// SPDX-License-Identifier: MIT /* * Copyright © 2021 Intel Corporation */ #define NUM_STEPS 5 #define H2G_DELAY 50000 #define delay_for_h2g() usleep_range(H2G_DELAY, H2G_DELAY + 10000) #define FREQUENCY_REQ_UNIT DIV_ROUND_CLOSEST(GT_FREQUENCY_MULTIPLIER, \ GEN9_FREQ_SCALER) enum test_type { VARY_MIN, VARY_MAX, MAX_GRANTED, SLPC_POWER, TILE_INTERACTION, }; struct slpc_thread { struct kthread_worker *worker; struct kthread_work work; struct intel_gt *gt; int result; }; static int slpc_set_min_freq(struct intel_guc_slpc *slpc, u32 freq) { int ret; ret = intel_guc_slpc_set_min_freq(slpc, freq); if (ret) pr_err("Could not set min frequency to [%u]\n", freq); else /* Delay to ensure h2g completes */ delay_for_h2g(); return ret; } static int slpc_set_max_freq(struct intel_guc_slpc *slpc, u32 freq) { int ret; ret = intel_guc_slpc_set_max_freq(slpc, freq); if (ret) pr_err("Could not set maximum frequency [%u]\n", freq); else /* Delay to ensure h2g completes */ delay_for_h2g(); return ret; } static int slpc_set_freq(struct intel_gt *gt, u32 freq) { int err; struct intel_guc_slpc *slpc = >->uc.guc.slpc; err = slpc_set_max_freq(slpc, freq); if (err) { pr_err("Unable to update max freq"); return err; } err = slpc_set_min_freq(slpc, freq); if (err) { pr_err("Unable to update min freq"); return err; } return err; } static int slpc_restore_freq(struct intel_guc_slpc *slpc, u32 min, u32 max) { int err; err = slpc_set_max_freq(slpc, max); if (err) { pr_err("Unable to restore max freq"); return err; } err = slpc_set_min_freq(slpc, min); if (err) { pr_err("Unable to restore min freq"); return err; } err = intel_guc_slpc_set_ignore_eff_freq(slpc, false); if (err) { pr_err("Unable to restore efficient freq"); return err; } return 0; } static u64 measure_power_at_freq(struct intel_gt *gt, int *freq, u64 *power) { int err = 0; err = slpc_set_freq(gt, *freq); if (err) return err; *freq = intel_rps_read_actual_frequency(>->rps); *power = measure_power(>->rps, freq); return err; } static int vary_max_freq(struct intel_guc_slpc *slpc, struct intel_rps *rps, u32 *max_act_freq) { u32 step, max_freq, req_freq; u32 act_freq; int err = 0; /* Go from max to min in 5 steps */ step = (slpc->rp0_freq - slpc->min_freq) / NUM_STEPS; *max_act_freq = slpc->min_freq; for (max_freq = slpc->rp0_freq; max_freq > slpc->min_freq; max_freq -= step) { err = slpc_set_max_freq(slpc, max_freq); if (err) break; req_freq = intel_rps_read_punit_req_frequency(rps); /* GuC requests freq in multiples of 50/3 MHz */ if (req_freq > (max_freq + FREQUENCY_REQ_UNIT)) { pr_err("SWReq is %d, should be at most %d\n", req_freq, max_freq + FREQUENCY_REQ_UNIT); err = -EINVAL; } act_freq = intel_rps_read_actual_frequency(rps); if (act_freq > *max_act_freq) *max_act_freq = act_freq; if (err) break; } return err; } static int vary_min_freq(struct intel_guc_slpc *slpc, struct intel_rps *rps, u32 *max_act_freq) { u32 step, min_freq, req_freq; u32 act_freq; int err = 0; /* Go from min to max in 5 steps */ step = (slpc->rp0_freq - slpc->min_freq) / NUM_STEPS; *max_act_freq = slpc->min_freq; for (min_freq = slpc->min_freq; min_freq < slpc->rp0_freq; min_freq += step) { err = slpc_set_min_freq(slpc, min_freq); if (err) break; req_freq = intel_rps_read_punit_req_frequency(rps); /* GuC requests freq in multiples of 50/3 MHz */ if (req_freq < (min_freq - FREQUENCY_REQ_UNIT)) { pr_err("SWReq is %d, should be at least %d\n", req_freq, min_freq - FREQUENCY_REQ_UNIT); err = -EINVAL; } act_freq = intel_rps_read_actual_frequency(rps); if (act_freq > *max_act_freq) *max_act_freq = act_freq; if (err) break; } return err; } static int slpc_power(struct intel_gt *gt, struct intel_engine_cs *engine) { struct intel_guc_slpc *slpc = >->uc.guc.slpc; struct { u64 power; int freq; } min, max; int err = 0; /* * Our fundamental assumption is that running at lower frequency * actually saves power. Let's see if our RAPL measurement supports * that theory. */ if (!librapl_supported(gt->i915)) return 0; min.freq = slpc->min_freq; err = measure_power_at_freq(gt, &min.freq, &min.power); if (err) return err; max.freq = slpc->rp0_freq; err = measure_power_at_freq(gt, &max.freq, &max.power); if (err) return err; pr_info("%s: min:%llumW @ %uMHz, max:%llumW @ %uMHz\n", engine->name, min.power, min.freq, max.power, max.freq); if (10 * min.freq >= 9 * max.freq) { pr_notice("Could not control frequency, ran at [%uMHz, %uMhz]\n", min.freq, max.freq); } if (11 * min.power > 10 * max.power) { pr_err("%s: did not conserve power when setting lower frequency!\n", engine->name); err = -EINVAL; } /* Restore min/max frequencies */ slpc_set_max_freq(slpc, slpc->rp0_freq); slpc_set_min_freq(slpc, slpc->min_freq); return err; } static int max_granted_freq(struct intel_guc_slpc *slpc, struct intel_rps *rps, u32 *max_act_freq) { struct intel_gt *gt = rps_to_gt(rps); u32 perf_limit_reasons; int err = 0; err = slpc_set_min_freq(slpc, slpc->rp0_freq); if (err) return err; *max_act_freq = intel_rps_read_actual_frequency(rps); if (*max_act_freq != slpc->rp0_freq) { /* Check if there was some throttling by pcode */ perf_limit_reasons = intel_uncore_read(gt->uncore, intel_gt_perf_limit_reasons_reg(gt)); /* If not, this is an error */ if (!(perf_limit_reasons & GT0_PERF_LIMIT_REASONS_MASK)) { pr_err("Pcode did not grant max freq\n"); err = -EINVAL; } else { pr_info("Pcode throttled frequency 0x%x\n", perf_limit_reasons); } } return err; } static int run_test(struct intel_gt *gt, int test_type) { struct intel_guc_slpc *slpc = >->uc.guc.slpc; struct intel_rps *rps = >->rps; struct intel_engine_cs *engine; enum intel_engine_id id; intel_wakeref_t wakeref; struct igt_spinner spin; u32 slpc_min_freq, slpc_max_freq; int err = 0; if (!intel_uc_uses_guc_slpc(>->uc)) return 0; if (slpc->min_freq == slpc->rp0_freq) { pr_err("Min/Max are fused to the same value\n"); return -EINVAL; } if (igt_spinner_init(&spin, gt)) return -ENOMEM; if (intel_guc_slpc_get_max_freq(slpc, &slpc_max_freq)) { pr_err("Could not get SLPC max freq\n"); return -EIO; } if (intel_guc_slpc_get_min_freq(slpc, &slpc_min_freq)) { pr_err("Could not get SLPC min freq\n"); return -EIO; } /* * Set min frequency to RPn so that we can test the whole * range of RPn-RP0. */ err = slpc_set_min_freq(slpc, slpc->min_freq); if (err) { pr_err("Unable to update min freq!"); return err; } /* * Turn off efficient frequency so RPn/RP0 ranges are obeyed. */ err = intel_guc_slpc_set_ignore_eff_freq(slpc, true); if (err) { pr_err("Unable to turn off efficient freq!"); return err; } intel_gt_pm_wait_for_idle(gt); wakeref = intel_gt_pm_get(gt); for_each_engine(engine, gt, id) { struct i915_request *rq; u32 max_act_freq; if (!intel_engine_can_store_dword(engine)) continue; st_engine_heartbeat_disable(engine); rq = igt_spinner_create_request(&spin, engine->kernel_context, MI_NOOP); if (IS_ERR(rq)) { err = PTR_ERR(rq); st_engine_heartbeat_enable(engine); break; } i915_request_add(rq); if (!igt_wait_for_spinner(&spin, rq)) { pr_err("%s: Spinner did not start\n", engine->name); igt_spinner_end(&spin); st_engine_heartbeat_enable(engine); intel_gt_set_wedged(engine->gt); err = -EIO; break; } switch (test_type) { case VARY_MIN: err = vary_min_freq(slpc, rps, &max_act_freq); break; case VARY_MAX: err = vary_max_freq(slpc, rps, &max_act_freq); break; case MAX_GRANTED: case TILE_INTERACTION: /* Media engines have a different RP0 */ if (gt->type != GT_MEDIA && (engine->class == VIDEO_DECODE_CLASS || engine->class == VIDEO_ENHANCEMENT_CLASS)) { igt_spinner_end(&spin); st_engine_heartbeat_enable(engine); err = 0; continue; } err = max_granted_freq(slpc, rps, &max_act_freq); break; case SLPC_POWER: err = slpc_power(gt, engine); break; } if (test_type != SLPC_POWER) { pr_info("Max actual frequency for %s was %d\n", engine->name, max_act_freq); /* Actual frequency should rise above min */ if (max_act_freq <= slpc->min_freq) { pr_err("Actual freq did not rise above min\n"); pr_err("Perf Limit Reasons: 0x%x\n", intel_uncore_read(gt->uncore, intel_gt_perf_limit_reasons_reg(gt))); err = -EINVAL; } } igt_spinner_end(&spin); st_engine_heartbeat_enable(engine); if (err) break; } /* Restore min/max/efficient frequencies */ err = slpc_restore_freq(slpc, slpc_min_freq, slpc_max_freq); if (igt_flush_test(gt->i915)) err = -EIO; intel_gt_pm_put(gt, wakeref); igt_spinner_fini(&spin); intel_gt_pm_wait_for_idle(gt); return err; } static int live_slpc_vary_min(void *arg) { struct drm_i915_private *i915 = arg; struct intel_gt *gt; unsigned int i; int ret; for_each_gt(gt, i915, i) { ret = run_test(gt, VARY_MIN); if (ret) return ret; } return ret; } static int live_slpc_vary_max(void *arg) { struct drm_i915_private *i915 = arg; struct intel_gt *gt; unsigned int i; int ret; for_each_gt(gt, i915, i) { ret = run_test(gt, VARY_MAX); if (ret) return ret; } return ret; } /* check if pcode can grant RP0 */ static int live_slpc_max_granted(void *arg) { struct drm_i915_private *i915 = arg; struct intel_gt *gt; unsigned int i; int ret; for_each_gt(gt, i915, i) { ret = run_test(gt, MAX_GRANTED); if (ret) return ret; } return ret; } static int live_slpc_power(void *arg) { struct drm_i915_private *i915 = arg; struct intel_gt *gt; unsigned int i; int ret; for_each_gt(gt, i915, i) { ret = run_test(gt, SLPC_POWER); if (ret) return ret; } return ret; } static void slpc_spinner_thread(struct kthread_work *work) { struct slpc_thread *thread = container_of(work, typeof(*thread), work); thread->result = run_test(thread->gt, TILE_INTERACTION); } static int live_slpc_tile_interaction(void *arg) { struct drm_i915_private *i915 = arg; struct intel_gt *gt; struct slpc_thread *threads; int i = 0, ret = 0; threads = kcalloc(I915_MAX_GT, sizeof(*threads), GFP_KERNEL); if (!threads) return -ENOMEM; for_each_gt(gt, i915, i) { threads[i].worker = kthread_create_worker(0, "igt/slpc_parallel:%d", gt->info.id); if (IS_ERR(threads[i].worker)) { ret = PTR_ERR(threads[i].worker); break; } threads[i].gt = gt; kthread_init_work(&threads[i].work, slpc_spinner_thread); kthread_queue_work(threads[i].worker, &threads[i].work); } for_each_gt(gt, i915, i) { int status; if (IS_ERR_OR_NULL(threads[i].worker)) continue; kthread_flush_work(&threads[i].work); status = READ_ONCE(threads[i].result); if (status && !ret) { pr_err("%s GT %d failed ", __func__, gt->info.id); ret = status; } kthread_destroy_worker(threads[i].worker); } kfree(threads); return ret; } int intel_slpc_live_selftests(struct drm_i915_private *i915) { static const struct i915_subtest tests[] = { SUBTEST(live_slpc_vary_max), SUBTEST(live_slpc_vary_min), SUBTEST(live_slpc_max_granted), SUBTEST(live_slpc_power), SUBTEST(live_slpc_tile_interaction), }; struct intel_gt *gt; unsigned int i; for_each_gt(gt, i915, i) { if (intel_gt_is_wedged(gt)) return 0; } return i915_live_subtests(tests, i915); }