// SPDX-License-Identifier: MIT /* * Copyright © 2015-2021 Intel Corporation */ #include #include #include #include #include "i915_drv.h" #include "i915_trace.h" #include "intel_breadcrumbs.h" #include "intel_context.h" #include "intel_engine_pm.h" #include "intel_gt_pm.h" #include "intel_gt_requests.h" static bool irq_enable(struct intel_breadcrumbs *b) { return intel_engine_irq_enable(b->irq_engine); } static void irq_disable(struct intel_breadcrumbs *b) { intel_engine_irq_disable(b->irq_engine); } static void __intel_breadcrumbs_arm_irq(struct intel_breadcrumbs *b) { intel_wakeref_t wakeref; /* * Since we are waiting on a request, the GPU should be busy * and should have its own rpm reference. */ wakeref = intel_gt_pm_get_if_awake(b->irq_engine->gt); if (GEM_WARN_ON(!wakeref)) return; /* * The breadcrumb irq will be disarmed on the interrupt after the * waiters are signaled. This gives us a single interrupt window in * which we can add a new waiter and avoid the cost of re-enabling * the irq. */ WRITE_ONCE(b->irq_armed, wakeref); /* Requests may have completed before we could enable the interrupt. */ if (!b->irq_enabled++ && b->irq_enable(b)) irq_work_queue(&b->irq_work); } static void intel_breadcrumbs_arm_irq(struct intel_breadcrumbs *b) { if (!b->irq_engine) return; spin_lock(&b->irq_lock); if (!b->irq_armed) __intel_breadcrumbs_arm_irq(b); spin_unlock(&b->irq_lock); } static void __intel_breadcrumbs_disarm_irq(struct intel_breadcrumbs *b) { intel_wakeref_t wakeref = b->irq_armed; GEM_BUG_ON(!b->irq_enabled); if (!--b->irq_enabled) b->irq_disable(b); WRITE_ONCE(b->irq_armed, 0); intel_gt_pm_put_async(b->irq_engine->gt, wakeref); } static void intel_breadcrumbs_disarm_irq(struct intel_breadcrumbs *b) { spin_lock(&b->irq_lock); if (b->irq_armed) __intel_breadcrumbs_disarm_irq(b); spin_unlock(&b->irq_lock); } static void add_signaling_context(struct intel_breadcrumbs *b, struct intel_context *ce) { lockdep_assert_held(&ce->signal_lock); spin_lock(&b->signalers_lock); list_add_rcu(&ce->signal_link, &b->signalers); spin_unlock(&b->signalers_lock); } static bool remove_signaling_context(struct intel_breadcrumbs *b, struct intel_context *ce) { lockdep_assert_held(&ce->signal_lock); if (!list_empty(&ce->signals)) return false; spin_lock(&b->signalers_lock); list_del_rcu(&ce->signal_link); spin_unlock(&b->signalers_lock); return true; } __maybe_unused static bool check_signal_order(struct intel_context *ce, struct i915_request *rq) { if (rq->context != ce) return false; if (!list_is_last(&rq->signal_link, &ce->signals) && i915_seqno_passed(rq->fence.seqno, list_next_entry(rq, signal_link)->fence.seqno)) return false; if (!list_is_first(&rq->signal_link, &ce->signals) && i915_seqno_passed(list_prev_entry(rq, signal_link)->fence.seqno, rq->fence.seqno)) return false; return true; } static bool __dma_fence_signal(struct dma_fence *fence) { return !test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags); } static void __dma_fence_signal__timestamp(struct dma_fence *fence, ktime_t timestamp) { fence->timestamp = timestamp; set_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags); trace_dma_fence_signaled(fence); } static void __dma_fence_signal__notify(struct dma_fence *fence, const struct list_head *list) { struct dma_fence_cb *cur, *tmp; lockdep_assert_held(fence->lock); list_for_each_entry_safe(cur, tmp, list, node) { INIT_LIST_HEAD(&cur->node); cur->func(fence, cur); } } static void add_retire(struct intel_breadcrumbs *b, struct intel_timeline *tl) { if (b->irq_engine) intel_engine_add_retire(b->irq_engine, tl); } static struct llist_node * slist_add(struct llist_node *node, struct llist_node *head) { node->next = head; return node; } static void signal_irq_work(struct irq_work *work) { struct intel_breadcrumbs *b = container_of(work, typeof(*b), irq_work); const ktime_t timestamp = ktime_get(); struct llist_node *signal, *sn; struct intel_context *ce; signal = NULL; if (unlikely(!llist_empty(&b->signaled_requests))) signal = llist_del_all(&b->signaled_requests); /* * Keep the irq armed until the interrupt after all listeners are gone. * * Enabling/disabling the interrupt is rather costly, roughly a couple * of hundred microseconds. If we are proactive and enable/disable * the interrupt around every request that wants a breadcrumb, we * quickly drown in the extra orders of magnitude of latency imposed * on request submission. * * So we try to be lazy, and keep the interrupts enabled until no * more listeners appear within a breadcrumb interrupt interval (that * is until a request completes that no one cares about). The * observation is that listeners come in batches, and will often * listen to a bunch of requests in succession. Though note on icl+, * interrupts are always enabled due to concerns with rc6 being * dysfunctional with per-engine interrupt masking. * * We also try to avoid raising too many interrupts, as they may * be generated by userspace batches and it is unfortunately rather * too easy to drown the CPU under a flood of GPU interrupts. Thus * whenever no one appears to be listening, we turn off the interrupts. * Fewer interrupts should conserve power -- at the very least, fewer * interrupt draw less ire from other users of the system and tools * like powertop. */ if (!signal && READ_ONCE(b->irq_armed) && list_empty(&b->signalers)) intel_breadcrumbs_disarm_irq(b); rcu_read_lock(); atomic_inc(&b->signaler_active); list_for_each_entry_rcu(ce, &b->signalers, signal_link) { struct i915_request *rq; list_for_each_entry_rcu(rq, &ce->signals, signal_link) { bool release; if (!__i915_request_is_complete(rq)) break; if (!test_and_clear_bit(I915_FENCE_FLAG_SIGNAL, &rq->fence.flags)) break; /* * Queue for execution after dropping the signaling * spinlock as the callback chain may end up adding * more signalers to the same context or engine. */ spin_lock(&ce->signal_lock); list_del_rcu(&rq->signal_link); release = remove_signaling_context(b, ce); spin_unlock(&ce->signal_lock); if (release) { if (intel_timeline_is_last(ce->timeline, rq)) add_retire(b, ce->timeline); intel_context_put(ce); } if (__dma_fence_signal(&rq->fence)) /* We own signal_node now, xfer to local list */ signal = slist_add(&rq->signal_node, signal); else i915_request_put(rq); } } atomic_dec(&b->signaler_active); rcu_read_unlock(); llist_for_each_safe(signal, sn, signal) { struct i915_request *rq = llist_entry(signal, typeof(*rq), signal_node); struct list_head cb_list; if (rq->engine->sched_engine->retire_inflight_request_prio) rq->engine->sched_engine->retire_inflight_request_prio(rq); spin_lock(&rq->lock); list_replace(&rq->fence.cb_list, &cb_list); __dma_fence_signal__timestamp(&rq->fence, timestamp); __dma_fence_signal__notify(&rq->fence, &cb_list); spin_unlock(&rq->lock); i915_request_put(rq); } if (!READ_ONCE(b->irq_armed) && !list_empty(&b->signalers)) intel_breadcrumbs_arm_irq(b); } struct intel_breadcrumbs * intel_breadcrumbs_create(struct intel_engine_cs *irq_engine) { struct intel_breadcrumbs *b; b = kzalloc(sizeof(*b), GFP_KERNEL); if (!b) return NULL; kref_init(&b->ref); spin_lock_init(&b->signalers_lock); INIT_LIST_HEAD(&b->signalers); init_llist_head(&b->signaled_requests); spin_lock_init(&b->irq_lock); init_irq_work(&b->irq_work, signal_irq_work); b->irq_engine = irq_engine; b->irq_enable = irq_enable; b->irq_disable = irq_disable; return b; } void intel_breadcrumbs_reset(struct intel_breadcrumbs *b) { unsigned long flags; if (!b->irq_engine) return; spin_lock_irqsave(&b->irq_lock, flags); if (b->irq_enabled) b->irq_enable(b); else b->irq_disable(b); spin_unlock_irqrestore(&b->irq_lock, flags); } void __intel_breadcrumbs_park(struct intel_breadcrumbs *b) { if (!READ_ONCE(b->irq_armed)) return; /* Kick the work once more to drain the signalers, and disarm the irq */ irq_work_sync(&b->irq_work); while (READ_ONCE(b->irq_armed) && !atomic_read(&b->active)) { local_irq_disable(); signal_irq_work(&b->irq_work); local_irq_enable(); cond_resched(); } } void intel_breadcrumbs_free(struct kref *kref) { struct intel_breadcrumbs *b = container_of(kref, typeof(*b), ref); irq_work_sync(&b->irq_work); GEM_BUG_ON(!list_empty(&b->signalers)); GEM_BUG_ON(b->irq_armed); kfree(b); } static void irq_signal_request(struct i915_request *rq, struct intel_breadcrumbs *b) { if (!__dma_fence_signal(&rq->fence)) return; i915_request_get(rq); if (llist_add(&rq->signal_node, &b->signaled_requests)) irq_work_queue(&b->irq_work); } static void insert_breadcrumb(struct i915_request *rq) { struct intel_breadcrumbs *b = READ_ONCE(rq->engine)->breadcrumbs; struct intel_context *ce = rq->context; struct list_head *pos; if (test_bit(I915_FENCE_FLAG_SIGNAL, &rq->fence.flags)) return; /* * If the request is already completed, we can transfer it * straight onto a signaled list, and queue the irq worker for * its signal completion. */ if (__i915_request_is_complete(rq)) { irq_signal_request(rq, b); return; } if (list_empty(&ce->signals)) { intel_context_get(ce); add_signaling_context(b, ce); pos = &ce->signals; } else { /* * We keep the seqno in retirement order, so we can break * inside intel_engine_signal_breadcrumbs as soon as we've * passed the last completed request (or seen a request that * hasn't event started). We could walk the timeline->requests, * but keeping a separate signalers_list has the advantage of * hopefully being much smaller than the full list and so * provides faster iteration and detection when there are no * more interrupts required for this context. * * We typically expect to add new signalers in order, so we * start looking for our insertion point from the tail of * the list. */ list_for_each_prev(pos, &ce->signals) { struct i915_request *it = list_entry(pos, typeof(*it), signal_link); if (i915_seqno_passed(rq->fence.seqno, it->fence.seqno)) break; } } i915_request_get(rq); list_add_rcu(&rq->signal_link, pos); GEM_BUG_ON(!check_signal_order(ce, rq)); GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags)); set_bit(I915_FENCE_FLAG_SIGNAL, &rq->fence.flags); /* * Defer enabling the interrupt to after HW submission and recheck * the request as it may have completed and raised the interrupt as * we were attaching it into the lists. */ if (!b->irq_armed || __i915_request_is_complete(rq)) irq_work_queue(&b->irq_work); } bool i915_request_enable_breadcrumb(struct i915_request *rq) { struct intel_context *ce = rq->context; /* Serialises with i915_request_retire() using rq->lock */ if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags)) return true; /* * Peek at i915_request_submit()/i915_request_unsubmit() status. * * If the request is not yet active (and not signaled), we will * attach the breadcrumb later. */ if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) return true; spin_lock(&ce->signal_lock); if (test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) insert_breadcrumb(rq); spin_unlock(&ce->signal_lock); return true; } void i915_request_cancel_breadcrumb(struct i915_request *rq) { struct intel_breadcrumbs *b = READ_ONCE(rq->engine)->breadcrumbs; struct intel_context *ce = rq->context; bool release; spin_lock(&ce->signal_lock); if (!test_and_clear_bit(I915_FENCE_FLAG_SIGNAL, &rq->fence.flags)) { spin_unlock(&ce->signal_lock); return; } list_del_rcu(&rq->signal_link); release = remove_signaling_context(b, ce); spin_unlock(&ce->signal_lock); if (release) intel_context_put(ce); if (__i915_request_is_complete(rq)) irq_signal_request(rq, b); i915_request_put(rq); } void intel_context_remove_breadcrumbs(struct intel_context *ce, struct intel_breadcrumbs *b) { struct i915_request *rq, *rn; bool release = false; unsigned long flags; spin_lock_irqsave(&ce->signal_lock, flags); if (list_empty(&ce->signals)) goto unlock; list_for_each_entry_safe(rq, rn, &ce->signals, signal_link) { GEM_BUG_ON(!__i915_request_is_complete(rq)); if (!test_and_clear_bit(I915_FENCE_FLAG_SIGNAL, &rq->fence.flags)) continue; list_del_rcu(&rq->signal_link); irq_signal_request(rq, b); i915_request_put(rq); } release = remove_signaling_context(b, ce); unlock: spin_unlock_irqrestore(&ce->signal_lock, flags); if (release) intel_context_put(ce); while (atomic_read(&b->signaler_active)) cpu_relax(); } static void print_signals(struct intel_breadcrumbs *b, struct drm_printer *p) { struct intel_context *ce; struct i915_request *rq; drm_printf(p, "Signals:\n"); rcu_read_lock(); list_for_each_entry_rcu(ce, &b->signalers, signal_link) { list_for_each_entry_rcu(rq, &ce->signals, signal_link) drm_printf(p, "\t[%llx:%llx%s] @ %dms\n", rq->fence.context, rq->fence.seqno, __i915_request_is_complete(rq) ? "!" : __i915_request_has_started(rq) ? "*" : "", jiffies_to_msecs(jiffies - rq->emitted_jiffies)); } rcu_read_unlock(); } void intel_engine_print_breadcrumbs(struct intel_engine_cs *engine, struct drm_printer *p) { struct intel_breadcrumbs *b; b = engine->breadcrumbs; if (!b) return; drm_printf(p, "IRQ: %s\n", str_enabled_disabled(b->irq_armed)); if (!list_empty(&b->signalers)) print_signals(b, p); }