// SPDX-License-Identifier: MIT /* * Copyright © 2014 Intel Corporation */ #include #include "gem/i915_gem_context.h" #include "gem/i915_gem_lmem.h" #include "gt/gen8_engine_cs.h" #include "gt/intel_breadcrumbs.h" #include "gt/intel_context.h" #include "gt/intel_engine_heartbeat.h" #include "gt/intel_engine_pm.h" #include "gt/intel_engine_regs.h" #include "gt/intel_gpu_commands.h" #include "gt/intel_gt.h" #include "gt/intel_gt_clock_utils.h" #include "gt/intel_gt_irq.h" #include "gt/intel_gt_pm.h" #include "gt/intel_gt_regs.h" #include "gt/intel_gt_requests.h" #include "gt/intel_lrc.h" #include "gt/intel_lrc_reg.h" #include "gt/intel_mocs.h" #include "gt/intel_ring.h" #include "intel_guc_ads.h" #include "intel_guc_capture.h" #include "intel_guc_print.h" #include "intel_guc_submission.h" #include "i915_drv.h" #include "i915_reg.h" #include "i915_irq.h" #include "i915_trace.h" /** * DOC: GuC-based command submission * * The Scratch registers: * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes * a value to the action register (SOFT_SCRATCH_0) along with any data. It then * triggers an interrupt on the GuC via another register write (0xC4C8). * Firmware writes a success/fail code back to the action register after * processes the request. The kernel driver polls waiting for this update and * then proceeds. * * Command Transport buffers (CTBs): * Covered in detail in other sections but CTBs (Host to GuC - H2G, GuC to Host * - G2H) are a message interface between the i915 and GuC. * * Context registration: * Before a context can be submitted it must be registered with the GuC via a * H2G. A unique guc_id is associated with each context. The context is either * registered at request creation time (normal operation) or at submission time * (abnormal operation, e.g. after a reset). * * Context submission: * The i915 updates the LRC tail value in memory. The i915 must enable the * scheduling of the context within the GuC for the GuC to actually consider it. * Therefore, the first time a disabled context is submitted we use a schedule * enable H2G, while follow up submissions are done via the context submit H2G, * which informs the GuC that a previously enabled context has new work * available. * * Context unpin: * To unpin a context a H2G is used to disable scheduling. When the * corresponding G2H returns indicating the scheduling disable operation has * completed it is safe to unpin the context. While a disable is in flight it * isn't safe to resubmit the context so a fence is used to stall all future * requests of that context until the G2H is returned. Because this interaction * with the GuC takes a non-zero amount of time we delay the disabling of * scheduling after the pin count goes to zero by a configurable period of time * (see SCHED_DISABLE_DELAY_MS). The thought is this gives the user a window of * time to resubmit something on the context before doing this costly operation. * This delay is only done if the context isn't closed and the guc_id usage is * less than a threshold (see NUM_SCHED_DISABLE_GUC_IDS_THRESHOLD). * * Context deregistration: * Before a context can be destroyed or if we steal its guc_id we must * deregister the context with the GuC via H2G. If stealing the guc_id it isn't * safe to submit anything to this guc_id until the deregister completes so a * fence is used to stall all requests associated with this guc_id until the * corresponding G2H returns indicating the guc_id has been deregistered. * * submission_state.guc_ids: * Unique number associated with private GuC context data passed in during * context registration / submission / deregistration. 64k available. Simple ida * is used for allocation. * * Stealing guc_ids: * If no guc_ids are available they can be stolen from another context at * request creation time if that context is unpinned. If a guc_id can't be found * we punt this problem to the user as we believe this is near impossible to hit * during normal use cases. * * Locking: * In the GuC submission code we have 3 basic spin locks which protect * everything. Details about each below. * * sched_engine->lock * This is the submission lock for all contexts that share an i915 schedule * engine (sched_engine), thus only one of the contexts which share a * sched_engine can be submitting at a time. Currently only one sched_engine is * used for all of GuC submission but that could change in the future. * * guc->submission_state.lock * Global lock for GuC submission state. Protects guc_ids and destroyed contexts * list. * * ce->guc_state.lock * Protects everything under ce->guc_state. Ensures that a context is in the * correct state before issuing a H2G. e.g. We don't issue a schedule disable * on a disabled context (bad idea), we don't issue a schedule enable when a * schedule disable is in flight, etc... Also protects list of inflight requests * on the context and the priority management state. Lock is individual to each * context. * * Lock ordering rules: * sched_engine->lock -> ce->guc_state.lock * guc->submission_state.lock -> ce->guc_state.lock * * Reset races: * When a full GT reset is triggered it is assumed that some G2H responses to * H2Gs can be lost as the GuC is also reset. Losing these G2H can prove to be * fatal as we do certain operations upon receiving a G2H (e.g. destroy * contexts, release guc_ids, etc...). When this occurs we can scrub the * context state and cleanup appropriately, however this is quite racey. * To avoid races, the reset code must disable submission before scrubbing for * the missing G2H, while the submission code must check for submission being * disabled and skip sending H2Gs and updating context states when it is. Both * sides must also make sure to hold the relevant locks. */ /* GuC Virtual Engine */ struct guc_virtual_engine { struct intel_engine_cs base; struct intel_context context; }; static struct intel_context * guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count, unsigned long flags); static struct intel_context * guc_create_parallel(struct intel_engine_cs **engines, unsigned int num_siblings, unsigned int width); #define GUC_REQUEST_SIZE 64 /* bytes */ /* * We reserve 1/16 of the guc_ids for multi-lrc as these need to be contiguous * per the GuC submission interface. A different allocation algorithm is used * (bitmap vs. ida) between multi-lrc and single-lrc hence the reason to * partition the guc_id space. We believe the number of multi-lrc contexts in * use should be low and 1/16 should be sufficient. Minimum of 32 guc_ids for * multi-lrc. */ #define NUMBER_MULTI_LRC_GUC_ID(guc) \ ((guc)->submission_state.num_guc_ids / 16) /* * Below is a set of functions which control the GuC scheduling state which * require a lock. */ #define SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER BIT(0) #define SCHED_STATE_DESTROYED BIT(1) #define SCHED_STATE_PENDING_DISABLE BIT(2) #define SCHED_STATE_BANNED BIT(3) #define SCHED_STATE_ENABLED BIT(4) #define SCHED_STATE_PENDING_ENABLE BIT(5) #define SCHED_STATE_REGISTERED BIT(6) #define SCHED_STATE_POLICY_REQUIRED BIT(7) #define SCHED_STATE_CLOSED BIT(8) #define SCHED_STATE_BLOCKED_SHIFT 9 #define SCHED_STATE_BLOCKED BIT(SCHED_STATE_BLOCKED_SHIFT) #define SCHED_STATE_BLOCKED_MASK (0xfff << SCHED_STATE_BLOCKED_SHIFT) static inline void init_sched_state(struct intel_context *ce) { lockdep_assert_held(&ce->guc_state.lock); ce->guc_state.sched_state &= SCHED_STATE_BLOCKED_MASK; } /* * Kernel contexts can have SCHED_STATE_REGISTERED after suspend. * A context close can race with the submission path, so SCHED_STATE_CLOSED * can be set immediately before we try to register. */ #define SCHED_STATE_VALID_INIT \ (SCHED_STATE_BLOCKED_MASK | \ SCHED_STATE_CLOSED | \ SCHED_STATE_REGISTERED) __maybe_unused static bool sched_state_is_init(struct intel_context *ce) { return !(ce->guc_state.sched_state & ~SCHED_STATE_VALID_INIT); } static inline bool context_wait_for_deregister_to_register(struct intel_context *ce) { return ce->guc_state.sched_state & SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER; } static inline void set_context_wait_for_deregister_to_register(struct intel_context *ce) { lockdep_assert_held(&ce->guc_state.lock); ce->guc_state.sched_state |= SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER; } static inline void clr_context_wait_for_deregister_to_register(struct intel_context *ce) { lockdep_assert_held(&ce->guc_state.lock); ce->guc_state.sched_state &= ~SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER; } static inline bool context_destroyed(struct intel_context *ce) { return ce->guc_state.sched_state & SCHED_STATE_DESTROYED; } static inline void set_context_destroyed(struct intel_context *ce) { lockdep_assert_held(&ce->guc_state.lock); ce->guc_state.sched_state |= SCHED_STATE_DESTROYED; } static inline void clr_context_destroyed(struct intel_context *ce) { lockdep_assert_held(&ce->guc_state.lock); ce->guc_state.sched_state &= ~SCHED_STATE_DESTROYED; } static inline bool context_pending_disable(struct intel_context *ce) { return ce->guc_state.sched_state & SCHED_STATE_PENDING_DISABLE; } static inline void set_context_pending_disable(struct intel_context *ce) { lockdep_assert_held(&ce->guc_state.lock); ce->guc_state.sched_state |= SCHED_STATE_PENDING_DISABLE; } static inline void clr_context_pending_disable(struct intel_context *ce) { lockdep_assert_held(&ce->guc_state.lock); ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_DISABLE; } static inline bool context_banned(struct intel_context *ce) { return ce->guc_state.sched_state & SCHED_STATE_BANNED; } static inline void set_context_banned(struct intel_context *ce) { lockdep_assert_held(&ce->guc_state.lock); ce->guc_state.sched_state |= SCHED_STATE_BANNED; } static inline void clr_context_banned(struct intel_context *ce) { lockdep_assert_held(&ce->guc_state.lock); ce->guc_state.sched_state &= ~SCHED_STATE_BANNED; } static inline bool context_enabled(struct intel_context *ce) { return ce->guc_state.sched_state & SCHED_STATE_ENABLED; } static inline void set_context_enabled(struct intel_context *ce) { lockdep_assert_held(&ce->guc_state.lock); ce->guc_state.sched_state |= SCHED_STATE_ENABLED; } static inline void clr_context_enabled(struct intel_context *ce) { lockdep_assert_held(&ce->guc_state.lock); ce->guc_state.sched_state &= ~SCHED_STATE_ENABLED; } static inline bool context_pending_enable(struct intel_context *ce) { return ce->guc_state.sched_state & SCHED_STATE_PENDING_ENABLE; } static inline void set_context_pending_enable(struct intel_context *ce) { lockdep_assert_held(&ce->guc_state.lock); ce->guc_state.sched_state |= SCHED_STATE_PENDING_ENABLE; } static inline void clr_context_pending_enable(struct intel_context *ce) { lockdep_assert_held(&ce->guc_state.lock); ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_ENABLE; } static inline bool context_registered(struct intel_context *ce) { return ce->guc_state.sched_state & SCHED_STATE_REGISTERED; } static inline void set_context_registered(struct intel_context *ce) { lockdep_assert_held(&ce->guc_state.lock); ce->guc_state.sched_state |= SCHED_STATE_REGISTERED; } static inline void clr_context_registered(struct intel_context *ce) { lockdep_assert_held(&ce->guc_state.lock); ce->guc_state.sched_state &= ~SCHED_STATE_REGISTERED; } static inline bool context_policy_required(struct intel_context *ce) { return ce->guc_state.sched_state & SCHED_STATE_POLICY_REQUIRED; } static inline void set_context_policy_required(struct intel_context *ce) { lockdep_assert_held(&ce->guc_state.lock); ce->guc_state.sched_state |= SCHED_STATE_POLICY_REQUIRED; } static inline void clr_context_policy_required(struct intel_context *ce) { lockdep_assert_held(&ce->guc_state.lock); ce->guc_state.sched_state &= ~SCHED_STATE_POLICY_REQUIRED; } static inline bool context_close_done(struct intel_context *ce) { return ce->guc_state.sched_state & SCHED_STATE_CLOSED; } static inline void set_context_close_done(struct intel_context *ce) { lockdep_assert_held(&ce->guc_state.lock); ce->guc_state.sched_state |= SCHED_STATE_CLOSED; } static inline u32 context_blocked(struct intel_context *ce) { return (ce->guc_state.sched_state & SCHED_STATE_BLOCKED_MASK) >> SCHED_STATE_BLOCKED_SHIFT; } static inline void incr_context_blocked(struct intel_context *ce) { lockdep_assert_held(&ce->guc_state.lock); ce->guc_state.sched_state += SCHED_STATE_BLOCKED; GEM_BUG_ON(!context_blocked(ce)); /* Overflow check */ } static inline void decr_context_blocked(struct intel_context *ce) { lockdep_assert_held(&ce->guc_state.lock); GEM_BUG_ON(!context_blocked(ce)); /* Underflow check */ ce->guc_state.sched_state -= SCHED_STATE_BLOCKED; } static struct intel_context * request_to_scheduling_context(struct i915_request *rq) { return intel_context_to_parent(rq->context); } static inline bool context_guc_id_invalid(struct intel_context *ce) { return ce->guc_id.id == GUC_INVALID_CONTEXT_ID; } static inline void set_context_guc_id_invalid(struct intel_context *ce) { ce->guc_id.id = GUC_INVALID_CONTEXT_ID; } static inline struct intel_guc *ce_to_guc(struct intel_context *ce) { return &ce->engine->gt->uc.guc; } static inline struct i915_priolist *to_priolist(struct rb_node *rb) { return rb_entry(rb, struct i915_priolist, node); } /* * When using multi-lrc submission a scratch memory area is reserved in the * parent's context state for the process descriptor, work queue, and handshake * between the parent + children contexts to insert safe preemption points * between each of the BBs. Currently the scratch area is sized to a page. * * The layout of this scratch area is below: * 0 guc_process_desc * + sizeof(struct guc_process_desc) child go * + CACHELINE_BYTES child join[0] * ... * + CACHELINE_BYTES child join[n - 1] * ... unused * PARENT_SCRATCH_SIZE / 2 work queue start * ... work queue * PARENT_SCRATCH_SIZE - 1 work queue end */ #define WQ_SIZE (PARENT_SCRATCH_SIZE / 2) #define WQ_OFFSET (PARENT_SCRATCH_SIZE - WQ_SIZE) struct sync_semaphore { u32 semaphore; u8 unused[CACHELINE_BYTES - sizeof(u32)]; }; struct parent_scratch { union guc_descs { struct guc_sched_wq_desc wq_desc; struct guc_process_desc_v69 pdesc; } descs; struct sync_semaphore go; struct sync_semaphore join[MAX_ENGINE_INSTANCE + 1]; u8 unused[WQ_OFFSET - sizeof(union guc_descs) - sizeof(struct sync_semaphore) * (MAX_ENGINE_INSTANCE + 2)]; u32 wq[WQ_SIZE / sizeof(u32)]; }; static u32 __get_parent_scratch_offset(struct intel_context *ce) { GEM_BUG_ON(!ce->parallel.guc.parent_page); return ce->parallel.guc.parent_page * PAGE_SIZE; } static u32 __get_wq_offset(struct intel_context *ce) { BUILD_BUG_ON(offsetof(struct parent_scratch, wq) != WQ_OFFSET); return __get_parent_scratch_offset(ce) + WQ_OFFSET; } static struct parent_scratch * __get_parent_scratch(struct intel_context *ce) { BUILD_BUG_ON(sizeof(struct parent_scratch) != PARENT_SCRATCH_SIZE); BUILD_BUG_ON(sizeof(struct sync_semaphore) != CACHELINE_BYTES); /* * Need to subtract LRC_STATE_OFFSET here as the * parallel.guc.parent_page is the offset into ce->state while * ce->lrc_reg_reg is ce->state + LRC_STATE_OFFSET. */ return (struct parent_scratch *) (ce->lrc_reg_state + ((__get_parent_scratch_offset(ce) - LRC_STATE_OFFSET) / sizeof(u32))); } static struct guc_process_desc_v69 * __get_process_desc_v69(struct intel_context *ce) { struct parent_scratch *ps = __get_parent_scratch(ce); return &ps->descs.pdesc; } static struct guc_sched_wq_desc * __get_wq_desc_v70(struct intel_context *ce) { struct parent_scratch *ps = __get_parent_scratch(ce); return &ps->descs.wq_desc; } static u32 *get_wq_pointer(struct intel_context *ce, u32 wqi_size) { /* * Check for space in work queue. Caching a value of head pointer in * intel_context structure in order reduce the number accesses to shared * GPU memory which may be across a PCIe bus. */ #define AVAILABLE_SPACE \ CIRC_SPACE(ce->parallel.guc.wqi_tail, ce->parallel.guc.wqi_head, WQ_SIZE) if (wqi_size > AVAILABLE_SPACE) { ce->parallel.guc.wqi_head = READ_ONCE(*ce->parallel.guc.wq_head); if (wqi_size > AVAILABLE_SPACE) return NULL; } #undef AVAILABLE_SPACE return &__get_parent_scratch(ce)->wq[ce->parallel.guc.wqi_tail / sizeof(u32)]; } static inline struct intel_context *__get_context(struct intel_guc *guc, u32 id) { struct intel_context *ce = xa_load(&guc->context_lookup, id); GEM_BUG_ON(id >= GUC_MAX_CONTEXT_ID); return ce; } static struct guc_lrc_desc_v69 *__get_lrc_desc_v69(struct intel_guc *guc, u32 index) { struct guc_lrc_desc_v69 *base = guc->lrc_desc_pool_vaddr_v69; if (!base) return NULL; GEM_BUG_ON(index >= GUC_MAX_CONTEXT_ID); return &base[index]; } static int guc_lrc_desc_pool_create_v69(struct intel_guc *guc) { u32 size; int ret; size = PAGE_ALIGN(sizeof(struct guc_lrc_desc_v69) * GUC_MAX_CONTEXT_ID); ret = intel_guc_allocate_and_map_vma(guc, size, &guc->lrc_desc_pool_v69, (void **)&guc->lrc_desc_pool_vaddr_v69); if (ret) return ret; return 0; } static void guc_lrc_desc_pool_destroy_v69(struct intel_guc *guc) { if (!guc->lrc_desc_pool_vaddr_v69) return; guc->lrc_desc_pool_vaddr_v69 = NULL; i915_vma_unpin_and_release(&guc->lrc_desc_pool_v69, I915_VMA_RELEASE_MAP); } static inline bool guc_submission_initialized(struct intel_guc *guc) { return guc->submission_initialized; } static inline void _reset_lrc_desc_v69(struct intel_guc *guc, u32 id) { struct guc_lrc_desc_v69 *desc = __get_lrc_desc_v69(guc, id); if (desc) memset(desc, 0, sizeof(*desc)); } static inline bool ctx_id_mapped(struct intel_guc *guc, u32 id) { return __get_context(guc, id); } static inline void set_ctx_id_mapping(struct intel_guc *guc, u32 id, struct intel_context *ce) { unsigned long flags; /* * xarray API doesn't have xa_save_irqsave wrapper, so calling the * lower level functions directly. */ xa_lock_irqsave(&guc->context_lookup, flags); __xa_store(&guc->context_lookup, id, ce, GFP_ATOMIC); xa_unlock_irqrestore(&guc->context_lookup, flags); } static inline void clr_ctx_id_mapping(struct intel_guc *guc, u32 id) { unsigned long flags; if (unlikely(!guc_submission_initialized(guc))) return; _reset_lrc_desc_v69(guc, id); /* * xarray API doesn't have xa_erase_irqsave wrapper, so calling * the lower level functions directly. */ xa_lock_irqsave(&guc->context_lookup, flags); __xa_erase(&guc->context_lookup, id); xa_unlock_irqrestore(&guc->context_lookup, flags); } static void decr_outstanding_submission_g2h(struct intel_guc *guc) { if (atomic_dec_and_test(&guc->outstanding_submission_g2h)) wake_up_all(&guc->ct.wq); } static int guc_submission_send_busy_loop(struct intel_guc *guc, const u32 *action, u32 len, u32 g2h_len_dw, bool loop) { int ret; /* * We always loop when a send requires a reply (i.e. g2h_len_dw > 0), * so we don't handle the case where we don't get a reply because we * aborted the send due to the channel being busy. */ GEM_BUG_ON(g2h_len_dw && !loop); if (g2h_len_dw) atomic_inc(&guc->outstanding_submission_g2h); ret = intel_guc_send_busy_loop(guc, action, len, g2h_len_dw, loop); if (ret) atomic_dec(&guc->outstanding_submission_g2h); return ret; } int intel_guc_wait_for_pending_msg(struct intel_guc *guc, atomic_t *wait_var, bool interruptible, long timeout) { const int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE; DEFINE_WAIT(wait); might_sleep(); GEM_BUG_ON(timeout < 0); if (!atomic_read(wait_var)) return 0; if (!timeout) return -ETIME; for (;;) { prepare_to_wait(&guc->ct.wq, &wait, state); if (!atomic_read(wait_var)) break; if (signal_pending_state(state, current)) { timeout = -EINTR; break; } if (!timeout) { timeout = -ETIME; break; } timeout = io_schedule_timeout(timeout); } finish_wait(&guc->ct.wq, &wait); return (timeout < 0) ? timeout : 0; } int intel_guc_wait_for_idle(struct intel_guc *guc, long timeout) { if (!intel_uc_uses_guc_submission(&guc_to_gt(guc)->uc)) return 0; return intel_guc_wait_for_pending_msg(guc, &guc->outstanding_submission_g2h, true, timeout); } static int guc_context_policy_init_v70(struct intel_context *ce, bool loop); static int try_context_registration(struct intel_context *ce, bool loop); static int __guc_add_request(struct intel_guc *guc, struct i915_request *rq) { int err = 0; struct intel_context *ce = request_to_scheduling_context(rq); u32 action[3]; int len = 0; u32 g2h_len_dw = 0; bool enabled; lockdep_assert_held(&rq->engine->sched_engine->lock); /* * Corner case where requests were sitting in the priority list or a * request resubmitted after the context was banned. */ if (unlikely(!intel_context_is_schedulable(ce))) { i915_request_put(i915_request_mark_eio(rq)); intel_engine_signal_breadcrumbs(ce->engine); return 0; } GEM_BUG_ON(!atomic_read(&ce->guc_id.ref)); GEM_BUG_ON(context_guc_id_invalid(ce)); if (context_policy_required(ce)) { err = guc_context_policy_init_v70(ce, false); if (err) return err; } spin_lock(&ce->guc_state.lock); /* * The request / context will be run on the hardware when scheduling * gets enabled in the unblock. For multi-lrc we still submit the * context to move the LRC tails. */ if (unlikely(context_blocked(ce) && !intel_context_is_parent(ce))) goto out; enabled = context_enabled(ce) || context_blocked(ce); if (!enabled) { action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET; action[len++] = ce->guc_id.id; action[len++] = GUC_CONTEXT_ENABLE; set_context_pending_enable(ce); intel_context_get(ce); g2h_len_dw = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET; } else { action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT; action[len++] = ce->guc_id.id; } err = intel_guc_send_nb(guc, action, len, g2h_len_dw); if (!enabled && !err) { trace_intel_context_sched_enable(ce); atomic_inc(&guc->outstanding_submission_g2h); set_context_enabled(ce); /* * Without multi-lrc KMD does the submission step (moving the * lrc tail) so enabling scheduling is sufficient to submit the * context. This isn't the case in multi-lrc submission as the * GuC needs to move the tails, hence the need for another H2G * to submit a multi-lrc context after enabling scheduling. */ if (intel_context_is_parent(ce)) { action[0] = INTEL_GUC_ACTION_SCHED_CONTEXT; err = intel_guc_send_nb(guc, action, len - 1, 0); } } else if (!enabled) { clr_context_pending_enable(ce); intel_context_put(ce); } if (likely(!err)) trace_i915_request_guc_submit(rq); out: spin_unlock(&ce->guc_state.lock); return err; } static int guc_add_request(struct intel_guc *guc, struct i915_request *rq) { int ret = __guc_add_request(guc, rq); if (unlikely(ret == -EBUSY)) { guc->stalled_request = rq; guc->submission_stall_reason = STALL_ADD_REQUEST; } return ret; } static inline void guc_set_lrc_tail(struct i915_request *rq) { rq->context->lrc_reg_state[CTX_RING_TAIL] = intel_ring_set_tail(rq->ring, rq->tail); } static inline int rq_prio(const struct i915_request *rq) { return rq->sched.attr.priority; } static bool is_multi_lrc_rq(struct i915_request *rq) { return intel_context_is_parallel(rq->context); } static bool can_merge_rq(struct i915_request *rq, struct i915_request *last) { return request_to_scheduling_context(rq) == request_to_scheduling_context(last); } static u32 wq_space_until_wrap(struct intel_context *ce) { return (WQ_SIZE - ce->parallel.guc.wqi_tail); } static void write_wqi(struct intel_context *ce, u32 wqi_size) { BUILD_BUG_ON(!is_power_of_2(WQ_SIZE)); /* * Ensure WQI are visible before updating tail */ intel_guc_write_barrier(ce_to_guc(ce)); ce->parallel.guc.wqi_tail = (ce->parallel.guc.wqi_tail + wqi_size) & (WQ_SIZE - 1); WRITE_ONCE(*ce->parallel.guc.wq_tail, ce->parallel.guc.wqi_tail); } static int guc_wq_noop_append(struct intel_context *ce) { u32 *wqi = get_wq_pointer(ce, wq_space_until_wrap(ce)); u32 len_dw = wq_space_until_wrap(ce) / sizeof(u32) - 1; if (!wqi) return -EBUSY; GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw)); *wqi = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) | FIELD_PREP(WQ_LEN_MASK, len_dw); ce->parallel.guc.wqi_tail = 0; return 0; } static int __guc_wq_item_append(struct i915_request *rq) { struct intel_context *ce = request_to_scheduling_context(rq); struct intel_context *child; unsigned int wqi_size = (ce->parallel.number_children + 4) * sizeof(u32); u32 *wqi; u32 len_dw = (wqi_size / sizeof(u32)) - 1; int ret; /* Ensure context is in correct state updating work queue */ GEM_BUG_ON(!atomic_read(&ce->guc_id.ref)); GEM_BUG_ON(context_guc_id_invalid(ce)); GEM_BUG_ON(context_wait_for_deregister_to_register(ce)); GEM_BUG_ON(!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id)); /* Insert NOOP if this work queue item will wrap the tail pointer. */ if (wqi_size > wq_space_until_wrap(ce)) { ret = guc_wq_noop_append(ce); if (ret) return ret; } wqi = get_wq_pointer(ce, wqi_size); if (!wqi) return -EBUSY; GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw)); *wqi++ = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) | FIELD_PREP(WQ_LEN_MASK, len_dw); *wqi++ = ce->lrc.lrca; *wqi++ = FIELD_PREP(WQ_GUC_ID_MASK, ce->guc_id.id) | FIELD_PREP(WQ_RING_TAIL_MASK, ce->ring->tail / sizeof(u64)); *wqi++ = 0; /* fence_id */ for_each_child(ce, child) *wqi++ = child->ring->tail / sizeof(u64); write_wqi(ce, wqi_size); return 0; } static int guc_wq_item_append(struct intel_guc *guc, struct i915_request *rq) { struct intel_context *ce = request_to_scheduling_context(rq); int ret; if (unlikely(!intel_context_is_schedulable(ce))) return 0; ret = __guc_wq_item_append(rq); if (unlikely(ret == -EBUSY)) { guc->stalled_request = rq; guc->submission_stall_reason = STALL_MOVE_LRC_TAIL; } return ret; } static bool multi_lrc_submit(struct i915_request *rq) { struct intel_context *ce = request_to_scheduling_context(rq); intel_ring_set_tail(rq->ring, rq->tail); /* * We expect the front end (execbuf IOCTL) to set this flag on the last * request generated from a multi-BB submission. This indicates to the * backend (GuC interface) that we should submit this context thus * submitting all the requests generated in parallel. */ return test_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, &rq->fence.flags) || !intel_context_is_schedulable(ce); } static int guc_dequeue_one_context(struct intel_guc *guc) { struct i915_sched_engine * const sched_engine = guc->sched_engine; struct i915_request *last = NULL; bool submit = false; struct rb_node *rb; int ret; lockdep_assert_held(&sched_engine->lock); if (guc->stalled_request) { submit = true; last = guc->stalled_request; switch (guc->submission_stall_reason) { case STALL_REGISTER_CONTEXT: goto register_context; case STALL_MOVE_LRC_TAIL: goto move_lrc_tail; case STALL_ADD_REQUEST: goto add_request; default: MISSING_CASE(guc->submission_stall_reason); } } while ((rb = rb_first_cached(&sched_engine->queue))) { struct i915_priolist *p = to_priolist(rb); struct i915_request *rq, *rn; priolist_for_each_request_consume(rq, rn, p) { if (last && !can_merge_rq(rq, last)) goto register_context; list_del_init(&rq->sched.link); __i915_request_submit(rq); trace_i915_request_in(rq, 0); last = rq; if (is_multi_lrc_rq(rq)) { /* * We need to coalesce all multi-lrc requests in * a relationship into a single H2G. We are * guaranteed that all of these requests will be * submitted sequentially. */ if (multi_lrc_submit(rq)) { submit = true; goto register_context; } } else { submit = true; } } rb_erase_cached(&p->node, &sched_engine->queue); i915_priolist_free(p); } register_context: if (submit) { struct intel_context *ce = request_to_scheduling_context(last); if (unlikely(!ctx_id_mapped(guc, ce->guc_id.id) && intel_context_is_schedulable(ce))) { ret = try_context_registration(ce, false); if (unlikely(ret == -EPIPE)) { goto deadlk; } else if (ret == -EBUSY) { guc->stalled_request = last; guc->submission_stall_reason = STALL_REGISTER_CONTEXT; goto schedule_tasklet; } else if (ret != 0) { GEM_WARN_ON(ret); /* Unexpected */ goto deadlk; } } move_lrc_tail: if (is_multi_lrc_rq(last)) { ret = guc_wq_item_append(guc, last); if (ret == -EBUSY) { goto schedule_tasklet; } else if (ret != 0) { GEM_WARN_ON(ret); /* Unexpected */ goto deadlk; } } else { guc_set_lrc_tail(last); } add_request: ret = guc_add_request(guc, last); if (unlikely(ret == -EPIPE)) { goto deadlk; } else if (ret == -EBUSY) { goto schedule_tasklet; } else if (ret != 0) { GEM_WARN_ON(ret); /* Unexpected */ goto deadlk; } } guc->stalled_request = NULL; guc->submission_stall_reason = STALL_NONE; return submit; deadlk: sched_engine->tasklet.callback = NULL; tasklet_disable_nosync(&sched_engine->tasklet); return false; schedule_tasklet: tasklet_schedule(&sched_engine->tasklet); return false; } static void guc_submission_tasklet(struct tasklet_struct *t) { struct i915_sched_engine *sched_engine = from_tasklet(sched_engine, t, tasklet); unsigned long flags; bool loop; spin_lock_irqsave(&sched_engine->lock, flags); do { loop = guc_dequeue_one_context(sched_engine->private_data); } while (loop); i915_sched_engine_reset_on_empty(sched_engine); spin_unlock_irqrestore(&sched_engine->lock, flags); } static void cs_irq_handler(struct intel_engine_cs *engine, u16 iir) { if (iir & GT_RENDER_USER_INTERRUPT) intel_engine_signal_breadcrumbs(engine); } static void __guc_context_destroy(struct intel_context *ce); static void release_guc_id(struct intel_guc *guc, struct intel_context *ce); static void guc_signal_context_fence(struct intel_context *ce); static void guc_cancel_context_requests(struct intel_context *ce); static void guc_blocked_fence_complete(struct intel_context *ce); static void scrub_guc_desc_for_outstanding_g2h(struct intel_guc *guc) { struct intel_context *ce; unsigned long index, flags; bool pending_disable, pending_enable, deregister, destroyed, banned; xa_lock_irqsave(&guc->context_lookup, flags); xa_for_each(&guc->context_lookup, index, ce) { /* * Corner case where the ref count on the object is zero but and * deregister G2H was lost. In this case we don't touch the ref * count and finish the destroy of the context. */ bool do_put = kref_get_unless_zero(&ce->ref); xa_unlock(&guc->context_lookup); if (test_bit(CONTEXT_GUC_INIT, &ce->flags) && (cancel_delayed_work(&ce->guc_state.sched_disable_delay_work))) { /* successful cancel so jump straight to close it */ intel_context_sched_disable_unpin(ce); } spin_lock(&ce->guc_state.lock); /* * Once we are at this point submission_disabled() is guaranteed * to be visible to all callers who set the below flags (see above * flush and flushes in reset_prepare). If submission_disabled() * is set, the caller shouldn't set these flags. */ destroyed = context_destroyed(ce); pending_enable = context_pending_enable(ce); pending_disable = context_pending_disable(ce); deregister = context_wait_for_deregister_to_register(ce); banned = context_banned(ce); init_sched_state(ce); spin_unlock(&ce->guc_state.lock); if (pending_enable || destroyed || deregister) { decr_outstanding_submission_g2h(guc); if (deregister) guc_signal_context_fence(ce); if (destroyed) { intel_gt_pm_put_async_untracked(guc_to_gt(guc)); release_guc_id(guc, ce); __guc_context_destroy(ce); } if (pending_enable || deregister) intel_context_put(ce); } /* Not mutualy exclusive with above if statement. */ if (pending_disable) { guc_signal_context_fence(ce); if (banned) { guc_cancel_context_requests(ce); intel_engine_signal_breadcrumbs(ce->engine); } intel_context_sched_disable_unpin(ce); decr_outstanding_submission_g2h(guc); spin_lock(&ce->guc_state.lock); guc_blocked_fence_complete(ce); spin_unlock(&ce->guc_state.lock); intel_context_put(ce); } if (do_put) intel_context_put(ce); xa_lock(&guc->context_lookup); } xa_unlock_irqrestore(&guc->context_lookup, flags); } /* * GuC stores busyness stats for each engine at context in/out boundaries. A * context 'in' logs execution start time, 'out' adds in -> out delta to total. * i915/kmd accesses 'start', 'total' and 'context id' from memory shared with * GuC. * * __i915_pmu_event_read samples engine busyness. When sampling, if context id * is valid (!= ~0) and start is non-zero, the engine is considered to be * active. For an active engine total busyness = total + (now - start), where * 'now' is the time at which the busyness is sampled. For inactive engine, * total busyness = total. * * All times are captured from GUCPMTIMESTAMP reg and are in gt clock domain. * * The start and total values provided by GuC are 32 bits and wrap around in a * few minutes. Since perf pmu provides busyness as 64 bit monotonically * increasing ns values, there is a need for this implementation to account for * overflows and extend the GuC provided values to 64 bits before returning * busyness to the user. In order to do that, a worker runs periodically at * frequency = 1/8th the time it takes for the timestamp to wrap (i.e. once in * 27 seconds for a gt clock frequency of 19.2 MHz). */ #define WRAP_TIME_CLKS U32_MAX #define POLL_TIME_CLKS (WRAP_TIME_CLKS >> 3) static void __extend_last_switch(struct intel_guc *guc, u64 *prev_start, u32 new_start) { u32 gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp); u32 gt_stamp_last = lower_32_bits(guc->timestamp.gt_stamp); if (new_start == lower_32_bits(*prev_start)) return; /* * When gt is unparked, we update the gt timestamp and start the ping * worker that updates the gt_stamp every POLL_TIME_CLKS. As long as gt * is unparked, all switched in contexts will have a start time that is * within +/- POLL_TIME_CLKS of the most recent gt_stamp. * * If neither gt_stamp nor new_start has rolled over, then the * gt_stamp_hi does not need to be adjusted, however if one of them has * rolled over, we need to adjust gt_stamp_hi accordingly. * * The below conditions address the cases of new_start rollover and * gt_stamp_last rollover respectively. */ if (new_start < gt_stamp_last && (new_start - gt_stamp_last) <= POLL_TIME_CLKS) gt_stamp_hi++; if (new_start > gt_stamp_last && (gt_stamp_last - new_start) <= POLL_TIME_CLKS && gt_stamp_hi) gt_stamp_hi--; *prev_start = ((u64)gt_stamp_hi << 32) | new_start; } #define record_read(map_, field_) \ iosys_map_rd_field(map_, 0, struct guc_engine_usage_record, field_) /* * GuC updates shared memory and KMD reads it. Since this is not synchronized, * we run into a race where the value read is inconsistent. Sometimes the * inconsistency is in reading the upper MSB bytes of the last_in value when * this race occurs. 2 types of cases are seen - upper 8 bits are zero and upper * 24 bits are zero. Since these are non-zero values, it is non-trivial to * determine validity of these values. Instead we read the values multiple times * until they are consistent. In test runs, 3 attempts results in consistent * values. The upper bound is set to 6 attempts and may need to be tuned as per * any new occurences. */ static void __get_engine_usage_record(struct intel_engine_cs *engine, u32 *last_in, u32 *id, u32 *total) { struct iosys_map rec_map = intel_guc_engine_usage_record_map(engine); int i = 0; do { *last_in = record_read(&rec_map, last_switch_in_stamp); *id = record_read(&rec_map, current_context_index); *total = record_read(&rec_map, total_runtime); if (record_read(&rec_map, last_switch_in_stamp) == *last_in && record_read(&rec_map, current_context_index) == *id && record_read(&rec_map, total_runtime) == *total) break; } while (++i < 6); } static void guc_update_engine_gt_clks(struct intel_engine_cs *engine) { struct intel_engine_guc_stats *stats = &engine->stats.guc; struct intel_guc *guc = &engine->gt->uc.guc; u32 last_switch, ctx_id, total; lockdep_assert_held(&guc->timestamp.lock); __get_engine_usage_record(engine, &last_switch, &ctx_id, &total); stats->running = ctx_id != ~0U && last_switch; if (stats->running) __extend_last_switch(guc, &stats->start_gt_clk, last_switch); /* * Instead of adjusting the total for overflow, just add the * difference from previous sample stats->total_gt_clks */ if (total && total != ~0U) { stats->total_gt_clks += (u32)(total - stats->prev_total); stats->prev_total = total; } } static u32 gpm_timestamp_shift(struct intel_gt *gt) { intel_wakeref_t wakeref; u32 reg, shift; with_intel_runtime_pm(gt->uncore->rpm, wakeref) reg = intel_uncore_read(gt->uncore, RPM_CONFIG0); shift = (reg & GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >> GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT; return 3 - shift; } static void guc_update_pm_timestamp(struct intel_guc *guc, ktime_t *now) { struct intel_gt *gt = guc_to_gt(guc); u32 gt_stamp_lo, gt_stamp_hi; u64 gpm_ts; lockdep_assert_held(&guc->timestamp.lock); gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp); gpm_ts = intel_uncore_read64_2x32(gt->uncore, MISC_STATUS0, MISC_STATUS1) >> guc->timestamp.shift; gt_stamp_lo = lower_32_bits(gpm_ts); *now = ktime_get(); if (gt_stamp_lo < lower_32_bits(guc->timestamp.gt_stamp)) gt_stamp_hi++; guc->timestamp.gt_stamp = ((u64)gt_stamp_hi << 32) | gt_stamp_lo; } /* * Unlike the execlist mode of submission total and active times are in terms of * gt clocks. The *now parameter is retained to return the cpu time at which the * busyness was sampled. */ static ktime_t guc_engine_busyness(struct intel_engine_cs *engine, ktime_t *now) { struct intel_engine_guc_stats stats_saved, *stats = &engine->stats.guc; struct i915_gpu_error *gpu_error = &engine->i915->gpu_error; struct intel_gt *gt = engine->gt; struct intel_guc *guc = >->uc.guc; u64 total, gt_stamp_saved; unsigned long flags; u32 reset_count; bool in_reset; intel_wakeref_t wakeref; spin_lock_irqsave(&guc->timestamp.lock, flags); /* * If a reset happened, we risk reading partially updated engine * busyness from GuC, so we just use the driver stored copy of busyness. * Synchronize with gt reset using reset_count and the * I915_RESET_BACKOFF flag. Note that reset flow updates the reset_count * after I915_RESET_BACKOFF flag, so ensure that the reset_count is * usable by checking the flag afterwards. */ reset_count = i915_reset_count(gpu_error); in_reset = test_bit(I915_RESET_BACKOFF, >->reset.flags); *now = ktime_get(); /* * The active busyness depends on start_gt_clk and gt_stamp. * gt_stamp is updated by i915 only when gt is awake and the * start_gt_clk is derived from GuC state. To get a consistent * view of activity, we query the GuC state only if gt is awake. */ wakeref = in_reset ? 0 : intel_gt_pm_get_if_awake(gt); if (wakeref) { stats_saved = *stats; gt_stamp_saved = guc->timestamp.gt_stamp; /* * Update gt_clks, then gt timestamp to simplify the 'gt_stamp - * start_gt_clk' calculation below for active engines. */ guc_update_engine_gt_clks(engine); guc_update_pm_timestamp(guc, now); intel_gt_pm_put_async(gt, wakeref); if (i915_reset_count(gpu_error) != reset_count) { *stats = stats_saved; guc->timestamp.gt_stamp = gt_stamp_saved; } } total = intel_gt_clock_interval_to_ns(gt, stats->total_gt_clks); if (stats->running) { u64 clk = guc->timestamp.gt_stamp - stats->start_gt_clk; total += intel_gt_clock_interval_to_ns(gt, clk); } spin_unlock_irqrestore(&guc->timestamp.lock, flags); return ns_to_ktime(total); } static void guc_enable_busyness_worker(struct intel_guc *guc) { mod_delayed_work(system_highpri_wq, &guc->timestamp.work, guc->timestamp.ping_delay); } static void guc_cancel_busyness_worker(struct intel_guc *guc) { /* * There are many different call stacks that can get here. Some of them * hold the reset mutex. The busyness worker also attempts to acquire the * reset mutex. Synchronously flushing a worker thread requires acquiring * the worker mutex. Lockdep sees this as a conflict. It thinks that the * flush can deadlock because it holds the worker mutex while waiting for * the reset mutex, but another thread is holding the reset mutex and might * attempt to use other worker functions. * * In practice, this scenario does not exist because the busyness worker * does not block waiting for the reset mutex. It does a try-lock on it and * immediately exits if the lock is already held. Unfortunately, the mutex * in question (I915_RESET_BACKOFF) is an i915 implementation which has lockdep * annotation but not to the extent of explaining the 'might lock' is also a * 'does not need to lock'. So one option would be to add more complex lockdep * annotations to ignore the issue (if at all possible). A simpler option is to * just not flush synchronously when a rest in progress. Given that the worker * will just early exit and re-schedule itself anyway, there is no advantage * to running it immediately. * * If a reset is not in progress, then the synchronous flush may be required. * As noted many call stacks lead here, some during suspend and driver unload * which do require a synchronous flush to make sure the worker is stopped * before memory is freed. * * Trying to pass a 'need_sync' or 'in_reset' flag all the way down through * every possible call stack is unfeasible. It would be too intrusive to many * areas that really don't care about the GuC backend. However, there is the * I915_RESET_BACKOFF flag and the gt->reset.mutex can be tested for is_locked. * So just use those. Note that testing both is required due to the hideously * complex nature of the i915 driver's reset code paths. * * And note that in the case of a reset occurring during driver unload * (wedged_on_fini), skipping the cancel in reset_prepare/reset_fini (when the * reset flag/mutex are set) is fine because there is another explicit cancel in * intel_guc_submission_fini (when the reset flag/mutex are not). */ if (mutex_is_locked(&guc_to_gt(guc)->reset.mutex) || test_bit(I915_RESET_BACKOFF, &guc_to_gt(guc)->reset.flags)) cancel_delayed_work(&guc->timestamp.work); else cancel_delayed_work_sync(&guc->timestamp.work); } static void __reset_guc_busyness_stats(struct intel_guc *guc) { struct intel_gt *gt = guc_to_gt(guc); struct intel_engine_cs *engine; enum intel_engine_id id; unsigned long flags; ktime_t unused; spin_lock_irqsave(&guc->timestamp.lock, flags); guc_update_pm_timestamp(guc, &unused); for_each_engine(engine, gt, id) { guc_update_engine_gt_clks(engine); engine->stats.guc.prev_total = 0; } spin_unlock_irqrestore(&guc->timestamp.lock, flags); } static void __update_guc_busyness_stats(struct intel_guc *guc) { struct intel_gt *gt = guc_to_gt(guc); struct intel_engine_cs *engine; enum intel_engine_id id; unsigned long flags; ktime_t unused; guc->timestamp.last_stat_jiffies = jiffies; spin_lock_irqsave(&guc->timestamp.lock, flags); guc_update_pm_timestamp(guc, &unused); for_each_engine(engine, gt, id) guc_update_engine_gt_clks(engine); spin_unlock_irqrestore(&guc->timestamp.lock, flags); } static void __guc_context_update_stats(struct intel_context *ce) { struct intel_guc *guc = ce_to_guc(ce); unsigned long flags; spin_lock_irqsave(&guc->timestamp.lock, flags); lrc_update_runtime(ce); spin_unlock_irqrestore(&guc->timestamp.lock, flags); } static void guc_context_update_stats(struct intel_context *ce) { if (!intel_context_pin_if_active(ce)) return; __guc_context_update_stats(ce); intel_context_unpin(ce); } static void guc_timestamp_ping(struct work_struct *wrk) { struct intel_guc *guc = container_of(wrk, typeof(*guc), timestamp.work.work); struct intel_uc *uc = container_of(guc, typeof(*uc), guc); struct intel_gt *gt = guc_to_gt(guc); struct intel_context *ce; intel_wakeref_t wakeref; unsigned long index; int srcu, ret; /* * Ideally the busyness worker should take a gt pm wakeref because the * worker only needs to be active while gt is awake. However, the * gt_park path cancels the worker synchronously and this complicates * the flow if the worker is also running at the same time. The cancel * waits for the worker and when the worker releases the wakeref, that * would call gt_park and would lead to a deadlock. * * The resolution is to take the global pm wakeref if runtime pm is * already active. If not, we don't need to update the busyness stats as * the stats would already be updated when the gt was parked. * * Note: * - We do not requeue the worker if we cannot take a reference to runtime * pm since intel_guc_busyness_unpark would requeue the worker in the * resume path. * * - If the gt was parked longer than time taken for GT timestamp to roll * over, we ignore those rollovers since we don't care about tracking * the exact GT time. We only care about roll overs when the gt is * active and running workloads. * * - There is a window of time between gt_park and runtime suspend, * where the worker may run. This is acceptable since the worker will * not find any new data to update busyness. */ wakeref = intel_runtime_pm_get_if_active(>->i915->runtime_pm); if (!wakeref) return; /* * Synchronize with gt reset to make sure the worker does not * corrupt the engine/guc stats. NB: can't actually block waiting * for a reset to complete as the reset requires flushing out * this worker thread if started. So waiting would deadlock. */ ret = intel_gt_reset_trylock(gt, &srcu); if (ret) goto err_trylock; __update_guc_busyness_stats(guc); /* adjust context stats for overflow */ xa_for_each(&guc->context_lookup, index, ce) guc_context_update_stats(ce); intel_gt_reset_unlock(gt, srcu); guc_enable_busyness_worker(guc); err_trylock: intel_runtime_pm_put(>->i915->runtime_pm, wakeref); } static int guc_action_enable_usage_stats(struct intel_guc *guc) { u32 offset = intel_guc_engine_usage_offset(guc); u32 action[] = { INTEL_GUC_ACTION_SET_ENG_UTIL_BUFF, offset, 0, }; return intel_guc_send(guc, action, ARRAY_SIZE(action)); } static int guc_init_engine_stats(struct intel_guc *guc) { struct intel_gt *gt = guc_to_gt(guc); intel_wakeref_t wakeref; int ret; with_intel_runtime_pm(>->i915->runtime_pm, wakeref) ret = guc_action_enable_usage_stats(guc); if (ret) guc_err(guc, "Failed to enable usage stats: %pe\n", ERR_PTR(ret)); else guc_enable_busyness_worker(guc); return ret; } static void guc_fini_engine_stats(struct intel_guc *guc) { guc_cancel_busyness_worker(guc); } void intel_guc_busyness_park(struct intel_gt *gt) { struct intel_guc *guc = >->uc.guc; if (!guc_submission_initialized(guc)) return; /* * There is a race with suspend flow where the worker runs after suspend * and causes an unclaimed register access warning. Cancel the worker * synchronously here. */ guc_cancel_busyness_worker(guc); /* * Before parking, we should sample engine busyness stats if we need to. * We can skip it if we are less than half a ping from the last time we * sampled the busyness stats. */ if (guc->timestamp.last_stat_jiffies && !time_after(jiffies, guc->timestamp.last_stat_jiffies + (guc->timestamp.ping_delay / 2))) return; __update_guc_busyness_stats(guc); } void intel_guc_busyness_unpark(struct intel_gt *gt) { struct intel_guc *guc = >->uc.guc; unsigned long flags; ktime_t unused; if (!guc_submission_initialized(guc)) return; spin_lock_irqsave(&guc->timestamp.lock, flags); guc_update_pm_timestamp(guc, &unused); spin_unlock_irqrestore(&guc->timestamp.lock, flags); guc_enable_busyness_worker(guc); } static inline bool submission_disabled(struct intel_guc *guc) { struct i915_sched_engine * const sched_engine = guc->sched_engine; return unlikely(!sched_engine || !__tasklet_is_enabled(&sched_engine->tasklet) || intel_gt_is_wedged(guc_to_gt(guc))); } static void disable_submission(struct intel_guc *guc) { struct i915_sched_engine * const sched_engine = guc->sched_engine; if (__tasklet_is_enabled(&sched_engine->tasklet)) { GEM_BUG_ON(!guc->ct.enabled); __tasklet_disable_sync_once(&sched_engine->tasklet); sched_engine->tasklet.callback = NULL; } } static void enable_submission(struct intel_guc *guc) { struct i915_sched_engine * const sched_engine = guc->sched_engine; unsigned long flags; spin_lock_irqsave(&guc->sched_engine->lock, flags); sched_engine->tasklet.callback = guc_submission_tasklet; wmb(); /* Make sure callback visible */ if (!__tasklet_is_enabled(&sched_engine->tasklet) && __tasklet_enable(&sched_engine->tasklet)) { GEM_BUG_ON(!guc->ct.enabled); /* And kick in case we missed a new request submission. */ tasklet_hi_schedule(&sched_engine->tasklet); } spin_unlock_irqrestore(&guc->sched_engine->lock, flags); } static void guc_flush_submissions(struct intel_guc *guc) { struct i915_sched_engine * const sched_engine = guc->sched_engine; unsigned long flags; spin_lock_irqsave(&sched_engine->lock, flags); spin_unlock_irqrestore(&sched_engine->lock, flags); } void intel_guc_submission_flush_work(struct intel_guc *guc) { flush_work(&guc->submission_state.destroyed_worker); } static void guc_flush_destroyed_contexts(struct intel_guc *guc); void intel_guc_submission_reset_prepare(struct intel_guc *guc) { if (unlikely(!guc_submission_initialized(guc))) { /* Reset called during driver load? GuC not yet initialised! */ return; } intel_gt_park_heartbeats(guc_to_gt(guc)); disable_submission(guc); guc->interrupts.disable(guc); __reset_guc_busyness_stats(guc); /* Flush IRQ handler */ spin_lock_irq(guc_to_gt(guc)->irq_lock); spin_unlock_irq(guc_to_gt(guc)->irq_lock); guc_flush_submissions(guc); guc_flush_destroyed_contexts(guc); flush_work(&guc->ct.requests.worker); scrub_guc_desc_for_outstanding_g2h(guc); } static struct intel_engine_cs * guc_virtual_get_sibling(struct intel_engine_cs *ve, unsigned int sibling) { struct intel_engine_cs *engine; intel_engine_mask_t tmp, mask = ve->mask; unsigned int num_siblings = 0; for_each_engine_masked(engine, ve->gt, mask, tmp) if (num_siblings++ == sibling) return engine; return NULL; } static inline struct intel_engine_cs * __context_to_physical_engine(struct intel_context *ce) { struct intel_engine_cs *engine = ce->engine; if (intel_engine_is_virtual(engine)) engine = guc_virtual_get_sibling(engine, 0); return engine; } static void guc_reset_state(struct intel_context *ce, u32 head, bool scrub) { struct intel_engine_cs *engine = __context_to_physical_engine(ce); if (!intel_context_is_schedulable(ce)) return; GEM_BUG_ON(!intel_context_is_pinned(ce)); /* * We want a simple context + ring to execute the breadcrumb update. * We cannot rely on the context being intact across the GPU hang, * so clear it and rebuild just what we need for the breadcrumb. * All pending requests for this context will be zapped, and any * future request will be after userspace has had the opportunity * to recreate its own state. */ if (scrub) lrc_init_regs(ce, engine, true); /* Rerun the request; its payload has been neutered (if guilty). */ lrc_update_regs(ce, engine, head); } static void guc_engine_reset_prepare(struct intel_engine_cs *engine) { /* * Wa_22011802037: In addition to stopping the cs, we need * to wait for any pending mi force wakeups */ if (intel_engine_reset_needs_wa_22011802037(engine->gt)) { intel_engine_stop_cs(engine); intel_engine_wait_for_pending_mi_fw(engine); } } static void guc_reset_nop(struct intel_engine_cs *engine) { } static void guc_rewind_nop(struct intel_engine_cs *engine, bool stalled) { } static void __unwind_incomplete_requests(struct intel_context *ce) { struct i915_request *rq, *rn; struct list_head *pl; int prio = I915_PRIORITY_INVALID; struct i915_sched_engine * const sched_engine = ce->engine->sched_engine; unsigned long flags; spin_lock_irqsave(&sched_engine->lock, flags); spin_lock(&ce->guc_state.lock); list_for_each_entry_safe_reverse(rq, rn, &ce->guc_state.requests, sched.link) { if (i915_request_completed(rq)) continue; list_del_init(&rq->sched.link); __i915_request_unsubmit(rq); /* Push the request back into the queue for later resubmission. */ GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID); if (rq_prio(rq) != prio) { prio = rq_prio(rq); pl = i915_sched_lookup_priolist(sched_engine, prio); } GEM_BUG_ON(i915_sched_engine_is_empty(sched_engine)); list_add(&rq->sched.link, pl); set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); } spin_unlock(&ce->guc_state.lock); spin_unlock_irqrestore(&sched_engine->lock, flags); } static void __guc_reset_context(struct intel_context *ce, intel_engine_mask_t stalled) { bool guilty; struct i915_request *rq; unsigned long flags; u32 head; int i, number_children = ce->parallel.number_children; struct intel_context *parent = ce; GEM_BUG_ON(intel_context_is_child(ce)); intel_context_get(ce); /* * GuC will implicitly mark the context as non-schedulable when it sends * the reset notification. Make sure our state reflects this change. The * context will be marked enabled on resubmission. */ spin_lock_irqsave(&ce->guc_state.lock, flags); clr_context_enabled(ce); spin_unlock_irqrestore(&ce->guc_state.lock, flags); /* * For each context in the relationship find the hanging request * resetting each context / request as needed */ for (i = 0; i < number_children + 1; ++i) { if (!intel_context_is_pinned(ce)) goto next_context; guilty = false; rq = intel_context_get_active_request(ce); if (!rq) { head = ce->ring->tail; goto out_replay; } if (i915_request_started(rq)) guilty = stalled & ce->engine->mask; GEM_BUG_ON(i915_active_is_idle(&ce->active)); head = intel_ring_wrap(ce->ring, rq->head); __i915_request_reset(rq, guilty); i915_request_put(rq); out_replay: guc_reset_state(ce, head, guilty); next_context: if (i != number_children) ce = list_next_entry(ce, parallel.child_link); } __unwind_incomplete_requests(parent); intel_context_put(parent); } void wake_up_all_tlb_invalidate(struct intel_guc *guc) { struct intel_guc_tlb_wait *wait; unsigned long i; if (!intel_guc_tlb_invalidation_is_available(guc)) return; xa_lock_irq(&guc->tlb_lookup); xa_for_each(&guc->tlb_lookup, i, wait) wake_up(&wait->wq); xa_unlock_irq(&guc->tlb_lookup); } void intel_guc_submission_reset(struct intel_guc *guc, intel_engine_mask_t stalled) { struct intel_context *ce; unsigned long index; unsigned long flags; if (unlikely(!guc_submission_initialized(guc))) { /* Reset called during driver load? GuC not yet initialised! */ return; } xa_lock_irqsave(&guc->context_lookup, flags); xa_for_each(&guc->context_lookup, index, ce) { if (!kref_get_unless_zero(&ce->ref)) continue; xa_unlock(&guc->context_lookup); if (intel_context_is_pinned(ce) && !intel_context_is_child(ce)) __guc_reset_context(ce, stalled); intel_context_put(ce); xa_lock(&guc->context_lookup); } xa_unlock_irqrestore(&guc->context_lookup, flags); /* GuC is blown away, drop all references to contexts */ xa_destroy(&guc->context_lookup); } static void guc_cancel_context_requests(struct intel_context *ce) { struct i915_sched_engine *sched_engine = ce_to_guc(ce)->sched_engine; struct i915_request *rq; unsigned long flags; /* Mark all executing requests as skipped. */ spin_lock_irqsave(&sched_engine->lock, flags); spin_lock(&ce->guc_state.lock); list_for_each_entry(rq, &ce->guc_state.requests, sched.link) i915_request_put(i915_request_mark_eio(rq)); spin_unlock(&ce->guc_state.lock); spin_unlock_irqrestore(&sched_engine->lock, flags); } static void guc_cancel_sched_engine_requests(struct i915_sched_engine *sched_engine) { struct i915_request *rq, *rn; struct rb_node *rb; unsigned long flags; /* Can be called during boot if GuC fails to load */ if (!sched_engine) return; /* * Before we call engine->cancel_requests(), we should have exclusive * access to the submission state. This is arranged for us by the * caller disabling the interrupt generation, the tasklet and other * threads that may then access the same state, giving us a free hand * to reset state. However, we still need to let lockdep be aware that * we know this state may be accessed in hardirq context, so we * disable the irq around this manipulation and we want to keep * the spinlock focused on its duties and not accidentally conflate * coverage to the submission's irq state. (Similarly, although we * shouldn't need to disable irq around the manipulation of the * submission's irq state, we also wish to remind ourselves that * it is irq state.) */ spin_lock_irqsave(&sched_engine->lock, flags); /* Flush the queued requests to the timeline list (for retiring). */ while ((rb = rb_first_cached(&sched_engine->queue))) { struct i915_priolist *p = to_priolist(rb); priolist_for_each_request_consume(rq, rn, p) { list_del_init(&rq->sched.link); __i915_request_submit(rq); i915_request_put(i915_request_mark_eio(rq)); } rb_erase_cached(&p->node, &sched_engine->queue); i915_priolist_free(p); } /* Remaining _unready_ requests will be nop'ed when submitted */ sched_engine->queue_priority_hint = INT_MIN; sched_engine->queue = RB_ROOT_CACHED; spin_unlock_irqrestore(&sched_engine->lock, flags); } void intel_guc_submission_cancel_requests(struct intel_guc *guc) { struct intel_context *ce; unsigned long index; unsigned long flags; xa_lock_irqsave(&guc->context_lookup, flags); xa_for_each(&guc->context_lookup, index, ce) { if (!kref_get_unless_zero(&ce->ref)) continue; xa_unlock(&guc->context_lookup); if (intel_context_is_pinned(ce) && !intel_context_is_child(ce)) guc_cancel_context_requests(ce); intel_context_put(ce); xa_lock(&guc->context_lookup); } xa_unlock_irqrestore(&guc->context_lookup, flags); guc_cancel_sched_engine_requests(guc->sched_engine); /* GuC is blown away, drop all references to contexts */ xa_destroy(&guc->context_lookup); /* * Wedged GT won't respond to any TLB invalidation request. Simply * release all the blocked waiters. */ wake_up_all_tlb_invalidate(guc); } void intel_guc_submission_reset_finish(struct intel_guc *guc) { /* Reset called during driver load or during wedge? */ if (unlikely(!guc_submission_initialized(guc) || !intel_guc_is_fw_running(guc) || intel_gt_is_wedged(guc_to_gt(guc)))) { return; } /* * Technically possible for either of these values to be non-zero here, * but very unlikely + harmless. Regardless let's add a warn so we can * see in CI if this happens frequently / a precursor to taking down the * machine. */ GEM_WARN_ON(atomic_read(&guc->outstanding_submission_g2h)); atomic_set(&guc->outstanding_submission_g2h, 0); intel_guc_global_policies_update(guc); enable_submission(guc); intel_gt_unpark_heartbeats(guc_to_gt(guc)); /* * The full GT reset will have cleared the TLB caches and flushed the * G2H message queue; we can release all the blocked waiters. */ wake_up_all_tlb_invalidate(guc); } static void destroyed_worker_func(struct work_struct *w); static void reset_fail_worker_func(struct work_struct *w); bool intel_guc_tlb_invalidation_is_available(struct intel_guc *guc) { return HAS_GUC_TLB_INVALIDATION(guc_to_gt(guc)->i915) && intel_guc_is_ready(guc); } static int init_tlb_lookup(struct intel_guc *guc) { struct intel_guc_tlb_wait *wait; int err; if (!HAS_GUC_TLB_INVALIDATION(guc_to_gt(guc)->i915)) return 0; xa_init_flags(&guc->tlb_lookup, XA_FLAGS_ALLOC); wait = kzalloc(sizeof(*wait), GFP_KERNEL); if (!wait) return -ENOMEM; init_waitqueue_head(&wait->wq); /* Preallocate a shared id for use under memory pressure. */ err = xa_alloc_cyclic_irq(&guc->tlb_lookup, &guc->serial_slot, wait, xa_limit_32b, &guc->next_seqno, GFP_KERNEL); if (err < 0) { kfree(wait); return err; } return 0; } static void fini_tlb_lookup(struct intel_guc *guc) { struct intel_guc_tlb_wait *wait; if (!HAS_GUC_TLB_INVALIDATION(guc_to_gt(guc)->i915)) return; wait = xa_load(&guc->tlb_lookup, guc->serial_slot); if (wait && wait->busy) guc_err(guc, "Unexpected busy item in tlb_lookup on fini\n"); kfree(wait); xa_destroy(&guc->tlb_lookup); } /* * Set up the memory resources to be shared with the GuC (via the GGTT) * at firmware loading time. */ int intel_guc_submission_init(struct intel_guc *guc) { struct intel_gt *gt = guc_to_gt(guc); int ret; if (guc->submission_initialized) return 0; if (GUC_SUBMIT_VER(guc) < MAKE_GUC_VER(1, 0, 0)) { ret = guc_lrc_desc_pool_create_v69(guc); if (ret) return ret; } ret = init_tlb_lookup(guc); if (ret) goto destroy_pool; guc->submission_state.guc_ids_bitmap = bitmap_zalloc(NUMBER_MULTI_LRC_GUC_ID(guc), GFP_KERNEL); if (!guc->submission_state.guc_ids_bitmap) { ret = -ENOMEM; goto destroy_tlb; } guc->timestamp.ping_delay = (POLL_TIME_CLKS / gt->clock_frequency + 1) * HZ; guc->timestamp.shift = gpm_timestamp_shift(gt); guc->submission_initialized = true; return 0; destroy_tlb: fini_tlb_lookup(guc); destroy_pool: guc_lrc_desc_pool_destroy_v69(guc); return ret; } void intel_guc_submission_fini(struct intel_guc *guc) { if (!guc->submission_initialized) return; guc_fini_engine_stats(guc); guc_flush_destroyed_contexts(guc); guc_lrc_desc_pool_destroy_v69(guc); i915_sched_engine_put(guc->sched_engine); bitmap_free(guc->submission_state.guc_ids_bitmap); fini_tlb_lookup(guc); guc->submission_initialized = false; } static inline void queue_request(struct i915_sched_engine *sched_engine, struct i915_request *rq, int prio) { GEM_BUG_ON(!list_empty(&rq->sched.link)); list_add_tail(&rq->sched.link, i915_sched_lookup_priolist(sched_engine, prio)); set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); tasklet_hi_schedule(&sched_engine->tasklet); } static int guc_bypass_tasklet_submit(struct intel_guc *guc, struct i915_request *rq) { int ret = 0; __i915_request_submit(rq); trace_i915_request_in(rq, 0); if (is_multi_lrc_rq(rq)) { if (multi_lrc_submit(rq)) { ret = guc_wq_item_append(guc, rq); if (!ret) ret = guc_add_request(guc, rq); } } else { guc_set_lrc_tail(rq); ret = guc_add_request(guc, rq); } if (unlikely(ret == -EPIPE)) disable_submission(guc); return ret; } static bool need_tasklet(struct intel_guc *guc, struct i915_request *rq) { struct i915_sched_engine *sched_engine = rq->engine->sched_engine; struct intel_context *ce = request_to_scheduling_context(rq); return submission_disabled(guc) || guc->stalled_request || !i915_sched_engine_is_empty(sched_engine) || !ctx_id_mapped(guc, ce->guc_id.id); } static void guc_submit_request(struct i915_request *rq) { struct i915_sched_engine *sched_engine = rq->engine->sched_engine; struct intel_guc *guc = &rq->engine->gt->uc.guc; unsigned long flags; /* Will be called from irq-context when using foreign fences. */ spin_lock_irqsave(&sched_engine->lock, flags); if (need_tasklet(guc, rq)) queue_request(sched_engine, rq, rq_prio(rq)); else if (guc_bypass_tasklet_submit(guc, rq) == -EBUSY) tasklet_hi_schedule(&sched_engine->tasklet); spin_unlock_irqrestore(&sched_engine->lock, flags); } static int new_guc_id(struct intel_guc *guc, struct intel_context *ce) { int ret; GEM_BUG_ON(intel_context_is_child(ce)); if (intel_context_is_parent(ce)) ret = bitmap_find_free_region(guc->submission_state.guc_ids_bitmap, NUMBER_MULTI_LRC_GUC_ID(guc), order_base_2(ce->parallel.number_children + 1)); else ret = ida_simple_get(&guc->submission_state.guc_ids, NUMBER_MULTI_LRC_GUC_ID(guc), guc->submission_state.num_guc_ids, GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); if (unlikely(ret < 0)) return ret; if (!intel_context_is_parent(ce)) ++guc->submission_state.guc_ids_in_use; ce->guc_id.id = ret; return 0; } static void __release_guc_id(struct intel_guc *guc, struct intel_context *ce) { GEM_BUG_ON(intel_context_is_child(ce)); if (!context_guc_id_invalid(ce)) { if (intel_context_is_parent(ce)) { bitmap_release_region(guc->submission_state.guc_ids_bitmap, ce->guc_id.id, order_base_2(ce->parallel.number_children + 1)); } else { --guc->submission_state.guc_ids_in_use; ida_simple_remove(&guc->submission_state.guc_ids, ce->guc_id.id); } clr_ctx_id_mapping(guc, ce->guc_id.id); set_context_guc_id_invalid(ce); } if (!list_empty(&ce->guc_id.link)) list_del_init(&ce->guc_id.link); } static void release_guc_id(struct intel_guc *guc, struct intel_context *ce) { unsigned long flags; spin_lock_irqsave(&guc->submission_state.lock, flags); __release_guc_id(guc, ce); spin_unlock_irqrestore(&guc->submission_state.lock, flags); } static int steal_guc_id(struct intel_guc *guc, struct intel_context *ce) { struct intel_context *cn; lockdep_assert_held(&guc->submission_state.lock); GEM_BUG_ON(intel_context_is_child(ce)); GEM_BUG_ON(intel_context_is_parent(ce)); if (!list_empty(&guc->submission_state.guc_id_list)) { cn = list_first_entry(&guc->submission_state.guc_id_list, struct intel_context, guc_id.link); GEM_BUG_ON(atomic_read(&cn->guc_id.ref)); GEM_BUG_ON(context_guc_id_invalid(cn)); GEM_BUG_ON(intel_context_is_child(cn)); GEM_BUG_ON(intel_context_is_parent(cn)); list_del_init(&cn->guc_id.link); ce->guc_id.id = cn->guc_id.id; spin_lock(&cn->guc_state.lock); clr_context_registered(cn); spin_unlock(&cn->guc_state.lock); set_context_guc_id_invalid(cn); #ifdef CONFIG_DRM_I915_SELFTEST guc->number_guc_id_stolen++; #endif return 0; } else { return -EAGAIN; } } static int assign_guc_id(struct intel_guc *guc, struct intel_context *ce) { int ret; lockdep_assert_held(&guc->submission_state.lock); GEM_BUG_ON(intel_context_is_child(ce)); ret = new_guc_id(guc, ce); if (unlikely(ret < 0)) { if (intel_context_is_parent(ce)) return -ENOSPC; ret = steal_guc_id(guc, ce); if (ret < 0) return ret; } if (intel_context_is_parent(ce)) { struct intel_context *child; int i = 1; for_each_child(ce, child) child->guc_id.id = ce->guc_id.id + i++; } return 0; } #define PIN_GUC_ID_TRIES 4 static int pin_guc_id(struct intel_guc *guc, struct intel_context *ce) { int ret = 0; unsigned long flags, tries = PIN_GUC_ID_TRIES; GEM_BUG_ON(atomic_read(&ce->guc_id.ref)); try_again: spin_lock_irqsave(&guc->submission_state.lock, flags); might_lock(&ce->guc_state.lock); if (context_guc_id_invalid(ce)) { ret = assign_guc_id(guc, ce); if (ret) goto out_unlock; ret = 1; /* Indidcates newly assigned guc_id */ } if (!list_empty(&ce->guc_id.link)) list_del_init(&ce->guc_id.link); atomic_inc(&ce->guc_id.ref); out_unlock: spin_unlock_irqrestore(&guc->submission_state.lock, flags); /* * -EAGAIN indicates no guc_id are available, let's retire any * outstanding requests to see if that frees up a guc_id. If the first * retire didn't help, insert a sleep with the timeslice duration before * attempting to retire more requests. Double the sleep period each * subsequent pass before finally giving up. The sleep period has max of * 100ms and minimum of 1ms. */ if (ret == -EAGAIN && --tries) { if (PIN_GUC_ID_TRIES - tries > 1) { unsigned int timeslice_shifted = ce->engine->props.timeslice_duration_ms << (PIN_GUC_ID_TRIES - tries - 2); unsigned int max = min_t(unsigned int, 100, timeslice_shifted); msleep(max_t(unsigned int, max, 1)); } intel_gt_retire_requests(guc_to_gt(guc)); goto try_again; } return ret; } static void unpin_guc_id(struct intel_guc *guc, struct intel_context *ce) { unsigned long flags; GEM_BUG_ON(atomic_read(&ce->guc_id.ref) < 0); GEM_BUG_ON(intel_context_is_child(ce)); if (unlikely(context_guc_id_invalid(ce) || intel_context_is_parent(ce))) return; spin_lock_irqsave(&guc->submission_state.lock, flags); if (!context_guc_id_invalid(ce) && list_empty(&ce->guc_id.link) && !atomic_read(&ce->guc_id.ref)) list_add_tail(&ce->guc_id.link, &guc->submission_state.guc_id_list); spin_unlock_irqrestore(&guc->submission_state.lock, flags); } static int __guc_action_register_multi_lrc_v69(struct intel_guc *guc, struct intel_context *ce, u32 guc_id, u32 offset, bool loop) { struct intel_context *child; u32 action[4 + MAX_ENGINE_INSTANCE]; int len = 0; GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE); action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC; action[len++] = guc_id; action[len++] = ce->parallel.number_children + 1; action[len++] = offset; for_each_child(ce, child) { offset += sizeof(struct guc_lrc_desc_v69); action[len++] = offset; } return guc_submission_send_busy_loop(guc, action, len, 0, loop); } static int __guc_action_register_multi_lrc_v70(struct intel_guc *guc, struct intel_context *ce, struct guc_ctxt_registration_info *info, bool loop) { struct intel_context *child; u32 action[13 + (MAX_ENGINE_INSTANCE * 2)]; int len = 0; u32 next_id; GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE); action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC; action[len++] = info->flags; action[len++] = info->context_idx; action[len++] = info->engine_class; action[len++] = info->engine_submit_mask; action[len++] = info->wq_desc_lo; action[len++] = info->wq_desc_hi; action[len++] = info->wq_base_lo; action[len++] = info->wq_base_hi; action[len++] = info->wq_size; action[len++] = ce->parallel.number_children + 1; action[len++] = info->hwlrca_lo; action[len++] = info->hwlrca_hi; next_id = info->context_idx + 1; for_each_child(ce, child) { GEM_BUG_ON(next_id++ != child->guc_id.id); /* * NB: GuC interface supports 64 bit LRCA even though i915/HW * only supports 32 bit currently. */ action[len++] = lower_32_bits(child->lrc.lrca); action[len++] = upper_32_bits(child->lrc.lrca); } GEM_BUG_ON(len > ARRAY_SIZE(action)); return guc_submission_send_busy_loop(guc, action, len, 0, loop); } static int __guc_action_register_context_v69(struct intel_guc *guc, u32 guc_id, u32 offset, bool loop) { u32 action[] = { INTEL_GUC_ACTION_REGISTER_CONTEXT, guc_id, offset, }; return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, loop); } static int __guc_action_register_context_v70(struct intel_guc *guc, struct guc_ctxt_registration_info *info, bool loop) { u32 action[] = { INTEL_GUC_ACTION_REGISTER_CONTEXT, info->flags, info->context_idx, info->engine_class, info->engine_submit_mask, info->wq_desc_lo, info->wq_desc_hi, info->wq_base_lo, info->wq_base_hi, info->wq_size, info->hwlrca_lo, info->hwlrca_hi, }; return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, loop); } static void prepare_context_registration_info_v69(struct intel_context *ce); static void prepare_context_registration_info_v70(struct intel_context *ce, struct guc_ctxt_registration_info *info); static int register_context_v69(struct intel_guc *guc, struct intel_context *ce, bool loop) { u32 offset = intel_guc_ggtt_offset(guc, guc->lrc_desc_pool_v69) + ce->guc_id.id * sizeof(struct guc_lrc_desc_v69); prepare_context_registration_info_v69(ce); if (intel_context_is_parent(ce)) return __guc_action_register_multi_lrc_v69(guc, ce, ce->guc_id.id, offset, loop); else return __guc_action_register_context_v69(guc, ce->guc_id.id, offset, loop); } static int register_context_v70(struct intel_guc *guc, struct intel_context *ce, bool loop) { struct guc_ctxt_registration_info info; prepare_context_registration_info_v70(ce, &info); if (intel_context_is_parent(ce)) return __guc_action_register_multi_lrc_v70(guc, ce, &info, loop); else return __guc_action_register_context_v70(guc, &info, loop); } static int register_context(struct intel_context *ce, bool loop) { struct intel_guc *guc = ce_to_guc(ce); int ret; GEM_BUG_ON(intel_context_is_child(ce)); trace_intel_context_register(ce); if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) ret = register_context_v70(guc, ce, loop); else ret = register_context_v69(guc, ce, loop); if (likely(!ret)) { unsigned long flags; spin_lock_irqsave(&ce->guc_state.lock, flags); set_context_registered(ce); spin_unlock_irqrestore(&ce->guc_state.lock, flags); if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) guc_context_policy_init_v70(ce, loop); } return ret; } static int __guc_action_deregister_context(struct intel_guc *guc, u32 guc_id) { u32 action[] = { INTEL_GUC_ACTION_DEREGISTER_CONTEXT, guc_id, }; return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), G2H_LEN_DW_DEREGISTER_CONTEXT, true); } static int deregister_context(struct intel_context *ce, u32 guc_id) { struct intel_guc *guc = ce_to_guc(ce); GEM_BUG_ON(intel_context_is_child(ce)); trace_intel_context_deregister(ce); return __guc_action_deregister_context(guc, guc_id); } static inline void clear_children_join_go_memory(struct intel_context *ce) { struct parent_scratch *ps = __get_parent_scratch(ce); int i; ps->go.semaphore = 0; for (i = 0; i < ce->parallel.number_children + 1; ++i) ps->join[i].semaphore = 0; } static inline u32 get_children_go_value(struct intel_context *ce) { return __get_parent_scratch(ce)->go.semaphore; } static inline u32 get_children_join_value(struct intel_context *ce, u8 child_index) { return __get_parent_scratch(ce)->join[child_index].semaphore; } struct context_policy { u32 count; struct guc_update_context_policy h2g; }; static u32 __guc_context_policy_action_size(struct context_policy *policy) { size_t bytes = sizeof(policy->h2g.header) + (sizeof(policy->h2g.klv[0]) * policy->count); return bytes / sizeof(u32); } static void __guc_context_policy_start_klv(struct context_policy *policy, u16 guc_id) { policy->h2g.header.action = INTEL_GUC_ACTION_HOST2GUC_UPDATE_CONTEXT_POLICIES; policy->h2g.header.ctx_id = guc_id; policy->count = 0; } #define MAKE_CONTEXT_POLICY_ADD(func, id) \ static void __guc_context_policy_add_##func(struct context_policy *policy, u32 data) \ { \ GEM_BUG_ON(policy->count >= GUC_CONTEXT_POLICIES_KLV_NUM_IDS); \ policy->h2g.klv[policy->count].kl = \ FIELD_PREP(GUC_KLV_0_KEY, GUC_CONTEXT_POLICIES_KLV_ID_##id) | \ FIELD_PREP(GUC_KLV_0_LEN, 1); \ policy->h2g.klv[policy->count].value = data; \ policy->count++; \ } MAKE_CONTEXT_POLICY_ADD(execution_quantum, EXECUTION_QUANTUM) MAKE_CONTEXT_POLICY_ADD(preemption_timeout, PREEMPTION_TIMEOUT) MAKE_CONTEXT_POLICY_ADD(priority, SCHEDULING_PRIORITY) MAKE_CONTEXT_POLICY_ADD(preempt_to_idle, PREEMPT_TO_IDLE_ON_QUANTUM_EXPIRY) #undef MAKE_CONTEXT_POLICY_ADD static int __guc_context_set_context_policies(struct intel_guc *guc, struct context_policy *policy, bool loop) { return guc_submission_send_busy_loop(guc, (u32 *)&policy->h2g, __guc_context_policy_action_size(policy), 0, loop); } static int guc_context_policy_init_v70(struct intel_context *ce, bool loop) { struct intel_engine_cs *engine = ce->engine; struct intel_guc *guc = &engine->gt->uc.guc; struct context_policy policy; u32 execution_quantum; u32 preemption_timeout; unsigned long flags; int ret; /* NB: For both of these, zero means disabled. */ GEM_BUG_ON(overflows_type(engine->props.timeslice_duration_ms * 1000, execution_quantum)); GEM_BUG_ON(overflows_type(engine->props.preempt_timeout_ms * 1000, preemption_timeout)); execution_quantum = engine->props.timeslice_duration_ms * 1000; preemption_timeout = engine->props.preempt_timeout_ms * 1000; __guc_context_policy_start_klv(&policy, ce->guc_id.id); __guc_context_policy_add_priority(&policy, ce->guc_state.prio); __guc_context_policy_add_execution_quantum(&policy, execution_quantum); __guc_context_policy_add_preemption_timeout(&policy, preemption_timeout); if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION) __guc_context_policy_add_preempt_to_idle(&policy, 1); ret = __guc_context_set_context_policies(guc, &policy, loop); spin_lock_irqsave(&ce->guc_state.lock, flags); if (ret != 0) set_context_policy_required(ce); else clr_context_policy_required(ce); spin_unlock_irqrestore(&ce->guc_state.lock, flags); return ret; } static void guc_context_policy_init_v69(struct intel_engine_cs *engine, struct guc_lrc_desc_v69 *desc) { desc->policy_flags = 0; if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION) desc->policy_flags |= CONTEXT_POLICY_FLAG_PREEMPT_TO_IDLE_V69; /* NB: For both of these, zero means disabled. */ GEM_BUG_ON(overflows_type(engine->props.timeslice_duration_ms * 1000, desc->execution_quantum)); GEM_BUG_ON(overflows_type(engine->props.preempt_timeout_ms * 1000, desc->preemption_timeout)); desc->execution_quantum = engine->props.timeslice_duration_ms * 1000; desc->preemption_timeout = engine->props.preempt_timeout_ms * 1000; } static u32 map_guc_prio_to_lrc_desc_prio(u8 prio) { /* * this matches the mapping we do in map_i915_prio_to_guc_prio() * (e.g. prio < I915_PRIORITY_NORMAL maps to GUC_CLIENT_PRIORITY_NORMAL) */ switch (prio) { default: MISSING_CASE(prio); fallthrough; case GUC_CLIENT_PRIORITY_KMD_NORMAL: return GEN12_CTX_PRIORITY_NORMAL; case GUC_CLIENT_PRIORITY_NORMAL: return GEN12_CTX_PRIORITY_LOW; case GUC_CLIENT_PRIORITY_HIGH: case GUC_CLIENT_PRIORITY_KMD_HIGH: return GEN12_CTX_PRIORITY_HIGH; } } static void prepare_context_registration_info_v69(struct intel_context *ce) { struct intel_engine_cs *engine = ce->engine; struct intel_guc *guc = &engine->gt->uc.guc; u32 ctx_id = ce->guc_id.id; struct guc_lrc_desc_v69 *desc; struct intel_context *child; GEM_BUG_ON(!engine->mask); /* * Ensure LRC + CT vmas are is same region as write barrier is done * based on CT vma region. */ GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) != i915_gem_object_is_lmem(ce->ring->vma->obj)); desc = __get_lrc_desc_v69(guc, ctx_id); GEM_BUG_ON(!desc); desc->engine_class = engine_class_to_guc_class(engine->class); desc->engine_submit_mask = engine->logical_mask; desc->hw_context_desc = ce->lrc.lrca; desc->priority = ce->guc_state.prio; desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD; guc_context_policy_init_v69(engine, desc); /* * If context is a parent, we need to register a process descriptor * describing a work queue and register all child contexts. */ if (intel_context_is_parent(ce)) { struct guc_process_desc_v69 *pdesc; ce->parallel.guc.wqi_tail = 0; ce->parallel.guc.wqi_head = 0; desc->process_desc = i915_ggtt_offset(ce->state) + __get_parent_scratch_offset(ce); desc->wq_addr = i915_ggtt_offset(ce->state) + __get_wq_offset(ce); desc->wq_size = WQ_SIZE; pdesc = __get_process_desc_v69(ce); memset(pdesc, 0, sizeof(*(pdesc))); pdesc->stage_id = ce->guc_id.id; pdesc->wq_base_addr = desc->wq_addr; pdesc->wq_size_bytes = desc->wq_size; pdesc->wq_status = WQ_STATUS_ACTIVE; ce->parallel.guc.wq_head = &pdesc->head; ce->parallel.guc.wq_tail = &pdesc->tail; ce->parallel.guc.wq_status = &pdesc->wq_status; for_each_child(ce, child) { desc = __get_lrc_desc_v69(guc, child->guc_id.id); desc->engine_class = engine_class_to_guc_class(engine->class); desc->hw_context_desc = child->lrc.lrca; desc->priority = ce->guc_state.prio; desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD; guc_context_policy_init_v69(engine, desc); } clear_children_join_go_memory(ce); } } static void prepare_context_registration_info_v70(struct intel_context *ce, struct guc_ctxt_registration_info *info) { struct intel_engine_cs *engine = ce->engine; struct intel_guc *guc = &engine->gt->uc.guc; u32 ctx_id = ce->guc_id.id; GEM_BUG_ON(!engine->mask); /* * Ensure LRC + CT vmas are is same region as write barrier is done * based on CT vma region. */ GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) != i915_gem_object_is_lmem(ce->ring->vma->obj)); memset(info, 0, sizeof(*info)); info->context_idx = ctx_id; info->engine_class = engine_class_to_guc_class(engine->class); info->engine_submit_mask = engine->logical_mask; /* * NB: GuC interface supports 64 bit LRCA even though i915/HW * only supports 32 bit currently. */ info->hwlrca_lo = lower_32_bits(ce->lrc.lrca); info->hwlrca_hi = upper_32_bits(ce->lrc.lrca); if (engine->flags & I915_ENGINE_HAS_EU_PRIORITY) info->hwlrca_lo |= map_guc_prio_to_lrc_desc_prio(ce->guc_state.prio); info->flags = CONTEXT_REGISTRATION_FLAG_KMD; /* * If context is a parent, we need to register a process descriptor * describing a work queue and register all child contexts. */ if (intel_context_is_parent(ce)) { struct guc_sched_wq_desc *wq_desc; u64 wq_desc_offset, wq_base_offset; ce->parallel.guc.wqi_tail = 0; ce->parallel.guc.wqi_head = 0; wq_desc_offset = i915_ggtt_offset(ce->state) + __get_parent_scratch_offset(ce); wq_base_offset = i915_ggtt_offset(ce->state) + __get_wq_offset(ce); info->wq_desc_lo = lower_32_bits(wq_desc_offset); info->wq_desc_hi = upper_32_bits(wq_desc_offset); info->wq_base_lo = lower_32_bits(wq_base_offset); info->wq_base_hi = upper_32_bits(wq_base_offset); info->wq_size = WQ_SIZE; wq_desc = __get_wq_desc_v70(ce); memset(wq_desc, 0, sizeof(*wq_desc)); wq_desc->wq_status = WQ_STATUS_ACTIVE; ce->parallel.guc.wq_head = &wq_desc->head; ce->parallel.guc.wq_tail = &wq_desc->tail; ce->parallel.guc.wq_status = &wq_desc->wq_status; clear_children_join_go_memory(ce); } } static int try_context_registration(struct intel_context *ce, bool loop) { struct intel_engine_cs *engine = ce->engine; struct intel_runtime_pm *runtime_pm = engine->uncore->rpm; struct intel_guc *guc = &engine->gt->uc.guc; intel_wakeref_t wakeref; u32 ctx_id = ce->guc_id.id; bool context_registered; int ret = 0; GEM_BUG_ON(!sched_state_is_init(ce)); context_registered = ctx_id_mapped(guc, ctx_id); clr_ctx_id_mapping(guc, ctx_id); set_ctx_id_mapping(guc, ctx_id, ce); /* * The context_lookup xarray is used to determine if the hardware * context is currently registered. There are two cases in which it * could be registered either the guc_id has been stolen from another * context or the lrc descriptor address of this context has changed. In * either case the context needs to be deregistered with the GuC before * registering this context. */ if (context_registered) { bool disabled; unsigned long flags; trace_intel_context_steal_guc_id(ce); GEM_BUG_ON(!loop); /* Seal race with Reset */ spin_lock_irqsave(&ce->guc_state.lock, flags); disabled = submission_disabled(guc); if (likely(!disabled)) { set_context_wait_for_deregister_to_register(ce); intel_context_get(ce); } spin_unlock_irqrestore(&ce->guc_state.lock, flags); if (unlikely(disabled)) { clr_ctx_id_mapping(guc, ctx_id); return 0; /* Will get registered later */ } /* * If stealing the guc_id, this ce has the same guc_id as the * context whose guc_id was stolen. */ with_intel_runtime_pm(runtime_pm, wakeref) ret = deregister_context(ce, ce->guc_id.id); if (unlikely(ret == -ENODEV)) ret = 0; /* Will get registered later */ } else { with_intel_runtime_pm(runtime_pm, wakeref) ret = register_context(ce, loop); if (unlikely(ret == -EBUSY)) { clr_ctx_id_mapping(guc, ctx_id); } else if (unlikely(ret == -ENODEV)) { clr_ctx_id_mapping(guc, ctx_id); ret = 0; /* Will get registered later */ } } return ret; } static int __guc_context_pre_pin(struct intel_context *ce, struct intel_engine_cs *engine, struct i915_gem_ww_ctx *ww, void **vaddr) { return lrc_pre_pin(ce, engine, ww, vaddr); } static int __guc_context_pin(struct intel_context *ce, struct intel_engine_cs *engine, void *vaddr) { if (i915_ggtt_offset(ce->state) != (ce->lrc.lrca & CTX_GTT_ADDRESS_MASK)) set_bit(CONTEXT_LRCA_DIRTY, &ce->flags); /* * GuC context gets pinned in guc_request_alloc. See that function for * explaination of why. */ return lrc_pin(ce, engine, vaddr); } static int guc_context_pre_pin(struct intel_context *ce, struct i915_gem_ww_ctx *ww, void **vaddr) { return __guc_context_pre_pin(ce, ce->engine, ww, vaddr); } static int guc_context_pin(struct intel_context *ce, void *vaddr) { int ret = __guc_context_pin(ce, ce->engine, vaddr); if (likely(!ret && !intel_context_is_barrier(ce))) intel_engine_pm_get(ce->engine); return ret; } static void guc_context_unpin(struct intel_context *ce) { struct intel_guc *guc = ce_to_guc(ce); __guc_context_update_stats(ce); unpin_guc_id(guc, ce); lrc_unpin(ce); if (likely(!intel_context_is_barrier(ce))) intel_engine_pm_put_async(ce->engine); } static void guc_context_post_unpin(struct intel_context *ce) { lrc_post_unpin(ce); } static void __guc_context_sched_enable(struct intel_guc *guc, struct intel_context *ce) { u32 action[] = { INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET, ce->guc_id.id, GUC_CONTEXT_ENABLE }; trace_intel_context_sched_enable(ce); guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true); } static void __guc_context_sched_disable(struct intel_guc *guc, struct intel_context *ce, u16 guc_id) { u32 action[] = { INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET, guc_id, /* ce->guc_id.id not stable */ GUC_CONTEXT_DISABLE }; GEM_BUG_ON(guc_id == GUC_INVALID_CONTEXT_ID); GEM_BUG_ON(intel_context_is_child(ce)); trace_intel_context_sched_disable(ce); guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true); } static void guc_blocked_fence_complete(struct intel_context *ce) { lockdep_assert_held(&ce->guc_state.lock); if (!i915_sw_fence_done(&ce->guc_state.blocked)) i915_sw_fence_complete(&ce->guc_state.blocked); } static void guc_blocked_fence_reinit(struct intel_context *ce) { lockdep_assert_held(&ce->guc_state.lock); GEM_BUG_ON(!i915_sw_fence_done(&ce->guc_state.blocked)); /* * This fence is always complete unless a pending schedule disable is * outstanding. We arm the fence here and complete it when we receive * the pending schedule disable complete message. */ i915_sw_fence_fini(&ce->guc_state.blocked); i915_sw_fence_reinit(&ce->guc_state.blocked); i915_sw_fence_await(&ce->guc_state.blocked); i915_sw_fence_commit(&ce->guc_state.blocked); } static u16 prep_context_pending_disable(struct intel_context *ce) { lockdep_assert_held(&ce->guc_state.lock); set_context_pending_disable(ce); clr_context_enabled(ce); guc_blocked_fence_reinit(ce); intel_context_get(ce); return ce->guc_id.id; } static struct i915_sw_fence *guc_context_block(struct intel_context *ce) { struct intel_guc *guc = ce_to_guc(ce); unsigned long flags; struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm; intel_wakeref_t wakeref; u16 guc_id; bool enabled; GEM_BUG_ON(intel_context_is_child(ce)); spin_lock_irqsave(&ce->guc_state.lock, flags); incr_context_blocked(ce); enabled = context_enabled(ce); if (unlikely(!enabled || submission_disabled(guc))) { if (enabled) clr_context_enabled(ce); spin_unlock_irqrestore(&ce->guc_state.lock, flags); return &ce->guc_state.blocked; } /* * We add +2 here as the schedule disable complete CTB handler calls * intel_context_sched_disable_unpin (-2 to pin_count). */ atomic_add(2, &ce->pin_count); guc_id = prep_context_pending_disable(ce); spin_unlock_irqrestore(&ce->guc_state.lock, flags); with_intel_runtime_pm(runtime_pm, wakeref) __guc_context_sched_disable(guc, ce, guc_id); return &ce->guc_state.blocked; } #define SCHED_STATE_MULTI_BLOCKED_MASK \ (SCHED_STATE_BLOCKED_MASK & ~SCHED_STATE_BLOCKED) #define SCHED_STATE_NO_UNBLOCK \ (SCHED_STATE_MULTI_BLOCKED_MASK | \ SCHED_STATE_PENDING_DISABLE | \ SCHED_STATE_BANNED) static bool context_cant_unblock(struct intel_context *ce) { lockdep_assert_held(&ce->guc_state.lock); return (ce->guc_state.sched_state & SCHED_STATE_NO_UNBLOCK) || context_guc_id_invalid(ce) || !ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id) || !intel_context_is_pinned(ce); } static void guc_context_unblock(struct intel_context *ce) { struct intel_guc *guc = ce_to_guc(ce); unsigned long flags; struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm; intel_wakeref_t wakeref; bool enable; GEM_BUG_ON(context_enabled(ce)); GEM_BUG_ON(intel_context_is_child(ce)); spin_lock_irqsave(&ce->guc_state.lock, flags); if (unlikely(submission_disabled(guc) || context_cant_unblock(ce))) { enable = false; } else { enable = true; set_context_pending_enable(ce); set_context_enabled(ce); intel_context_get(ce); } decr_context_blocked(ce); spin_unlock_irqrestore(&ce->guc_state.lock, flags); if (enable) { with_intel_runtime_pm(runtime_pm, wakeref) __guc_context_sched_enable(guc, ce); } } static void guc_context_cancel_request(struct intel_context *ce, struct i915_request *rq) { struct intel_context *block_context = request_to_scheduling_context(rq); if (i915_sw_fence_signaled(&rq->submit)) { struct i915_sw_fence *fence; intel_context_get(ce); fence = guc_context_block(block_context); i915_sw_fence_wait(fence); if (!i915_request_completed(rq)) { __i915_request_skip(rq); guc_reset_state(ce, intel_ring_wrap(ce->ring, rq->head), true); } guc_context_unblock(block_context); intel_context_put(ce); } } static void __guc_context_set_preemption_timeout(struct intel_guc *guc, u16 guc_id, u32 preemption_timeout) { if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) { struct context_policy policy; __guc_context_policy_start_klv(&policy, guc_id); __guc_context_policy_add_preemption_timeout(&policy, preemption_timeout); __guc_context_set_context_policies(guc, &policy, true); } else { u32 action[] = { INTEL_GUC_ACTION_V69_SET_CONTEXT_PREEMPTION_TIMEOUT, guc_id, preemption_timeout }; intel_guc_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true); } } static void guc_context_revoke(struct intel_context *ce, struct i915_request *rq, unsigned int preempt_timeout_ms) { struct intel_guc *guc = ce_to_guc(ce); struct intel_runtime_pm *runtime_pm = &ce->engine->gt->i915->runtime_pm; intel_wakeref_t wakeref; unsigned long flags; GEM_BUG_ON(intel_context_is_child(ce)); guc_flush_submissions(guc); spin_lock_irqsave(&ce->guc_state.lock, flags); set_context_banned(ce); if (submission_disabled(guc) || (!context_enabled(ce) && !context_pending_disable(ce))) { spin_unlock_irqrestore(&ce->guc_state.lock, flags); guc_cancel_context_requests(ce); intel_engine_signal_breadcrumbs(ce->engine); } else if (!context_pending_disable(ce)) { u16 guc_id; /* * We add +2 here as the schedule disable complete CTB handler * calls intel_context_sched_disable_unpin (-2 to pin_count). */ atomic_add(2, &ce->pin_count); guc_id = prep_context_pending_disable(ce); spin_unlock_irqrestore(&ce->guc_state.lock, flags); /* * In addition to disabling scheduling, set the preemption * timeout to the minimum value (1 us) so the banned context * gets kicked off the HW ASAP. */ with_intel_runtime_pm(runtime_pm, wakeref) { __guc_context_set_preemption_timeout(guc, guc_id, preempt_timeout_ms); __guc_context_sched_disable(guc, ce, guc_id); } } else { if (!context_guc_id_invalid(ce)) with_intel_runtime_pm(runtime_pm, wakeref) __guc_context_set_preemption_timeout(guc, ce->guc_id.id, preempt_timeout_ms); spin_unlock_irqrestore(&ce->guc_state.lock, flags); } } static void do_sched_disable(struct intel_guc *guc, struct intel_context *ce, unsigned long flags) __releases(ce->guc_state.lock) { struct intel_runtime_pm *runtime_pm = &ce->engine->gt->i915->runtime_pm; intel_wakeref_t wakeref; u16 guc_id; lockdep_assert_held(&ce->guc_state.lock); guc_id = prep_context_pending_disable(ce); spin_unlock_irqrestore(&ce->guc_state.lock, flags); with_intel_runtime_pm(runtime_pm, wakeref) __guc_context_sched_disable(guc, ce, guc_id); } static bool bypass_sched_disable(struct intel_guc *guc, struct intel_context *ce) { lockdep_assert_held(&ce->guc_state.lock); GEM_BUG_ON(intel_context_is_child(ce)); if (submission_disabled(guc) || context_guc_id_invalid(ce) || !ctx_id_mapped(guc, ce->guc_id.id)) { clr_context_enabled(ce); return true; } return !context_enabled(ce); } static void __delay_sched_disable(struct work_struct *wrk) { struct intel_context *ce = container_of(wrk, typeof(*ce), guc_state.sched_disable_delay_work.work); struct intel_guc *guc = ce_to_guc(ce); unsigned long flags; spin_lock_irqsave(&ce->guc_state.lock, flags); if (bypass_sched_disable(guc, ce)) { spin_unlock_irqrestore(&ce->guc_state.lock, flags); intel_context_sched_disable_unpin(ce); } else { do_sched_disable(guc, ce, flags); } } static bool guc_id_pressure(struct intel_guc *guc, struct intel_context *ce) { /* * parent contexts are perma-pinned, if we are unpinning do schedule * disable immediately. */ if (intel_context_is_parent(ce)) return true; /* * If we are beyond the threshold for avail guc_ids, do schedule disable immediately. */ return guc->submission_state.guc_ids_in_use > guc->submission_state.sched_disable_gucid_threshold; } static void guc_context_sched_disable(struct intel_context *ce) { struct intel_guc *guc = ce_to_guc(ce); u64 delay = guc->submission_state.sched_disable_delay_ms; unsigned long flags; spin_lock_irqsave(&ce->guc_state.lock, flags); if (bypass_sched_disable(guc, ce)) { spin_unlock_irqrestore(&ce->guc_state.lock, flags); intel_context_sched_disable_unpin(ce); } else if (!intel_context_is_closed(ce) && !guc_id_pressure(guc, ce) && delay) { spin_unlock_irqrestore(&ce->guc_state.lock, flags); mod_delayed_work(system_unbound_wq, &ce->guc_state.sched_disable_delay_work, msecs_to_jiffies(delay)); } else { do_sched_disable(guc, ce, flags); } } static void guc_context_close(struct intel_context *ce) { unsigned long flags; if (test_bit(CONTEXT_GUC_INIT, &ce->flags) && cancel_delayed_work(&ce->guc_state.sched_disable_delay_work)) __delay_sched_disable(&ce->guc_state.sched_disable_delay_work.work); spin_lock_irqsave(&ce->guc_state.lock, flags); set_context_close_done(ce); spin_unlock_irqrestore(&ce->guc_state.lock, flags); } static inline int guc_lrc_desc_unpin(struct intel_context *ce) { struct intel_guc *guc = ce_to_guc(ce); struct intel_gt *gt = guc_to_gt(guc); unsigned long flags; bool disabled; int ret; GEM_BUG_ON(!intel_gt_pm_is_awake(gt)); GEM_BUG_ON(!ctx_id_mapped(guc, ce->guc_id.id)); GEM_BUG_ON(ce != __get_context(guc, ce->guc_id.id)); GEM_BUG_ON(context_enabled(ce)); /* Seal race with Reset */ spin_lock_irqsave(&ce->guc_state.lock, flags); disabled = submission_disabled(guc); if (likely(!disabled)) { /* * Take a gt-pm ref and change context state to be destroyed. * NOTE: a G2H IRQ that comes after will put this gt-pm ref back */ __intel_gt_pm_get(gt); set_context_destroyed(ce); clr_context_registered(ce); } spin_unlock_irqrestore(&ce->guc_state.lock, flags); if (unlikely(disabled)) { release_guc_id(guc, ce); __guc_context_destroy(ce); return 0; } /* * GuC is active, lets destroy this context, but at this point we can still be racing * with suspend, so we undo everything if the H2G fails in deregister_context so * that GuC reset will find this context during clean up. */ ret = deregister_context(ce, ce->guc_id.id); if (ret) { spin_lock(&ce->guc_state.lock); set_context_registered(ce); clr_context_destroyed(ce); spin_unlock(&ce->guc_state.lock); /* * As gt-pm is awake at function entry, intel_wakeref_put_async merely decrements * the wakeref immediately but per function spec usage call this after unlock. */ intel_wakeref_put_async(>->wakeref); } return ret; } static void __guc_context_destroy(struct intel_context *ce) { GEM_BUG_ON(ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_HIGH] || ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_HIGH] || ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_NORMAL] || ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_NORMAL]); lrc_fini(ce); intel_context_fini(ce); if (intel_engine_is_virtual(ce->engine)) { struct guc_virtual_engine *ve = container_of(ce, typeof(*ve), context); if (ve->base.breadcrumbs) intel_breadcrumbs_put(ve->base.breadcrumbs); kfree(ve); } else { intel_context_free(ce); } } static void guc_flush_destroyed_contexts(struct intel_guc *guc) { struct intel_context *ce; unsigned long flags; GEM_BUG_ON(!submission_disabled(guc) && guc_submission_initialized(guc)); while (!list_empty(&guc->submission_state.destroyed_contexts)) { spin_lock_irqsave(&guc->submission_state.lock, flags); ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts, struct intel_context, destroyed_link); if (ce) list_del_init(&ce->destroyed_link); spin_unlock_irqrestore(&guc->submission_state.lock, flags); if (!ce) break; release_guc_id(guc, ce); __guc_context_destroy(ce); } } static void deregister_destroyed_contexts(struct intel_guc *guc) { struct intel_context *ce; unsigned long flags; while (!list_empty(&guc->submission_state.destroyed_contexts)) { spin_lock_irqsave(&guc->submission_state.lock, flags); ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts, struct intel_context, destroyed_link); if (ce) list_del_init(&ce->destroyed_link); spin_unlock_irqrestore(&guc->submission_state.lock, flags); if (!ce) break; if (guc_lrc_desc_unpin(ce)) { /* * This means GuC's CT link severed mid-way which could happen * in suspend-resume corner cases. In this case, put the * context back into the destroyed_contexts list which will * get picked up on the next context deregistration event or * purged in a GuC sanitization event (reset/unload/wedged/...). */ spin_lock_irqsave(&guc->submission_state.lock, flags); list_add_tail(&ce->destroyed_link, &guc->submission_state.destroyed_contexts); spin_unlock_irqrestore(&guc->submission_state.lock, flags); /* Bail now since the list might never be emptied if h2gs fail */ break; } } } static void destroyed_worker_func(struct work_struct *w) { struct intel_guc *guc = container_of(w, struct intel_guc, submission_state.destroyed_worker); struct intel_gt *gt = guc_to_gt(guc); intel_wakeref_t wakeref; /* * In rare cases we can get here via async context-free fence-signals that * come very late in suspend flow or very early in resume flows. In these * cases, GuC won't be ready but just skipping it here is fine as these * pending-destroy-contexts get destroyed totally at GuC reset time at the * end of suspend.. OR.. this worker can be picked up later on the next * context destruction trigger after resume-completes */ if (!intel_guc_is_ready(guc)) return; with_intel_gt_pm(gt, wakeref) deregister_destroyed_contexts(guc); } static void guc_context_destroy(struct kref *kref) { struct intel_context *ce = container_of(kref, typeof(*ce), ref); struct intel_guc *guc = ce_to_guc(ce); unsigned long flags; bool destroy; /* * If the guc_id is invalid this context has been stolen and we can free * it immediately. Also can be freed immediately if the context is not * registered with the GuC or the GuC is in the middle of a reset. */ spin_lock_irqsave(&guc->submission_state.lock, flags); destroy = submission_disabled(guc) || context_guc_id_invalid(ce) || !ctx_id_mapped(guc, ce->guc_id.id); if (likely(!destroy)) { if (!list_empty(&ce->guc_id.link)) list_del_init(&ce->guc_id.link); list_add_tail(&ce->destroyed_link, &guc->submission_state.destroyed_contexts); } else { __release_guc_id(guc, ce); } spin_unlock_irqrestore(&guc->submission_state.lock, flags); if (unlikely(destroy)) { __guc_context_destroy(ce); return; } /* * We use a worker to issue the H2G to deregister the context as we can * take the GT PM for the first time which isn't allowed from an atomic * context. */ queue_work(system_unbound_wq, &guc->submission_state.destroyed_worker); } static int guc_context_alloc(struct intel_context *ce) { return lrc_alloc(ce, ce->engine); } static void __guc_context_set_prio(struct intel_guc *guc, struct intel_context *ce) { if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) { struct context_policy policy; __guc_context_policy_start_klv(&policy, ce->guc_id.id); __guc_context_policy_add_priority(&policy, ce->guc_state.prio); __guc_context_set_context_policies(guc, &policy, true); } else { u32 action[] = { INTEL_GUC_ACTION_V69_SET_CONTEXT_PRIORITY, ce->guc_id.id, ce->guc_state.prio, }; guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true); } } static void guc_context_set_prio(struct intel_guc *guc, struct intel_context *ce, u8 prio) { GEM_BUG_ON(prio < GUC_CLIENT_PRIORITY_KMD_HIGH || prio > GUC_CLIENT_PRIORITY_NORMAL); lockdep_assert_held(&ce->guc_state.lock); if (ce->guc_state.prio == prio || submission_disabled(guc) || !context_registered(ce)) { ce->guc_state.prio = prio; return; } ce->guc_state.prio = prio; __guc_context_set_prio(guc, ce); trace_intel_context_set_prio(ce); } static inline u8 map_i915_prio_to_guc_prio(int prio) { if (prio == I915_PRIORITY_NORMAL) return GUC_CLIENT_PRIORITY_KMD_NORMAL; else if (prio < I915_PRIORITY_NORMAL) return GUC_CLIENT_PRIORITY_NORMAL; else if (prio < I915_PRIORITY_DISPLAY) return GUC_CLIENT_PRIORITY_HIGH; else return GUC_CLIENT_PRIORITY_KMD_HIGH; } static inline void add_context_inflight_prio(struct intel_context *ce, u8 guc_prio) { lockdep_assert_held(&ce->guc_state.lock); GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count)); ++ce->guc_state.prio_count[guc_prio]; /* Overflow protection */ GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]); } static inline void sub_context_inflight_prio(struct intel_context *ce, u8 guc_prio) { lockdep_assert_held(&ce->guc_state.lock); GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count)); /* Underflow protection */ GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]); --ce->guc_state.prio_count[guc_prio]; } static inline void update_context_prio(struct intel_context *ce) { struct intel_guc *guc = &ce->engine->gt->uc.guc; int i; BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH != 0); BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH > GUC_CLIENT_PRIORITY_NORMAL); lockdep_assert_held(&ce->guc_state.lock); for (i = 0; i < ARRAY_SIZE(ce->guc_state.prio_count); ++i) { if (ce->guc_state.prio_count[i]) { guc_context_set_prio(guc, ce, i); break; } } } static inline bool new_guc_prio_higher(u8 old_guc_prio, u8 new_guc_prio) { /* Lower value is higher priority */ return new_guc_prio < old_guc_prio; } static void add_to_context(struct i915_request *rq) { struct intel_context *ce = request_to_scheduling_context(rq); u8 new_guc_prio = map_i915_prio_to_guc_prio(rq_prio(rq)); GEM_BUG_ON(intel_context_is_child(ce)); GEM_BUG_ON(rq->guc_prio == GUC_PRIO_FINI); spin_lock(&ce->guc_state.lock); list_move_tail(&rq->sched.link, &ce->guc_state.requests); if (rq->guc_prio == GUC_PRIO_INIT) { rq->guc_prio = new_guc_prio; add_context_inflight_prio(ce, rq->guc_prio); } else if (new_guc_prio_higher(rq->guc_prio, new_guc_prio)) { sub_context_inflight_prio(ce, rq->guc_prio); rq->guc_prio = new_guc_prio; add_context_inflight_prio(ce, rq->guc_prio); } update_context_prio(ce); spin_unlock(&ce->guc_state.lock); } static void guc_prio_fini(struct i915_request *rq, struct intel_context *ce) { lockdep_assert_held(&ce->guc_state.lock); if (rq->guc_prio != GUC_PRIO_INIT && rq->guc_prio != GUC_PRIO_FINI) { sub_context_inflight_prio(ce, rq->guc_prio); update_context_prio(ce); } rq->guc_prio = GUC_PRIO_FINI; } static void remove_from_context(struct i915_request *rq) { struct intel_context *ce = request_to_scheduling_context(rq); GEM_BUG_ON(intel_context_is_child(ce)); spin_lock_irq(&ce->guc_state.lock); list_del_init(&rq->sched.link); clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); /* Prevent further __await_execution() registering a cb, then flush */ set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags); guc_prio_fini(rq, ce); spin_unlock_irq(&ce->guc_state.lock); atomic_dec(&ce->guc_id.ref); i915_request_notify_execute_cb_imm(rq); } static const struct intel_context_ops guc_context_ops = { .flags = COPS_RUNTIME_CYCLES, .alloc = guc_context_alloc, .close = guc_context_close, .pre_pin = guc_context_pre_pin, .pin = guc_context_pin, .unpin = guc_context_unpin, .post_unpin = guc_context_post_unpin, .revoke = guc_context_revoke, .cancel_request = guc_context_cancel_request, .enter = intel_context_enter_engine, .exit = intel_context_exit_engine, .sched_disable = guc_context_sched_disable, .update_stats = guc_context_update_stats, .reset = lrc_reset, .destroy = guc_context_destroy, .create_virtual = guc_create_virtual, .create_parallel = guc_create_parallel, }; static void submit_work_cb(struct irq_work *wrk) { struct i915_request *rq = container_of(wrk, typeof(*rq), submit_work); might_lock(&rq->engine->sched_engine->lock); i915_sw_fence_complete(&rq->submit); } static void __guc_signal_context_fence(struct intel_context *ce) { struct i915_request *rq, *rn; lockdep_assert_held(&ce->guc_state.lock); if (!list_empty(&ce->guc_state.fences)) trace_intel_context_fence_release(ce); /* * Use an IRQ to ensure locking order of sched_engine->lock -> * ce->guc_state.lock is preserved. */ list_for_each_entry_safe(rq, rn, &ce->guc_state.fences, guc_fence_link) { list_del(&rq->guc_fence_link); irq_work_queue(&rq->submit_work); } INIT_LIST_HEAD(&ce->guc_state.fences); } static void guc_signal_context_fence(struct intel_context *ce) { unsigned long flags; GEM_BUG_ON(intel_context_is_child(ce)); spin_lock_irqsave(&ce->guc_state.lock, flags); clr_context_wait_for_deregister_to_register(ce); __guc_signal_context_fence(ce); spin_unlock_irqrestore(&ce->guc_state.lock, flags); } static bool context_needs_register(struct intel_context *ce, bool new_guc_id) { return (new_guc_id || test_bit(CONTEXT_LRCA_DIRTY, &ce->flags) || !ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id)) && !submission_disabled(ce_to_guc(ce)); } static void guc_context_init(struct intel_context *ce) { const struct i915_gem_context *ctx; int prio = I915_CONTEXT_DEFAULT_PRIORITY; rcu_read_lock(); ctx = rcu_dereference(ce->gem_context); if (ctx) prio = ctx->sched.priority; rcu_read_unlock(); ce->guc_state.prio = map_i915_prio_to_guc_prio(prio); INIT_DELAYED_WORK(&ce->guc_state.sched_disable_delay_work, __delay_sched_disable); set_bit(CONTEXT_GUC_INIT, &ce->flags); } static int guc_request_alloc(struct i915_request *rq) { struct intel_context *ce = request_to_scheduling_context(rq); struct intel_guc *guc = ce_to_guc(ce); unsigned long flags; int ret; GEM_BUG_ON(!intel_context_is_pinned(rq->context)); /* * Flush enough space to reduce the likelihood of waiting after * we start building the request - in which case we will just * have to repeat work. */ rq->reserved_space += GUC_REQUEST_SIZE; /* * Note that after this point, we have committed to using * this request as it is being used to both track the * state of engine initialisation and liveness of the * golden renderstate above. Think twice before you try * to cancel/unwind this request now. */ /* Unconditionally invalidate GPU caches and TLBs. */ ret = rq->engine->emit_flush(rq, EMIT_INVALIDATE); if (ret) return ret; rq->reserved_space -= GUC_REQUEST_SIZE; if (unlikely(!test_bit(CONTEXT_GUC_INIT, &ce->flags))) guc_context_init(ce); /* * If the context gets closed while the execbuf is ongoing, the context * close code will race with the below code to cancel the delayed work. * If the context close wins the race and cancels the work, it will * immediately call the sched disable (see guc_context_close), so there * is a chance we can get past this check while the sched_disable code * is being executed. To make sure that code completes before we check * the status further down, we wait for the close process to complete. * Else, this code path could send a request down thinking that the * context is still in a schedule-enable mode while the GuC ends up * dropping the request completely because the disable did go from the * context_close path right to GuC just prior. In the event the CT is * full, we could potentially need to wait up to 1.5 seconds. */ if (cancel_delayed_work_sync(&ce->guc_state.sched_disable_delay_work)) intel_context_sched_disable_unpin(ce); else if (intel_context_is_closed(ce)) if (wait_for(context_close_done(ce), 1500)) guc_warn(guc, "timed out waiting on context sched close before realloc\n"); /* * Call pin_guc_id here rather than in the pinning step as with * dma_resv, contexts can be repeatedly pinned / unpinned trashing the * guc_id and creating horrible race conditions. This is especially bad * when guc_id are being stolen due to over subscription. By the time * this function is reached, it is guaranteed that the guc_id will be * persistent until the generated request is retired. Thus, sealing these * race conditions. It is still safe to fail here if guc_id are * exhausted and return -EAGAIN to the user indicating that they can try * again in the future. * * There is no need for a lock here as the timeline mutex ensures at * most one context can be executing this code path at once. The * guc_id_ref is incremented once for every request in flight and * decremented on each retire. When it is zero, a lock around the * increment (in pin_guc_id) is needed to seal a race with unpin_guc_id. */ if (atomic_add_unless(&ce->guc_id.ref, 1, 0)) goto out; ret = pin_guc_id(guc, ce); /* returns 1 if new guc_id assigned */ if (unlikely(ret < 0)) return ret; if (context_needs_register(ce, !!ret)) { ret = try_context_registration(ce, true); if (unlikely(ret)) { /* unwind */ if (ret == -EPIPE) { disable_submission(guc); goto out; /* GPU will be reset */ } atomic_dec(&ce->guc_id.ref); unpin_guc_id(guc, ce); return ret; } } clear_bit(CONTEXT_LRCA_DIRTY, &ce->flags); out: /* * We block all requests on this context if a G2H is pending for a * schedule disable or context deregistration as the GuC will fail a * schedule enable or context registration if either G2H is pending * respectfully. Once a G2H returns, the fence is released that is * blocking these requests (see guc_signal_context_fence). */ spin_lock_irqsave(&ce->guc_state.lock, flags); if (context_wait_for_deregister_to_register(ce) || context_pending_disable(ce)) { init_irq_work(&rq->submit_work, submit_work_cb); i915_sw_fence_await(&rq->submit); list_add_tail(&rq->guc_fence_link, &ce->guc_state.fences); } spin_unlock_irqrestore(&ce->guc_state.lock, flags); return 0; } static int guc_virtual_context_pre_pin(struct intel_context *ce, struct i915_gem_ww_ctx *ww, void **vaddr) { struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); return __guc_context_pre_pin(ce, engine, ww, vaddr); } static int guc_virtual_context_pin(struct intel_context *ce, void *vaddr) { struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); int ret = __guc_context_pin(ce, engine, vaddr); intel_engine_mask_t tmp, mask = ce->engine->mask; if (likely(!ret)) for_each_engine_masked(engine, ce->engine->gt, mask, tmp) intel_engine_pm_get(engine); return ret; } static void guc_virtual_context_unpin(struct intel_context *ce) { intel_engine_mask_t tmp, mask = ce->engine->mask; struct intel_engine_cs *engine; struct intel_guc *guc = ce_to_guc(ce); GEM_BUG_ON(context_enabled(ce)); GEM_BUG_ON(intel_context_is_barrier(ce)); unpin_guc_id(guc, ce); lrc_unpin(ce); for_each_engine_masked(engine, ce->engine->gt, mask, tmp) intel_engine_pm_put_async(engine); } static void guc_virtual_context_enter(struct intel_context *ce) { intel_engine_mask_t tmp, mask = ce->engine->mask; struct intel_engine_cs *engine; for_each_engine_masked(engine, ce->engine->gt, mask, tmp) intel_engine_pm_get(engine); intel_timeline_enter(ce->timeline); } static void guc_virtual_context_exit(struct intel_context *ce) { intel_engine_mask_t tmp, mask = ce->engine->mask; struct intel_engine_cs *engine; for_each_engine_masked(engine, ce->engine->gt, mask, tmp) intel_engine_pm_put(engine); intel_timeline_exit(ce->timeline); } static int guc_virtual_context_alloc(struct intel_context *ce) { struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); return lrc_alloc(ce, engine); } static const struct intel_context_ops virtual_guc_context_ops = { .flags = COPS_RUNTIME_CYCLES, .alloc = guc_virtual_context_alloc, .close = guc_context_close, .pre_pin = guc_virtual_context_pre_pin, .pin = guc_virtual_context_pin, .unpin = guc_virtual_context_unpin, .post_unpin = guc_context_post_unpin, .revoke = guc_context_revoke, .cancel_request = guc_context_cancel_request, .enter = guc_virtual_context_enter, .exit = guc_virtual_context_exit, .sched_disable = guc_context_sched_disable, .update_stats = guc_context_update_stats, .destroy = guc_context_destroy, .get_sibling = guc_virtual_get_sibling, }; static int guc_parent_context_pin(struct intel_context *ce, void *vaddr) { struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); struct intel_guc *guc = ce_to_guc(ce); int ret; GEM_BUG_ON(!intel_context_is_parent(ce)); GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); ret = pin_guc_id(guc, ce); if (unlikely(ret < 0)) return ret; return __guc_context_pin(ce, engine, vaddr); } static int guc_child_context_pin(struct intel_context *ce, void *vaddr) { struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); GEM_BUG_ON(!intel_context_is_child(ce)); GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); __intel_context_pin(ce->parallel.parent); return __guc_context_pin(ce, engine, vaddr); } static void guc_parent_context_unpin(struct intel_context *ce) { struct intel_guc *guc = ce_to_guc(ce); GEM_BUG_ON(context_enabled(ce)); GEM_BUG_ON(intel_context_is_barrier(ce)); GEM_BUG_ON(!intel_context_is_parent(ce)); GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); unpin_guc_id(guc, ce); lrc_unpin(ce); } static void guc_child_context_unpin(struct intel_context *ce) { GEM_BUG_ON(context_enabled(ce)); GEM_BUG_ON(intel_context_is_barrier(ce)); GEM_BUG_ON(!intel_context_is_child(ce)); GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); lrc_unpin(ce); } static void guc_child_context_post_unpin(struct intel_context *ce) { GEM_BUG_ON(!intel_context_is_child(ce)); GEM_BUG_ON(!intel_context_is_pinned(ce->parallel.parent)); GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); lrc_post_unpin(ce); intel_context_unpin(ce->parallel.parent); } static void guc_child_context_destroy(struct kref *kref) { struct intel_context *ce = container_of(kref, typeof(*ce), ref); __guc_context_destroy(ce); } static const struct intel_context_ops virtual_parent_context_ops = { .alloc = guc_virtual_context_alloc, .close = guc_context_close, .pre_pin = guc_context_pre_pin, .pin = guc_parent_context_pin, .unpin = guc_parent_context_unpin, .post_unpin = guc_context_post_unpin, .revoke = guc_context_revoke, .cancel_request = guc_context_cancel_request, .enter = guc_virtual_context_enter, .exit = guc_virtual_context_exit, .sched_disable = guc_context_sched_disable, .destroy = guc_context_destroy, .get_sibling = guc_virtual_get_sibling, }; static const struct intel_context_ops virtual_child_context_ops = { .alloc = guc_virtual_context_alloc, .pre_pin = guc_context_pre_pin, .pin = guc_child_context_pin, .unpin = guc_child_context_unpin, .post_unpin = guc_child_context_post_unpin, .cancel_request = guc_context_cancel_request, .enter = guc_virtual_context_enter, .exit = guc_virtual_context_exit, .destroy = guc_child_context_destroy, .get_sibling = guc_virtual_get_sibling, }; /* * The below override of the breadcrumbs is enabled when the user configures a * context for parallel submission (multi-lrc, parent-child). * * The overridden breadcrumbs implements an algorithm which allows the GuC to * safely preempt all the hw contexts configured for parallel submission * between each BB. The contract between the i915 and GuC is if the parent * context can be preempted, all the children can be preempted, and the GuC will * always try to preempt the parent before the children. A handshake between the * parent / children breadcrumbs ensures the i915 holds up its end of the deal * creating a window to preempt between each set of BBs. */ static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq, u64 offset, u32 len, const unsigned int flags); static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq, u64 offset, u32 len, const unsigned int flags); static u32 * emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq, u32 *cs); static u32 * emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq, u32 *cs); static struct intel_context * guc_create_parallel(struct intel_engine_cs **engines, unsigned int num_siblings, unsigned int width) { struct intel_engine_cs **siblings = NULL; struct intel_context *parent = NULL, *ce, *err; int i, j; siblings = kmalloc_array(num_siblings, sizeof(*siblings), GFP_KERNEL); if (!siblings) return ERR_PTR(-ENOMEM); for (i = 0; i < width; ++i) { for (j = 0; j < num_siblings; ++j) siblings[j] = engines[i * num_siblings + j]; ce = intel_engine_create_virtual(siblings, num_siblings, FORCE_VIRTUAL); if (IS_ERR(ce)) { err = ERR_CAST(ce); goto unwind; } if (i == 0) { parent = ce; parent->ops = &virtual_parent_context_ops; } else { ce->ops = &virtual_child_context_ops; intel_context_bind_parent_child(parent, ce); } } parent->parallel.fence_context = dma_fence_context_alloc(1); parent->engine->emit_bb_start = emit_bb_start_parent_no_preempt_mid_batch; parent->engine->emit_fini_breadcrumb = emit_fini_breadcrumb_parent_no_preempt_mid_batch; parent->engine->emit_fini_breadcrumb_dw = 12 + 4 * parent->parallel.number_children; for_each_child(parent, ce) { ce->engine->emit_bb_start = emit_bb_start_child_no_preempt_mid_batch; ce->engine->emit_fini_breadcrumb = emit_fini_breadcrumb_child_no_preempt_mid_batch; ce->engine->emit_fini_breadcrumb_dw = 16; } kfree(siblings); return parent; unwind: if (parent) intel_context_put(parent); kfree(siblings); return err; } static bool guc_irq_enable_breadcrumbs(struct intel_breadcrumbs *b) { struct intel_engine_cs *sibling; intel_engine_mask_t tmp, mask = b->engine_mask; bool result = false; for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp) result |= intel_engine_irq_enable(sibling); return result; } static void guc_irq_disable_breadcrumbs(struct intel_breadcrumbs *b) { struct intel_engine_cs *sibling; intel_engine_mask_t tmp, mask = b->engine_mask; for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp) intel_engine_irq_disable(sibling); } static void guc_init_breadcrumbs(struct intel_engine_cs *engine) { int i; /* * In GuC submission mode we do not know which physical engine a request * will be scheduled on, this creates a problem because the breadcrumb * interrupt is per physical engine. To work around this we attach * requests and direct all breadcrumb interrupts to the first instance * of an engine per class. In addition all breadcrumb interrupts are * enabled / disabled across an engine class in unison. */ for (i = 0; i < MAX_ENGINE_INSTANCE; ++i) { struct intel_engine_cs *sibling = engine->gt->engine_class[engine->class][i]; if (sibling) { if (engine->breadcrumbs != sibling->breadcrumbs) { intel_breadcrumbs_put(engine->breadcrumbs); engine->breadcrumbs = intel_breadcrumbs_get(sibling->breadcrumbs); } break; } } if (engine->breadcrumbs) { engine->breadcrumbs->engine_mask |= engine->mask; engine->breadcrumbs->irq_enable = guc_irq_enable_breadcrumbs; engine->breadcrumbs->irq_disable = guc_irq_disable_breadcrumbs; } } static void guc_bump_inflight_request_prio(struct i915_request *rq, int prio) { struct intel_context *ce = request_to_scheduling_context(rq); u8 new_guc_prio = map_i915_prio_to_guc_prio(prio); /* Short circuit function */ if (prio < I915_PRIORITY_NORMAL || rq->guc_prio == GUC_PRIO_FINI || (rq->guc_prio != GUC_PRIO_INIT && !new_guc_prio_higher(rq->guc_prio, new_guc_prio))) return; spin_lock(&ce->guc_state.lock); if (rq->guc_prio != GUC_PRIO_FINI) { if (rq->guc_prio != GUC_PRIO_INIT) sub_context_inflight_prio(ce, rq->guc_prio); rq->guc_prio = new_guc_prio; add_context_inflight_prio(ce, rq->guc_prio); update_context_prio(ce); } spin_unlock(&ce->guc_state.lock); } static void guc_retire_inflight_request_prio(struct i915_request *rq) { struct intel_context *ce = request_to_scheduling_context(rq); spin_lock(&ce->guc_state.lock); guc_prio_fini(rq, ce); spin_unlock(&ce->guc_state.lock); } static void sanitize_hwsp(struct intel_engine_cs *engine) { struct intel_timeline *tl; list_for_each_entry(tl, &engine->status_page.timelines, engine_link) intel_timeline_reset_seqno(tl); } static void guc_sanitize(struct intel_engine_cs *engine) { /* * Poison residual state on resume, in case the suspend didn't! * * We have to assume that across suspend/resume (or other loss * of control) that the contents of our pinned buffers has been * lost, replaced by garbage. Since this doesn't always happen, * let's poison such state so that we more quickly spot when * we falsely assume it has been preserved. */ if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE); /* * The kernel_context HWSP is stored in the status_page. As above, * that may be lost on resume/initialisation, and so we need to * reset the value in the HWSP. */ sanitize_hwsp(engine); /* And scrub the dirty cachelines for the HWSP */ drm_clflush_virt_range(engine->status_page.addr, PAGE_SIZE); intel_engine_reset_pinned_contexts(engine); } static void setup_hwsp(struct intel_engine_cs *engine) { intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */ ENGINE_WRITE_FW(engine, RING_HWS_PGA, i915_ggtt_offset(engine->status_page.vma)); } static void start_engine(struct intel_engine_cs *engine) { ENGINE_WRITE_FW(engine, RING_MODE_GEN7, _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE)); ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING)); ENGINE_POSTING_READ(engine, RING_MI_MODE); } static int guc_resume(struct intel_engine_cs *engine) { assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL); intel_mocs_init_engine(engine); intel_breadcrumbs_reset(engine->breadcrumbs); setup_hwsp(engine); start_engine(engine); if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE) xehp_enable_ccs_engines(engine); return 0; } static bool guc_sched_engine_disabled(struct i915_sched_engine *sched_engine) { return !sched_engine->tasklet.callback; } static void guc_set_default_submission(struct intel_engine_cs *engine) { engine->submit_request = guc_submit_request; } static inline int guc_kernel_context_pin(struct intel_guc *guc, struct intel_context *ce) { int ret; /* * Note: we purposefully do not check the returns below because * the registration can only fail if a reset is just starting. * This is called at the end of reset so presumably another reset * isn't happening and even it did this code would be run again. */ if (context_guc_id_invalid(ce)) { ret = pin_guc_id(guc, ce); if (ret < 0) return ret; } if (!test_bit(CONTEXT_GUC_INIT, &ce->flags)) guc_context_init(ce); ret = try_context_registration(ce, true); if (ret) unpin_guc_id(guc, ce); return ret; } static inline int guc_init_submission(struct intel_guc *guc) { struct intel_gt *gt = guc_to_gt(guc); struct intel_engine_cs *engine; enum intel_engine_id id; /* make sure all descriptors are clean... */ xa_destroy(&guc->context_lookup); /* * A reset might have occurred while we had a pending stalled request, * so make sure we clean that up. */ guc->stalled_request = NULL; guc->submission_stall_reason = STALL_NONE; /* * Some contexts might have been pinned before we enabled GuC * submission, so we need to add them to the GuC bookeeping. * Also, after a reset the of the GuC we want to make sure that the * information shared with GuC is properly reset. The kernel LRCs are * not attached to the gem_context, so they need to be added separately. */ for_each_engine(engine, gt, id) { struct intel_context *ce; list_for_each_entry(ce, &engine->pinned_contexts_list, pinned_contexts_link) { int ret = guc_kernel_context_pin(guc, ce); if (ret) { /* No point in trying to clean up as i915 will wedge on failure */ return ret; } } } return 0; } static void guc_release(struct intel_engine_cs *engine) { engine->sanitize = NULL; /* no longer in control, nothing to sanitize */ intel_engine_cleanup_common(engine); lrc_fini_wa_ctx(engine); } static void virtual_guc_bump_serial(struct intel_engine_cs *engine) { struct intel_engine_cs *e; intel_engine_mask_t tmp, mask = engine->mask; for_each_engine_masked(e, engine->gt, mask, tmp) e->serial++; } static void guc_default_vfuncs(struct intel_engine_cs *engine) { /* Default vfuncs which can be overridden by each engine. */ engine->resume = guc_resume; engine->cops = &guc_context_ops; engine->request_alloc = guc_request_alloc; engine->add_active_request = add_to_context; engine->remove_active_request = remove_from_context; engine->sched_engine->schedule = i915_schedule; engine->reset.prepare = guc_engine_reset_prepare; engine->reset.rewind = guc_rewind_nop; engine->reset.cancel = guc_reset_nop; engine->reset.finish = guc_reset_nop; engine->emit_flush = gen8_emit_flush_xcs; engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb; engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs; if (GRAPHICS_VER(engine->i915) >= 12) { engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs; engine->emit_flush = gen12_emit_flush_xcs; } engine->set_default_submission = guc_set_default_submission; engine->busyness = guc_engine_busyness; engine->flags |= I915_ENGINE_SUPPORTS_STATS; engine->flags |= I915_ENGINE_HAS_PREEMPTION; engine->flags |= I915_ENGINE_HAS_TIMESLICES; /* Wa_14014475959:dg2 */ if (engine->class == COMPUTE_CLASS) if (IS_GFX_GT_IP_STEP(engine->gt, IP_VER(12, 70), STEP_A0, STEP_B0) || IS_DG2(engine->i915)) engine->flags |= I915_ENGINE_USES_WA_HOLD_CCS_SWITCHOUT; /* * TODO: GuC supports timeslicing and semaphores as well, but they're * handled by the firmware so some minor tweaks are required before * enabling. * * engine->flags |= I915_ENGINE_HAS_SEMAPHORES; */ engine->emit_bb_start = gen8_emit_bb_start; if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) engine->emit_bb_start = xehp_emit_bb_start; } static void rcs_submission_override(struct intel_engine_cs *engine) { switch (GRAPHICS_VER(engine->i915)) { case 12: engine->emit_flush = gen12_emit_flush_rcs; engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs; break; case 11: engine->emit_flush = gen11_emit_flush_rcs; engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs; break; default: engine->emit_flush = gen8_emit_flush_rcs; engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs; break; } } static inline void guc_default_irqs(struct intel_engine_cs *engine) { engine->irq_keep_mask = GT_RENDER_USER_INTERRUPT; intel_engine_set_irq_handler(engine, cs_irq_handler); } static void guc_sched_engine_destroy(struct kref *kref) { struct i915_sched_engine *sched_engine = container_of(kref, typeof(*sched_engine), ref); struct intel_guc *guc = sched_engine->private_data; guc->sched_engine = NULL; tasklet_kill(&sched_engine->tasklet); /* flush the callback */ kfree(sched_engine); } int intel_guc_submission_setup(struct intel_engine_cs *engine) { struct drm_i915_private *i915 = engine->i915; struct intel_guc *guc = &engine->gt->uc.guc; /* * The setup relies on several assumptions (e.g. irqs always enabled) * that are only valid on gen11+ */ GEM_BUG_ON(GRAPHICS_VER(i915) < 11); if (!guc->sched_engine) { guc->sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL); if (!guc->sched_engine) return -ENOMEM; guc->sched_engine->schedule = i915_schedule; guc->sched_engine->disabled = guc_sched_engine_disabled; guc->sched_engine->private_data = guc; guc->sched_engine->destroy = guc_sched_engine_destroy; guc->sched_engine->bump_inflight_request_prio = guc_bump_inflight_request_prio; guc->sched_engine->retire_inflight_request_prio = guc_retire_inflight_request_prio; tasklet_setup(&guc->sched_engine->tasklet, guc_submission_tasklet); } i915_sched_engine_put(engine->sched_engine); engine->sched_engine = i915_sched_engine_get(guc->sched_engine); guc_default_vfuncs(engine); guc_default_irqs(engine); guc_init_breadcrumbs(engine); if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE) rcs_submission_override(engine); lrc_init_wa_ctx(engine); /* Finally, take ownership and responsibility for cleanup! */ engine->sanitize = guc_sanitize; engine->release = guc_release; return 0; } struct scheduling_policy { /* internal data */ u32 max_words, num_words; u32 count; /* API data */ struct guc_update_scheduling_policy h2g; }; static u32 __guc_scheduling_policy_action_size(struct scheduling_policy *policy) { u32 *start = (void *)&policy->h2g; u32 *end = policy->h2g.data + policy->num_words; size_t delta = end - start; return delta; } static struct scheduling_policy *__guc_scheduling_policy_start_klv(struct scheduling_policy *policy) { policy->h2g.header.action = INTEL_GUC_ACTION_UPDATE_SCHEDULING_POLICIES_KLV; policy->max_words = ARRAY_SIZE(policy->h2g.data); policy->num_words = 0; policy->count = 0; return policy; } static void __guc_scheduling_policy_add_klv(struct scheduling_policy *policy, u32 action, u32 *data, u32 len) { u32 *klv_ptr = policy->h2g.data + policy->num_words; GEM_BUG_ON((policy->num_words + 1 + len) > policy->max_words); *(klv_ptr++) = FIELD_PREP(GUC_KLV_0_KEY, action) | FIELD_PREP(GUC_KLV_0_LEN, len); memcpy(klv_ptr, data, sizeof(u32) * len); policy->num_words += 1 + len; policy->count++; } static int __guc_action_set_scheduling_policies(struct intel_guc *guc, struct scheduling_policy *policy) { int ret; ret = intel_guc_send(guc, (u32 *)&policy->h2g, __guc_scheduling_policy_action_size(policy)); if (ret < 0) { guc_probe_error(guc, "Failed to configure global scheduling policies: %pe!\n", ERR_PTR(ret)); return ret; } if (ret != policy->count) { guc_warn(guc, "global scheduler policy processed %d of %d KLVs!", ret, policy->count); if (ret > policy->count) return -EPROTO; } return 0; } static int guc_init_global_schedule_policy(struct intel_guc *guc) { struct scheduling_policy policy; struct intel_gt *gt = guc_to_gt(guc); intel_wakeref_t wakeref; int ret; if (GUC_SUBMIT_VER(guc) < MAKE_GUC_VER(1, 1, 0)) return 0; __guc_scheduling_policy_start_klv(&policy); with_intel_runtime_pm(>->i915->runtime_pm, wakeref) { u32 yield[] = { GLOBAL_SCHEDULE_POLICY_RC_YIELD_DURATION, GLOBAL_SCHEDULE_POLICY_RC_YIELD_RATIO, }; __guc_scheduling_policy_add_klv(&policy, GUC_SCHEDULING_POLICIES_KLV_ID_RENDER_COMPUTE_YIELD, yield, ARRAY_SIZE(yield)); ret = __guc_action_set_scheduling_policies(guc, &policy); } return ret; } static void guc_route_semaphores(struct intel_guc *guc, bool to_guc) { struct intel_gt *gt = guc_to_gt(guc); u32 val; if (GRAPHICS_VER(gt->i915) < 12) return; if (to_guc) val = GUC_SEM_INTR_ROUTE_TO_GUC | GUC_SEM_INTR_ENABLE_ALL; else val = 0; intel_uncore_write(gt->uncore, GEN12_GUC_SEM_INTR_ENABLES, val); } int intel_guc_submission_enable(struct intel_guc *guc) { int ret; /* Semaphore interrupt enable and route to GuC */ guc_route_semaphores(guc, true); ret = guc_init_submission(guc); if (ret) goto fail_sem; ret = guc_init_engine_stats(guc); if (ret) goto fail_sem; ret = guc_init_global_schedule_policy(guc); if (ret) goto fail_stats; return 0; fail_stats: guc_fini_engine_stats(guc); fail_sem: guc_route_semaphores(guc, false); return ret; } /* Note: By the time we're here, GuC may have already been reset */ void intel_guc_submission_disable(struct intel_guc *guc) { guc_cancel_busyness_worker(guc); /* Semaphore interrupt disable and route to host */ guc_route_semaphores(guc, false); } static bool __guc_submission_supported(struct intel_guc *guc) { /* GuC submission is unavailable for pre-Gen11 */ return intel_guc_is_supported(guc) && GRAPHICS_VER(guc_to_i915(guc)) >= 11; } static bool __guc_submission_selected(struct intel_guc *guc) { struct drm_i915_private *i915 = guc_to_i915(guc); if (!intel_guc_submission_is_supported(guc)) return false; return i915->params.enable_guc & ENABLE_GUC_SUBMISSION; } int intel_guc_sched_disable_gucid_threshold_max(struct intel_guc *guc) { return guc->submission_state.num_guc_ids - NUMBER_MULTI_LRC_GUC_ID(guc); } /* * This default value of 33 milisecs (+1 milisec round up) ensures 30fps or higher * workloads are able to enjoy the latency reduction when delaying the schedule-disable * operation. This matches the 30fps game-render + encode (real world) workload this * knob was tested against. */ #define SCHED_DISABLE_DELAY_MS 34 /* * A threshold of 75% is a reasonable starting point considering that real world apps * generally don't get anywhere near this. */ #define NUM_SCHED_DISABLE_GUCIDS_DEFAULT_THRESHOLD(__guc) \ (((intel_guc_sched_disable_gucid_threshold_max(guc)) * 3) / 4) void intel_guc_submission_init_early(struct intel_guc *guc) { xa_init_flags(&guc->context_lookup, XA_FLAGS_LOCK_IRQ); spin_lock_init(&guc->submission_state.lock); INIT_LIST_HEAD(&guc->submission_state.guc_id_list); ida_init(&guc->submission_state.guc_ids); INIT_LIST_HEAD(&guc->submission_state.destroyed_contexts); INIT_WORK(&guc->submission_state.destroyed_worker, destroyed_worker_func); INIT_WORK(&guc->submission_state.reset_fail_worker, reset_fail_worker_func); spin_lock_init(&guc->timestamp.lock); INIT_DELAYED_WORK(&guc->timestamp.work, guc_timestamp_ping); guc->submission_state.sched_disable_delay_ms = SCHED_DISABLE_DELAY_MS; guc->submission_state.num_guc_ids = GUC_MAX_CONTEXT_ID; guc->submission_state.sched_disable_gucid_threshold = NUM_SCHED_DISABLE_GUCIDS_DEFAULT_THRESHOLD(guc); guc->submission_supported = __guc_submission_supported(guc); guc->submission_selected = __guc_submission_selected(guc); } static inline struct intel_context * g2h_context_lookup(struct intel_guc *guc, u32 ctx_id) { struct intel_context *ce; if (unlikely(ctx_id >= GUC_MAX_CONTEXT_ID)) { guc_err(guc, "Invalid ctx_id %u\n", ctx_id); return NULL; } ce = __get_context(guc, ctx_id); if (unlikely(!ce)) { guc_err(guc, "Context is NULL, ctx_id %u\n", ctx_id); return NULL; } if (unlikely(intel_context_is_child(ce))) { guc_err(guc, "Context is child, ctx_id %u\n", ctx_id); return NULL; } return ce; } static void wait_wake_outstanding_tlb_g2h(struct intel_guc *guc, u32 seqno) { struct intel_guc_tlb_wait *wait; unsigned long flags; xa_lock_irqsave(&guc->tlb_lookup, flags); wait = xa_load(&guc->tlb_lookup, seqno); if (wait) wake_up(&wait->wq); else guc_dbg(guc, "Stale TLB invalidation response with seqno %d\n", seqno); xa_unlock_irqrestore(&guc->tlb_lookup, flags); } int intel_guc_tlb_invalidation_done(struct intel_guc *guc, const u32 *payload, u32 len) { if (len < 1) return -EPROTO; wait_wake_outstanding_tlb_g2h(guc, payload[0]); return 0; } static long must_wait_woken(struct wait_queue_entry *wq_entry, long timeout) { /* * This is equivalent to wait_woken() with the exception that * we do not wake up early if the kthread task has been completed. * As we are called from page reclaim in any task context, * we may be invoked from stopped kthreads, but we *must* * complete the wait from the HW. */ do { set_current_state(TASK_UNINTERRUPTIBLE); if (wq_entry->flags & WQ_FLAG_WOKEN) break; timeout = schedule_timeout(timeout); } while (timeout); /* See wait_woken() and woken_wake_function() */ __set_current_state(TASK_RUNNING); smp_store_mb(wq_entry->flags, wq_entry->flags & ~WQ_FLAG_WOKEN); return timeout; } static bool intel_gt_is_enabled(const struct intel_gt *gt) { /* Check if GT is wedged or suspended */ if (intel_gt_is_wedged(gt) || !intel_irqs_enabled(gt->i915)) return false; return true; } static int guc_send_invalidate_tlb(struct intel_guc *guc, enum intel_guc_tlb_invalidation_type type) { struct intel_guc_tlb_wait _wq, *wq = &_wq; struct intel_gt *gt = guc_to_gt(guc); DEFINE_WAIT_FUNC(wait, woken_wake_function); int err; u32 seqno; u32 action[] = { INTEL_GUC_ACTION_TLB_INVALIDATION, 0, REG_FIELD_PREP(INTEL_GUC_TLB_INVAL_TYPE_MASK, type) | REG_FIELD_PREP(INTEL_GUC_TLB_INVAL_MODE_MASK, INTEL_GUC_TLB_INVAL_MODE_HEAVY) | INTEL_GUC_TLB_INVAL_FLUSH_CACHE, }; u32 size = ARRAY_SIZE(action); /* * Early guard against GT enablement. TLB invalidation should not be * attempted if the GT is disabled due to suspend/wedge. */ if (!intel_gt_is_enabled(gt)) return -EINVAL; init_waitqueue_head(&_wq.wq); if (xa_alloc_cyclic_irq(&guc->tlb_lookup, &seqno, wq, xa_limit_32b, &guc->next_seqno, GFP_ATOMIC | __GFP_NOWARN) < 0) { /* Under severe memory pressure? Serialise TLB allocations */ xa_lock_irq(&guc->tlb_lookup); wq = xa_load(&guc->tlb_lookup, guc->serial_slot); wait_event_lock_irq(wq->wq, !READ_ONCE(wq->busy), guc->tlb_lookup.xa_lock); /* * Update wq->busy under lock to ensure only one waiter can * issue the TLB invalidation command using the serial slot at a * time. The condition is set to true before releasing the lock * so that other caller continue to wait until woken up again. */ wq->busy = true; xa_unlock_irq(&guc->tlb_lookup); seqno = guc->serial_slot; } action[1] = seqno; add_wait_queue(&wq->wq, &wait); /* This is a critical reclaim path and thus we must loop here. */ err = intel_guc_send_busy_loop(guc, action, size, G2H_LEN_DW_INVALIDATE_TLB, true); if (err) goto out; /* * Late guard against GT enablement. It is not an error for the TLB * invalidation to time out if the GT is disabled during the process * due to suspend/wedge. In fact, the TLB invalidation is cancelled * in this case. */ if (!must_wait_woken(&wait, intel_guc_ct_max_queue_time_jiffies()) && intel_gt_is_enabled(gt)) { guc_err(guc, "TLB invalidation response timed out for seqno %u\n", seqno); err = -ETIME; } out: remove_wait_queue(&wq->wq, &wait); if (seqno != guc->serial_slot) xa_erase_irq(&guc->tlb_lookup, seqno); return err; } /* Send a H2G command to invalidate the TLBs at engine level and beyond. */ int intel_guc_invalidate_tlb_engines(struct intel_guc *guc) { return guc_send_invalidate_tlb(guc, INTEL_GUC_TLB_INVAL_ENGINES); } /* Send a H2G command to invalidate the GuC's internal TLB. */ int intel_guc_invalidate_tlb_guc(struct intel_guc *guc) { return guc_send_invalidate_tlb(guc, INTEL_GUC_TLB_INVAL_GUC); } int intel_guc_deregister_done_process_msg(struct intel_guc *guc, const u32 *msg, u32 len) { struct intel_context *ce; u32 ctx_id; if (unlikely(len < 1)) { guc_err(guc, "Invalid length %u\n", len); return -EPROTO; } ctx_id = msg[0]; ce = g2h_context_lookup(guc, ctx_id); if (unlikely(!ce)) return -EPROTO; trace_intel_context_deregister_done(ce); #ifdef CONFIG_DRM_I915_SELFTEST if (unlikely(ce->drop_deregister)) { ce->drop_deregister = false; return 0; } #endif if (context_wait_for_deregister_to_register(ce)) { struct intel_runtime_pm *runtime_pm = &ce->engine->gt->i915->runtime_pm; intel_wakeref_t wakeref; /* * Previous owner of this guc_id has been deregistered, now safe * register this context. */ with_intel_runtime_pm(runtime_pm, wakeref) register_context(ce, true); guc_signal_context_fence(ce); intel_context_put(ce); } else if (context_destroyed(ce)) { /* Context has been destroyed */ intel_gt_pm_put_async_untracked(guc_to_gt(guc)); release_guc_id(guc, ce); __guc_context_destroy(ce); } decr_outstanding_submission_g2h(guc); return 0; } int intel_guc_sched_done_process_msg(struct intel_guc *guc, const u32 *msg, u32 len) { struct intel_context *ce; unsigned long flags; u32 ctx_id; if (unlikely(len < 2)) { guc_err(guc, "Invalid length %u\n", len); return -EPROTO; } ctx_id = msg[0]; ce = g2h_context_lookup(guc, ctx_id); if (unlikely(!ce)) return -EPROTO; if (unlikely(context_destroyed(ce) || (!context_pending_enable(ce) && !context_pending_disable(ce)))) { guc_err(guc, "Bad context sched_state 0x%x, ctx_id %u\n", ce->guc_state.sched_state, ctx_id); return -EPROTO; } trace_intel_context_sched_done(ce); if (context_pending_enable(ce)) { #ifdef CONFIG_DRM_I915_SELFTEST if (unlikely(ce->drop_schedule_enable)) { ce->drop_schedule_enable = false; return 0; } #endif spin_lock_irqsave(&ce->guc_state.lock, flags); clr_context_pending_enable(ce); spin_unlock_irqrestore(&ce->guc_state.lock, flags); } else if (context_pending_disable(ce)) { bool banned; #ifdef CONFIG_DRM_I915_SELFTEST if (unlikely(ce->drop_schedule_disable)) { ce->drop_schedule_disable = false; return 0; } #endif /* * Unpin must be done before __guc_signal_context_fence, * otherwise a race exists between the requests getting * submitted + retired before this unpin completes resulting in * the pin_count going to zero and the context still being * enabled. */ intel_context_sched_disable_unpin(ce); spin_lock_irqsave(&ce->guc_state.lock, flags); banned = context_banned(ce); clr_context_banned(ce); clr_context_pending_disable(ce); __guc_signal_context_fence(ce); guc_blocked_fence_complete(ce); spin_unlock_irqrestore(&ce->guc_state.lock, flags); if (banned) { guc_cancel_context_requests(ce); intel_engine_signal_breadcrumbs(ce->engine); } } decr_outstanding_submission_g2h(guc); intel_context_put(ce); return 0; } static void capture_error_state(struct intel_guc *guc, struct intel_context *ce) { struct intel_gt *gt = guc_to_gt(guc); struct drm_i915_private *i915 = gt->i915; intel_wakeref_t wakeref; intel_engine_mask_t engine_mask; if (intel_engine_is_virtual(ce->engine)) { struct intel_engine_cs *e; intel_engine_mask_t tmp, virtual_mask = ce->engine->mask; engine_mask = 0; for_each_engine_masked(e, ce->engine->gt, virtual_mask, tmp) { bool match = intel_guc_capture_is_matching_engine(gt, ce, e); if (match) { intel_engine_set_hung_context(e, ce); engine_mask |= e->mask; i915_increase_reset_engine_count(&i915->gpu_error, e); } } if (!engine_mask) { guc_warn(guc, "No matching physical engine capture for virtual engine context 0x%04X / %s", ce->guc_id.id, ce->engine->name); engine_mask = ~0U; } } else { intel_engine_set_hung_context(ce->engine, ce); engine_mask = ce->engine->mask; i915_increase_reset_engine_count(&i915->gpu_error, ce->engine); } with_intel_runtime_pm(&i915->runtime_pm, wakeref) i915_capture_error_state(gt, engine_mask, CORE_DUMP_FLAG_IS_GUC_CAPTURE); } static void guc_context_replay(struct intel_context *ce) { struct i915_sched_engine *sched_engine = ce->engine->sched_engine; __guc_reset_context(ce, ce->engine->mask); tasklet_hi_schedule(&sched_engine->tasklet); } static void guc_handle_context_reset(struct intel_guc *guc, struct intel_context *ce) { bool capture = intel_context_is_schedulable(ce); trace_intel_context_reset(ce); guc_dbg(guc, "%s context reset notification: 0x%04X on %s, exiting = %s, banned = %s\n", capture ? "Got" : "Ignoring", ce->guc_id.id, ce->engine->name, str_yes_no(intel_context_is_exiting(ce)), str_yes_no(intel_context_is_banned(ce))); if (capture) { capture_error_state(guc, ce); guc_context_replay(ce); } } int intel_guc_context_reset_process_msg(struct intel_guc *guc, const u32 *msg, u32 len) { struct intel_context *ce; unsigned long flags; int ctx_id; if (unlikely(len != 1)) { guc_err(guc, "Invalid length %u", len); return -EPROTO; } ctx_id = msg[0]; /* * The context lookup uses the xarray but lookups only require an RCU lock * not the full spinlock. So take the lock explicitly and keep it until the * context has been reference count locked to ensure it can't be destroyed * asynchronously until the reset is done. */ xa_lock_irqsave(&guc->context_lookup, flags); ce = g2h_context_lookup(guc, ctx_id); if (ce) intel_context_get(ce); xa_unlock_irqrestore(&guc->context_lookup, flags); if (unlikely(!ce)) return -EPROTO; guc_handle_context_reset(guc, ce); intel_context_put(ce); return 0; } int intel_guc_error_capture_process_msg(struct intel_guc *guc, const u32 *msg, u32 len) { u32 status; if (unlikely(len != 1)) { guc_dbg(guc, "Invalid length %u", len); return -EPROTO; } status = msg[0] & INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_MASK; if (status == INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_NOSPACE) guc_warn(guc, "No space for error capture"); intel_guc_capture_process(guc); return 0; } struct intel_engine_cs * intel_guc_lookup_engine(struct intel_guc *guc, u8 guc_class, u8 instance) { struct intel_gt *gt = guc_to_gt(guc); u8 engine_class = guc_class_to_engine_class(guc_class); /* Class index is checked in class converter */ GEM_BUG_ON(instance > MAX_ENGINE_INSTANCE); return gt->engine_class[engine_class][instance]; } static void reset_fail_worker_func(struct work_struct *w) { struct intel_guc *guc = container_of(w, struct intel_guc, submission_state.reset_fail_worker); struct intel_gt *gt = guc_to_gt(guc); intel_engine_mask_t reset_fail_mask; unsigned long flags; spin_lock_irqsave(&guc->submission_state.lock, flags); reset_fail_mask = guc->submission_state.reset_fail_mask; guc->submission_state.reset_fail_mask = 0; spin_unlock_irqrestore(&guc->submission_state.lock, flags); if (likely(reset_fail_mask)) { struct intel_engine_cs *engine; enum intel_engine_id id; /* * GuC is toast at this point - it dead loops after sending the failed * reset notification. So need to manually determine the guilty context. * Note that it should be reliable to do this here because the GuC is * toast and will not be scheduling behind the KMD's back. */ for_each_engine_masked(engine, gt, reset_fail_mask, id) intel_guc_find_hung_context(engine); intel_gt_handle_error(gt, reset_fail_mask, I915_ERROR_CAPTURE, "GuC failed to reset engine mask=0x%x", reset_fail_mask); } } int intel_guc_engine_failure_process_msg(struct intel_guc *guc, const u32 *msg, u32 len) { struct intel_engine_cs *engine; u8 guc_class, instance; u32 reason; unsigned long flags; if (unlikely(len != 3)) { guc_err(guc, "Invalid length %u", len); return -EPROTO; } guc_class = msg[0]; instance = msg[1]; reason = msg[2]; engine = intel_guc_lookup_engine(guc, guc_class, instance); if (unlikely(!engine)) { guc_err(guc, "Invalid engine %d:%d", guc_class, instance); return -EPROTO; } /* * This is an unexpected failure of a hardware feature. So, log a real * error message not just the informational that comes with the reset. */ guc_err(guc, "Engine reset failed on %d:%d (%s) because 0x%08X", guc_class, instance, engine->name, reason); spin_lock_irqsave(&guc->submission_state.lock, flags); guc->submission_state.reset_fail_mask |= engine->mask; spin_unlock_irqrestore(&guc->submission_state.lock, flags); /* * A GT reset flushes this worker queue (G2H handler) so we must use * another worker to trigger a GT reset. */ queue_work(system_unbound_wq, &guc->submission_state.reset_fail_worker); return 0; } void intel_guc_find_hung_context(struct intel_engine_cs *engine) { struct intel_guc *guc = &engine->gt->uc.guc; struct intel_context *ce; struct i915_request *rq; unsigned long index; unsigned long flags; /* Reset called during driver load? GuC not yet initialised! */ if (unlikely(!guc_submission_initialized(guc))) return; xa_lock_irqsave(&guc->context_lookup, flags); xa_for_each(&guc->context_lookup, index, ce) { bool found; if (!kref_get_unless_zero(&ce->ref)) continue; xa_unlock(&guc->context_lookup); if (!intel_context_is_pinned(ce)) goto next; if (intel_engine_is_virtual(ce->engine)) { if (!(ce->engine->mask & engine->mask)) goto next; } else { if (ce->engine != engine) goto next; } found = false; spin_lock(&ce->guc_state.lock); list_for_each_entry(rq, &ce->guc_state.requests, sched.link) { if (i915_test_request_state(rq) != I915_REQUEST_ACTIVE) continue; found = true; break; } spin_unlock(&ce->guc_state.lock); if (found) { intel_engine_set_hung_context(engine, ce); /* Can only cope with one hang at a time... */ intel_context_put(ce); xa_lock(&guc->context_lookup); goto done; } next: intel_context_put(ce); xa_lock(&guc->context_lookup); } done: xa_unlock_irqrestore(&guc->context_lookup, flags); } void intel_guc_dump_active_requests(struct intel_engine_cs *engine, struct i915_request *hung_rq, struct drm_printer *m) { struct intel_guc *guc = &engine->gt->uc.guc; struct intel_context *ce; unsigned long index; unsigned long flags; /* Reset called during driver load? GuC not yet initialised! */ if (unlikely(!guc_submission_initialized(guc))) return; xa_lock_irqsave(&guc->context_lookup, flags); xa_for_each(&guc->context_lookup, index, ce) { if (!kref_get_unless_zero(&ce->ref)) continue; xa_unlock(&guc->context_lookup); if (!intel_context_is_pinned(ce)) goto next; if (intel_engine_is_virtual(ce->engine)) { if (!(ce->engine->mask & engine->mask)) goto next; } else { if (ce->engine != engine) goto next; } spin_lock(&ce->guc_state.lock); intel_engine_dump_active_requests(&ce->guc_state.requests, hung_rq, m); spin_unlock(&ce->guc_state.lock); next: intel_context_put(ce); xa_lock(&guc->context_lookup); } xa_unlock_irqrestore(&guc->context_lookup, flags); } void intel_guc_submission_print_info(struct intel_guc *guc, struct drm_printer *p) { struct i915_sched_engine *sched_engine = guc->sched_engine; struct rb_node *rb; unsigned long flags; if (!sched_engine) return; drm_printf(p, "GuC Submission API Version: %d.%d.%d\n", guc->submission_version.major, guc->submission_version.minor, guc->submission_version.patch); drm_printf(p, "GuC Number Outstanding Submission G2H: %u\n", atomic_read(&guc->outstanding_submission_g2h)); drm_printf(p, "GuC tasklet count: %u\n", atomic_read(&sched_engine->tasklet.count)); spin_lock_irqsave(&sched_engine->lock, flags); drm_printf(p, "Requests in GuC submit tasklet:\n"); for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) { struct i915_priolist *pl = to_priolist(rb); struct i915_request *rq; priolist_for_each_request(rq, pl) drm_printf(p, "guc_id=%u, seqno=%llu\n", rq->context->guc_id.id, rq->fence.seqno); } spin_unlock_irqrestore(&sched_engine->lock, flags); drm_printf(p, "\n"); } static inline void guc_log_context_priority(struct drm_printer *p, struct intel_context *ce) { int i; drm_printf(p, "\t\tPriority: %d\n", ce->guc_state.prio); drm_printf(p, "\t\tNumber Requests (lower index == higher priority)\n"); for (i = GUC_CLIENT_PRIORITY_KMD_HIGH; i < GUC_CLIENT_PRIORITY_NUM; ++i) { drm_printf(p, "\t\tNumber requests in priority band[%d]: %d\n", i, ce->guc_state.prio_count[i]); } drm_printf(p, "\n"); } static inline void guc_log_context(struct drm_printer *p, struct intel_context *ce) { drm_printf(p, "GuC lrc descriptor %u:\n", ce->guc_id.id); drm_printf(p, "\tHW Context Desc: 0x%08x\n", ce->lrc.lrca); drm_printf(p, "\t\tLRC Head: Internal %u, Memory %u\n", ce->ring->head, ce->lrc_reg_state[CTX_RING_HEAD]); drm_printf(p, "\t\tLRC Tail: Internal %u, Memory %u\n", ce->ring->tail, ce->lrc_reg_state[CTX_RING_TAIL]); drm_printf(p, "\t\tContext Pin Count: %u\n", atomic_read(&ce->pin_count)); drm_printf(p, "\t\tGuC ID Ref Count: %u\n", atomic_read(&ce->guc_id.ref)); drm_printf(p, "\t\tSchedule State: 0x%x\n", ce->guc_state.sched_state); } void intel_guc_submission_print_context_info(struct intel_guc *guc, struct drm_printer *p) { struct intel_context *ce; unsigned long index; unsigned long flags; xa_lock_irqsave(&guc->context_lookup, flags); xa_for_each(&guc->context_lookup, index, ce) { GEM_BUG_ON(intel_context_is_child(ce)); guc_log_context(p, ce); guc_log_context_priority(p, ce); if (intel_context_is_parent(ce)) { struct intel_context *child; drm_printf(p, "\t\tNumber children: %u\n", ce->parallel.number_children); if (ce->parallel.guc.wq_status) { drm_printf(p, "\t\tWQI Head: %u\n", READ_ONCE(*ce->parallel.guc.wq_head)); drm_printf(p, "\t\tWQI Tail: %u\n", READ_ONCE(*ce->parallel.guc.wq_tail)); drm_printf(p, "\t\tWQI Status: %u\n", READ_ONCE(*ce->parallel.guc.wq_status)); } if (ce->engine->emit_bb_start == emit_bb_start_parent_no_preempt_mid_batch) { u8 i; drm_printf(p, "\t\tChildren Go: %u\n", get_children_go_value(ce)); for (i = 0; i < ce->parallel.number_children; ++i) drm_printf(p, "\t\tChildren Join: %u\n", get_children_join_value(ce, i)); } for_each_child(ce, child) guc_log_context(p, child); } } xa_unlock_irqrestore(&guc->context_lookup, flags); } static inline u32 get_children_go_addr(struct intel_context *ce) { GEM_BUG_ON(!intel_context_is_parent(ce)); return i915_ggtt_offset(ce->state) + __get_parent_scratch_offset(ce) + offsetof(struct parent_scratch, go.semaphore); } static inline u32 get_children_join_addr(struct intel_context *ce, u8 child_index) { GEM_BUG_ON(!intel_context_is_parent(ce)); return i915_ggtt_offset(ce->state) + __get_parent_scratch_offset(ce) + offsetof(struct parent_scratch, join[child_index].semaphore); } #define PARENT_GO_BB 1 #define PARENT_GO_FINI_BREADCRUMB 0 #define CHILD_GO_BB 1 #define CHILD_GO_FINI_BREADCRUMB 0 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq, u64 offset, u32 len, const unsigned int flags) { struct intel_context *ce = rq->context; u32 *cs; u8 i; GEM_BUG_ON(!intel_context_is_parent(ce)); cs = intel_ring_begin(rq, 10 + 4 * ce->parallel.number_children); if (IS_ERR(cs)) return PTR_ERR(cs); /* Wait on children */ for (i = 0; i < ce->parallel.number_children; ++i) { *cs++ = (MI_SEMAPHORE_WAIT | MI_SEMAPHORE_GLOBAL_GTT | MI_SEMAPHORE_POLL | MI_SEMAPHORE_SAD_EQ_SDD); *cs++ = PARENT_GO_BB; *cs++ = get_children_join_addr(ce, i); *cs++ = 0; } /* Turn off preemption */ *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; *cs++ = MI_NOOP; /* Tell children go */ cs = gen8_emit_ggtt_write(cs, CHILD_GO_BB, get_children_go_addr(ce), 0); /* Jump to batch */ *cs++ = MI_BATCH_BUFFER_START_GEN8 | (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)); *cs++ = lower_32_bits(offset); *cs++ = upper_32_bits(offset); *cs++ = MI_NOOP; intel_ring_advance(rq, cs); return 0; } static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq, u64 offset, u32 len, const unsigned int flags) { struct intel_context *ce = rq->context; struct intel_context *parent = intel_context_to_parent(ce); u32 *cs; GEM_BUG_ON(!intel_context_is_child(ce)); cs = intel_ring_begin(rq, 12); if (IS_ERR(cs)) return PTR_ERR(cs); /* Signal parent */ cs = gen8_emit_ggtt_write(cs, PARENT_GO_BB, get_children_join_addr(parent, ce->parallel.child_index), 0); /* Wait on parent for go */ *cs++ = (MI_SEMAPHORE_WAIT | MI_SEMAPHORE_GLOBAL_GTT | MI_SEMAPHORE_POLL | MI_SEMAPHORE_SAD_EQ_SDD); *cs++ = CHILD_GO_BB; *cs++ = get_children_go_addr(parent); *cs++ = 0; /* Turn off preemption */ *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; /* Jump to batch */ *cs++ = MI_BATCH_BUFFER_START_GEN8 | (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)); *cs++ = lower_32_bits(offset); *cs++ = upper_32_bits(offset); intel_ring_advance(rq, cs); return 0; } static u32 * __emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq, u32 *cs) { struct intel_context *ce = rq->context; u8 i; GEM_BUG_ON(!intel_context_is_parent(ce)); /* Wait on children */ for (i = 0; i < ce->parallel.number_children; ++i) { *cs++ = (MI_SEMAPHORE_WAIT | MI_SEMAPHORE_GLOBAL_GTT | MI_SEMAPHORE_POLL | MI_SEMAPHORE_SAD_EQ_SDD); *cs++ = PARENT_GO_FINI_BREADCRUMB; *cs++ = get_children_join_addr(ce, i); *cs++ = 0; } /* Turn on preemption */ *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; *cs++ = MI_NOOP; /* Tell children go */ cs = gen8_emit_ggtt_write(cs, CHILD_GO_FINI_BREADCRUMB, get_children_go_addr(ce), 0); return cs; } /* * If this true, a submission of multi-lrc requests had an error and the * requests need to be skipped. The front end (execuf IOCTL) should've called * i915_request_skip which squashes the BB but we still need to emit the fini * breadrcrumbs seqno write. At this point we don't know how many of the * requests in the multi-lrc submission were generated so we can't do the * handshake between the parent and children (e.g. if 4 requests should be * generated but 2nd hit an error only 1 would be seen by the GuC backend). * Simply skip the handshake, but still emit the breadcrumbd seqno, if an error * has occurred on any of the requests in submission / relationship. */ static inline bool skip_handshake(struct i915_request *rq) { return test_bit(I915_FENCE_FLAG_SKIP_PARALLEL, &rq->fence.flags); } #define NON_SKIP_LEN 6 static u32 * emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq, u32 *cs) { struct intel_context *ce = rq->context; __maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs; __maybe_unused u32 *start_fini_breadcrumb_cs = cs; GEM_BUG_ON(!intel_context_is_parent(ce)); if (unlikely(skip_handshake(rq))) { /* * NOP everything in __emit_fini_breadcrumb_parent_no_preempt_mid_batch, * the NON_SKIP_LEN comes from the length of the emits below. */ memset(cs, 0, sizeof(u32) * (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN)); cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN; } else { cs = __emit_fini_breadcrumb_parent_no_preempt_mid_batch(rq, cs); } /* Emit fini breadcrumb */ before_fini_breadcrumb_user_interrupt_cs = cs; cs = gen8_emit_ggtt_write(cs, rq->fence.seqno, i915_request_active_timeline(rq)->hwsp_offset, 0); /* User interrupt */ *cs++ = MI_USER_INTERRUPT; *cs++ = MI_NOOP; /* Ensure our math for skip + emit is correct */ GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN != cs); GEM_BUG_ON(start_fini_breadcrumb_cs + ce->engine->emit_fini_breadcrumb_dw != cs); rq->tail = intel_ring_offset(rq, cs); return cs; } static u32 * __emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq, u32 *cs) { struct intel_context *ce = rq->context; struct intel_context *parent = intel_context_to_parent(ce); GEM_BUG_ON(!intel_context_is_child(ce)); /* Turn on preemption */ *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; *cs++ = MI_NOOP; /* Signal parent */ cs = gen8_emit_ggtt_write(cs, PARENT_GO_FINI_BREADCRUMB, get_children_join_addr(parent, ce->parallel.child_index), 0); /* Wait parent on for go */ *cs++ = (MI_SEMAPHORE_WAIT | MI_SEMAPHORE_GLOBAL_GTT | MI_SEMAPHORE_POLL | MI_SEMAPHORE_SAD_EQ_SDD); *cs++ = CHILD_GO_FINI_BREADCRUMB; *cs++ = get_children_go_addr(parent); *cs++ = 0; return cs; } static u32 * emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq, u32 *cs) { struct intel_context *ce = rq->context; __maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs; __maybe_unused u32 *start_fini_breadcrumb_cs = cs; GEM_BUG_ON(!intel_context_is_child(ce)); if (unlikely(skip_handshake(rq))) { /* * NOP everything in __emit_fini_breadcrumb_child_no_preempt_mid_batch, * the NON_SKIP_LEN comes from the length of the emits below. */ memset(cs, 0, sizeof(u32) * (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN)); cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN; } else { cs = __emit_fini_breadcrumb_child_no_preempt_mid_batch(rq, cs); } /* Emit fini breadcrumb */ before_fini_breadcrumb_user_interrupt_cs = cs; cs = gen8_emit_ggtt_write(cs, rq->fence.seqno, i915_request_active_timeline(rq)->hwsp_offset, 0); /* User interrupt */ *cs++ = MI_USER_INTERRUPT; *cs++ = MI_NOOP; /* Ensure our math for skip + emit is correct */ GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN != cs); GEM_BUG_ON(start_fini_breadcrumb_cs + ce->engine->emit_fini_breadcrumb_dw != cs); rq->tail = intel_ring_offset(rq, cs); return cs; } #undef NON_SKIP_LEN static struct intel_context * guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count, unsigned long flags) { struct guc_virtual_engine *ve; struct intel_guc *guc; unsigned int n; int err; ve = kzalloc(sizeof(*ve), GFP_KERNEL); if (!ve) return ERR_PTR(-ENOMEM); guc = &siblings[0]->gt->uc.guc; ve->base.i915 = siblings[0]->i915; ve->base.gt = siblings[0]->gt; ve->base.uncore = siblings[0]->uncore; ve->base.id = -1; ve->base.uabi_class = I915_ENGINE_CLASS_INVALID; ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL; ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL; ve->base.saturated = ALL_ENGINES; snprintf(ve->base.name, sizeof(ve->base.name), "virtual"); ve->base.sched_engine = i915_sched_engine_get(guc->sched_engine); ve->base.cops = &virtual_guc_context_ops; ve->base.request_alloc = guc_request_alloc; ve->base.bump_serial = virtual_guc_bump_serial; ve->base.submit_request = guc_submit_request; ve->base.flags = I915_ENGINE_IS_VIRTUAL; BUILD_BUG_ON(ilog2(VIRTUAL_ENGINES) < I915_NUM_ENGINES); ve->base.mask = VIRTUAL_ENGINES; intel_context_init(&ve->context, &ve->base); for (n = 0; n < count; n++) { struct intel_engine_cs *sibling = siblings[n]; GEM_BUG_ON(!is_power_of_2(sibling->mask)); if (sibling->mask & ve->base.mask) { guc_dbg(guc, "duplicate %s entry in load balancer\n", sibling->name); err = -EINVAL; goto err_put; } ve->base.mask |= sibling->mask; ve->base.logical_mask |= sibling->logical_mask; if (n != 0 && ve->base.class != sibling->class) { guc_dbg(guc, "invalid mixing of engine class, sibling %d, already %d\n", sibling->class, ve->base.class); err = -EINVAL; goto err_put; } else if (n == 0) { ve->base.class = sibling->class; ve->base.uabi_class = sibling->uabi_class; snprintf(ve->base.name, sizeof(ve->base.name), "v%dx%d", ve->base.class, count); ve->base.context_size = sibling->context_size; ve->base.add_active_request = sibling->add_active_request; ve->base.remove_active_request = sibling->remove_active_request; ve->base.emit_bb_start = sibling->emit_bb_start; ve->base.emit_flush = sibling->emit_flush; ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb; ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb; ve->base.emit_fini_breadcrumb_dw = sibling->emit_fini_breadcrumb_dw; ve->base.breadcrumbs = intel_breadcrumbs_get(sibling->breadcrumbs); ve->base.flags |= sibling->flags; ve->base.props.timeslice_duration_ms = sibling->props.timeslice_duration_ms; ve->base.props.preempt_timeout_ms = sibling->props.preempt_timeout_ms; } } return &ve->context; err_put: intel_context_put(&ve->context); return ERR_PTR(err); } bool intel_guc_virtual_engine_has_heartbeat(const struct intel_engine_cs *ve) { struct intel_engine_cs *engine; intel_engine_mask_t tmp, mask = ve->mask; for_each_engine_masked(engine, ve->gt, mask, tmp) if (READ_ONCE(engine->props.heartbeat_interval_ms)) return true; return false; } #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) #include "selftest_guc.c" #include "selftest_guc_multi_lrc.c" #include "selftest_guc_hangcheck.c" #endif