdcp_ctrl->hdmi; u32 link0_status; u32 timeout_count = 100; do { link0_status = hdmi_read(hdmi, REG_HDMI_HDCP_LINK0_STATUS); if (link0_status & HDMI_HDCP_LINK0_STATUS_V_MATCHES) break; timeout_count--; if (!timeout_count) { pr_err("%s: HDCP V Match timedout", __func__); return -ETIMEDOUT; } rc = msm_hdmi_hdcp_msleep(hdcp_ctrl, 20, AUTH_ABORT_EV); if (rc) return rc; } while (1); return 0; } static void msm_hdmi_hdcp_auth_work(struct work_struct *work) { struct hdmi_hdcp_ctrl *hdcp_ctrl = container_of(work, struct hdmi_hdcp_ctrl, hdcp_auth_work); int rc; rc = msm_hdmi_hdcp_auth_prepare(hdcp_ctrl); if (rc) { pr_err("%s: auth prepare failed %d\n", __func__, rc); goto end; } /* HDCP PartI */ rc = msm_hdmi_hdcp_auth_part1_key_exchange(hdcp_ctrl); if (rc) { pr_err("%s: key exchange failed %d\n", __func__, rc); goto end; } rc = msm_hdmi_hdcp_auth_part1_recv_r0(hdcp_ctrl); if (rc) { pr_err("%s: receive r0 failed %d\n", __func__, rc); goto end; } rc = msm_hdmi_hdcp_auth_part1_verify_r0(hdcp_ctrl); if (rc) { pr_err("%s: verify r0 failed %d\n", __func__, rc); goto end; } pr_info("%s: Authentication Part I successful\n", __func__); if (hdcp_ctrl->ds_type == DS_RECEIVER) goto end; /* HDCP PartII */ rc = msm_hdmi_hdcp_auth_part2_wait_ksv_fifo_ready(hdcp_ctrl); if (rc) { pr_err("%s: wait ksv fifo ready failed %d\n", __func__, rc); goto end; } rc = msm_hdmi_hdcp_auth_part2_recv_ksv_fifo(hdcp_ctrl); if (rc) { pr_err("%s: recv ksv fifo failed %d\n", __func__, rc); goto end; } rc = msm_hdmi_hdcp_auth_part2_write_ksv_fifo(hdcp_ctrl); if (rc) { pr_err("%s: write ksv fifo failed %d\n", __func__, rc); goto end; } rc = msm_hdmi_hdcp_auth_part2_check_v_match(hdcp_ctrl); if (rc) pr_err("%s: check v match failed %d\n", __func__, rc); end: if (rc == -ECANCELED) { pr_info("%s: hdcp authentication canceled\n", __func__); } else if (rc == -ENOTSUPP) { pr_info("%s: hdcp is not supported\n", __func__); } else if (rc) { pr_err("%s: hdcp authentication failed\n", __func__); msm_hdmi_hdcp_auth_fail(hdcp_ctrl); } else { msm_hdmi_hdcp_auth_done(hdcp_ctrl); } } void msm_hdmi_hdcp_on(struct hdmi_hdcp_ctrl *hdcp_ctrl) { struct hdmi *hdmi = hdcp_ctrl->hdmi; u32 reg_val; unsigned long flags; if ((HDCP_STATE_INACTIVE != hdcp_ctrl->hdcp_state) || (HDCP_STATE_NO_AKSV == hdcp_ctrl->hdcp_state)) { DBG("still active or activating or no askv. returning"); return; } /* clear HDMI Encrypt */ spin_lock_irqsave(&hdmi->reg_lock, flags); reg_val = hdmi_read(hdmi, REG_HDMI_CTRL); reg_val &= ~HDMI_CTRL_ENCRYPTED; hdmi_write(hdmi, REG_HDMI_CTRL, reg_val); spin_unlock_irqrestore(&hdmi->reg_lock, flags); hdcp_ctrl->auth_event = 0; hdcp_ctrl->hdcp_state = HDCP_STATE_AUTHENTICATING; hdcp_ctrl->auth_retries = 0; queue_work(hdmi->workq, &hdcp_ctrl->hdcp_auth_work); } void msm_hdmi_hdcp_off(struct hdmi_hdcp_ctrl *hdcp_ctrl) { struct hdmi *hdmi = hdcp_ctrl->hdmi; unsigned long flags; u32 reg_val; if ((HDCP_STATE_INACTIVE == hdcp_ctrl->hdcp_state) || (HDCP_STATE_NO_AKSV == hdcp_ctrl->hdcp_state)) { DBG("hdcp inactive or no aksv. returning"); return; } /* * Disable HPD circuitry. * This is needed to reset the HDCP cipher engine so that when we * attempt a re-authentication, HW would clear the AN0_READY and * AN1_READY bits in HDMI_HDCP_LINK0_STATUS register */ spin_lock_irqsave(&hdmi->reg_lock, flags); reg_val = hdmi_read(hdmi, REG_HDMI_HPD_CTRL); reg_val &= ~HDMI_HPD_CTRL_ENABLE; hdmi_write(hdmi, REG_HDMI_HPD_CTRL, reg_val); /* * Disable HDCP interrupts. * Also, need to set the state to inactive here so that any ongoing * reauth works will know that the HDCP session has been turned off. */ hdmi_write(hdmi, REG_HDMI_HDCP_INT_CTRL, 0); spin_unlock_irqrestore(&hdmi->reg_lock, flags); /* * Cancel any pending auth/reauth attempts. * If one is ongoing, this will wait for it to finish. * No more reauthentication attempts will be scheduled since we * set the current state to inactive. */ set_bit(AUTH_ABORT_EV, &hdcp_ctrl->auth_event); wake_up_all(&hdcp_ctrl->auth_event_queue); cancel_work_sync(&hdcp_ctrl->hdcp_auth_work); cancel_work_sync(&hdcp_ctrl->hdcp_reauth_work); hdmi_write(hdmi, REG_HDMI_HDCP_RESET, HDMI_HDCP_RESET_LINK0_DEAUTHENTICATE); /* Disable encryption and disable the HDCP block */ hdmi_write(hdmi, REG_HDMI_HDCP_CTRL, 0); spin_lock_irqsave(&hdmi->reg_lock, flags); reg_val = hdmi_read(hdmi, REG_HDMI_CTRL); reg_val &= ~HDMI_CTRL_ENCRYPTED; hdmi_write(hdmi, REG_HDMI_CTRL, reg_val); /* Enable HPD circuitry */ reg_val = hdmi_read(hdmi, REG_HDMI_HPD_CTRL); reg_val |= HDMI_HPD_CTRL_ENABLE; hdmi_write(hdmi, REG_HDMI_HPD_CTRL, reg_val); spin_unlock_irqrestore(&hdmi->reg_lock, flags); hdcp_ctrl->hdcp_state = HDCP_STATE_INACTIVE; DBG("HDCP: Off"); } struct hdmi_hdcp_ctrl *msm_hdmi_hdcp_init(struct hdmi *hdmi) { struct hdmi_hdcp_ctrl *hdcp_ctrl = NULL; if (!hdmi->qfprom_mmio) { pr_err("%s: HDCP is not supported without qfprom\n", __func__); return ERR_PTR(-EINVAL); } hdcp_ctrl = kzalloc(sizeof(*hdcp_ctrl), GFP_KERNEL); if (!hdcp_ctrl) return ERR_PTR(-ENOMEM); INIT_WORK(&hdcp_ctrl->hdcp_auth_work, msm_hdmi_hdcp_auth_work); INIT_WORK(&hdcp_ctrl->hdcp_reauth_work, msm_hdmi_hdcp_reauth_work); init_waitqueue_head(&hdcp_ctrl->auth_event_queue); hdcp_ctrl->hdmi = hdmi; hdcp_ctrl->hdcp_state = HDCP_STATE_INACTIVE; hdcp_ctrl->aksv_valid = false; if (qcom_scm_hdcp_available()) hdcp_ctrl->tz_hdcp = true; else hdcp_ctrl->tz_hdcp = false; return hdcp_ctrl; } void msm_hdmi_hdcp_destroy(struct hdmi *hdmi) { if (hdmi) { kfree(hdmi->hdcp_ctrl); hdmi->hdcp_ctrl = NULL; } }