/* * Copyright 2021 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #define SWSMU_CODE_LAYER_L2 #include #include #include #include "amdgpu.h" #include "amdgpu_smu.h" #include "atomfirmware.h" #include "amdgpu_atomfirmware.h" #include "amdgpu_atombios.h" #include "smu_v13_0.h" #include "smu13_driver_if_v13_0_0.h" #include "soc15_common.h" #include "atom.h" #include "smu_v13_0_0_ppt.h" #include "smu_v13_0_0_pptable.h" #include "smu_v13_0_0_ppsmc.h" #include "nbio/nbio_4_3_0_offset.h" #include "nbio/nbio_4_3_0_sh_mask.h" #include "mp/mp_13_0_0_offset.h" #include "mp/mp_13_0_0_sh_mask.h" #include "asic_reg/mp/mp_13_0_0_sh_mask.h" #include "smu_cmn.h" #include "amdgpu_ras.h" /* * DO NOT use these for err/warn/info/debug messages. * Use dev_err, dev_warn, dev_info and dev_dbg instead. * They are more MGPU friendly. */ #undef pr_err #undef pr_warn #undef pr_info #undef pr_debug #define to_amdgpu_device(x) (container_of(x, struct amdgpu_device, pm.smu_i2c)) #define FEATURE_MASK(feature) (1ULL << feature) #define SMC_DPM_FEATURE ( \ FEATURE_MASK(FEATURE_DPM_GFXCLK_BIT) | \ FEATURE_MASK(FEATURE_DPM_UCLK_BIT) | \ FEATURE_MASK(FEATURE_DPM_LINK_BIT) | \ FEATURE_MASK(FEATURE_DPM_SOCCLK_BIT) | \ FEATURE_MASK(FEATURE_DPM_FCLK_BIT) | \ FEATURE_MASK(FEATURE_DPM_MP0CLK_BIT)) #define MP0_MP1_DATA_REGION_SIZE_COMBOPPTABLE 0x4000 #define mmMP1_SMN_C2PMSG_66 0x0282 #define mmMP1_SMN_C2PMSG_66_BASE_IDX 0 #define mmMP1_SMN_C2PMSG_82 0x0292 #define mmMP1_SMN_C2PMSG_82_BASE_IDX 0 #define mmMP1_SMN_C2PMSG_90 0x029a #define mmMP1_SMN_C2PMSG_90_BASE_IDX 0 #define mmMP1_SMN_C2PMSG_75 0x028b #define mmMP1_SMN_C2PMSG_75_BASE_IDX 0 #define mmMP1_SMN_C2PMSG_53 0x0275 #define mmMP1_SMN_C2PMSG_53_BASE_IDX 0 #define mmMP1_SMN_C2PMSG_54 0x0276 #define mmMP1_SMN_C2PMSG_54_BASE_IDX 0 #define DEBUGSMC_MSG_Mode1Reset 2 /* * SMU_v13_0_10 supports ECCTABLE since version 80.34.0, * use this to check ECCTABLE feature whether support */ #define SUPPORT_ECCTABLE_SMU_13_0_10_VERSION 0x00502200 #define PP_OD_FEATURE_GFXCLK_FMIN 0 #define PP_OD_FEATURE_GFXCLK_FMAX 1 #define PP_OD_FEATURE_UCLK_FMIN 2 #define PP_OD_FEATURE_UCLK_FMAX 3 #define PP_OD_FEATURE_GFX_VF_CURVE 4 #define PP_OD_FEATURE_FAN_CURVE_TEMP 5 #define PP_OD_FEATURE_FAN_CURVE_PWM 6 #define PP_OD_FEATURE_FAN_ACOUSTIC_LIMIT 7 #define PP_OD_FEATURE_FAN_ACOUSTIC_TARGET 8 #define PP_OD_FEATURE_FAN_TARGET_TEMPERATURE 9 #define PP_OD_FEATURE_FAN_MINIMUM_PWM 10 #define LINK_SPEED_MAX 3 static struct cmn2asic_msg_mapping smu_v13_0_0_message_map[SMU_MSG_MAX_COUNT] = { MSG_MAP(TestMessage, PPSMC_MSG_TestMessage, 1), MSG_MAP(GetSmuVersion, PPSMC_MSG_GetSmuVersion, 1), MSG_MAP(GetDriverIfVersion, PPSMC_MSG_GetDriverIfVersion, 1), MSG_MAP(SetAllowedFeaturesMaskLow, PPSMC_MSG_SetAllowedFeaturesMaskLow, 0), MSG_MAP(SetAllowedFeaturesMaskHigh, PPSMC_MSG_SetAllowedFeaturesMaskHigh, 0), MSG_MAP(EnableAllSmuFeatures, PPSMC_MSG_EnableAllSmuFeatures, 0), MSG_MAP(DisableAllSmuFeatures, PPSMC_MSG_DisableAllSmuFeatures, 0), MSG_MAP(EnableSmuFeaturesLow, PPSMC_MSG_EnableSmuFeaturesLow, 1), MSG_MAP(EnableSmuFeaturesHigh, PPSMC_MSG_EnableSmuFeaturesHigh, 1), MSG_MAP(DisableSmuFeaturesLow, PPSMC_MSG_DisableSmuFeaturesLow, 1), MSG_MAP(DisableSmuFeaturesHigh, PPSMC_MSG_DisableSmuFeaturesHigh, 1), MSG_MAP(GetEnabledSmuFeaturesLow, PPSMC_MSG_GetRunningSmuFeaturesLow, 1), MSG_MAP(GetEnabledSmuFeaturesHigh, PPSMC_MSG_GetRunningSmuFeaturesHigh, 1), MSG_MAP(SetWorkloadMask, PPSMC_MSG_SetWorkloadMask, 1), MSG_MAP(SetPptLimit, PPSMC_MSG_SetPptLimit, 0), MSG_MAP(SetDriverDramAddrHigh, PPSMC_MSG_SetDriverDramAddrHigh, 1), MSG_MAP(SetDriverDramAddrLow, PPSMC_MSG_SetDriverDramAddrLow, 1), MSG_MAP(SetToolsDramAddrHigh, PPSMC_MSG_SetToolsDramAddrHigh, 0), MSG_MAP(SetToolsDramAddrLow, PPSMC_MSG_SetToolsDramAddrLow, 0), MSG_MAP(TransferTableSmu2Dram, PPSMC_MSG_TransferTableSmu2Dram, 1), MSG_MAP(TransferTableDram2Smu, PPSMC_MSG_TransferTableDram2Smu, 0), MSG_MAP(UseDefaultPPTable, PPSMC_MSG_UseDefaultPPTable, 0), MSG_MAP(RunDcBtc, PPSMC_MSG_RunDcBtc, 0), MSG_MAP(EnterBaco, PPSMC_MSG_EnterBaco, 0), MSG_MAP(ExitBaco, PPSMC_MSG_ExitBaco, 0), MSG_MAP(SetSoftMinByFreq, PPSMC_MSG_SetSoftMinByFreq, 1), MSG_MAP(SetSoftMaxByFreq, PPSMC_MSG_SetSoftMaxByFreq, 1), MSG_MAP(SetHardMinByFreq, PPSMC_MSG_SetHardMinByFreq, 1), MSG_MAP(SetHardMaxByFreq, PPSMC_MSG_SetHardMaxByFreq, 0), MSG_MAP(GetMinDpmFreq, PPSMC_MSG_GetMinDpmFreq, 1), MSG_MAP(GetMaxDpmFreq, PPSMC_MSG_GetMaxDpmFreq, 1), MSG_MAP(GetDpmFreqByIndex, PPSMC_MSG_GetDpmFreqByIndex, 1), MSG_MAP(PowerUpVcn, PPSMC_MSG_PowerUpVcn, 0), MSG_MAP(PowerDownVcn, PPSMC_MSG_PowerDownVcn, 0), MSG_MAP(PowerUpJpeg, PPSMC_MSG_PowerUpJpeg, 0), MSG_MAP(PowerDownJpeg, PPSMC_MSG_PowerDownJpeg, 0), MSG_MAP(GetDcModeMaxDpmFreq, PPSMC_MSG_GetDcModeMaxDpmFreq, 1), MSG_MAP(OverridePcieParameters, PPSMC_MSG_OverridePcieParameters, 0), MSG_MAP(DramLogSetDramAddrHigh, PPSMC_MSG_DramLogSetDramAddrHigh, 0), MSG_MAP(DramLogSetDramAddrLow, PPSMC_MSG_DramLogSetDramAddrLow, 0), MSG_MAP(DramLogSetDramSize, PPSMC_MSG_DramLogSetDramSize, 0), MSG_MAP(AllowGfxOff, PPSMC_MSG_AllowGfxOff, 0), MSG_MAP(DisallowGfxOff, PPSMC_MSG_DisallowGfxOff, 0), MSG_MAP(SetMGpuFanBoostLimitRpm, PPSMC_MSG_SetMGpuFanBoostLimitRpm, 0), MSG_MAP(GetPptLimit, PPSMC_MSG_GetPptLimit, 0), MSG_MAP(NotifyPowerSource, PPSMC_MSG_NotifyPowerSource, 0), MSG_MAP(Mode1Reset, PPSMC_MSG_Mode1Reset, 0), MSG_MAP(Mode2Reset, PPSMC_MSG_Mode2Reset, 0), MSG_MAP(PrepareMp1ForUnload, PPSMC_MSG_PrepareMp1ForUnload, 0), MSG_MAP(DFCstateControl, PPSMC_MSG_SetExternalClientDfCstateAllow, 0), MSG_MAP(ArmD3, PPSMC_MSG_ArmD3, 0), MSG_MAP(SetNumBadMemoryPagesRetired, PPSMC_MSG_SetNumBadMemoryPagesRetired, 0), MSG_MAP(SetBadMemoryPagesRetiredFlagsPerChannel, PPSMC_MSG_SetBadMemoryPagesRetiredFlagsPerChannel, 0), MSG_MAP(AllowGpo, PPSMC_MSG_SetGpoAllow, 0), MSG_MAP(AllowIHHostInterrupt, PPSMC_MSG_AllowIHHostInterrupt, 0), MSG_MAP(ReenableAcDcInterrupt, PPSMC_MSG_ReenableAcDcInterrupt, 0), MSG_MAP(DALNotPresent, PPSMC_MSG_DALNotPresent, 0), MSG_MAP(EnableUCLKShadow, PPSMC_MSG_EnableUCLKShadow, 0), }; static struct cmn2asic_mapping smu_v13_0_0_clk_map[SMU_CLK_COUNT] = { CLK_MAP(GFXCLK, PPCLK_GFXCLK), CLK_MAP(SCLK, PPCLK_GFXCLK), CLK_MAP(SOCCLK, PPCLK_SOCCLK), CLK_MAP(FCLK, PPCLK_FCLK), CLK_MAP(UCLK, PPCLK_UCLK), CLK_MAP(MCLK, PPCLK_UCLK), CLK_MAP(VCLK, PPCLK_VCLK_0), CLK_MAP(VCLK1, PPCLK_VCLK_1), CLK_MAP(DCLK, PPCLK_DCLK_0), CLK_MAP(DCLK1, PPCLK_DCLK_1), CLK_MAP(DCEFCLK, PPCLK_DCFCLK), }; static struct cmn2asic_mapping smu_v13_0_0_feature_mask_map[SMU_FEATURE_COUNT] = { FEA_MAP(FW_DATA_READ), FEA_MAP(DPM_GFXCLK), FEA_MAP(DPM_GFX_POWER_OPTIMIZER), FEA_MAP(DPM_UCLK), FEA_MAP(DPM_FCLK), FEA_MAP(DPM_SOCCLK), FEA_MAP(DPM_MP0CLK), FEA_MAP(DPM_LINK), FEA_MAP(DPM_DCN), FEA_MAP(VMEMP_SCALING), FEA_MAP(VDDIO_MEM_SCALING), FEA_MAP(DS_GFXCLK), FEA_MAP(DS_SOCCLK), FEA_MAP(DS_FCLK), FEA_MAP(DS_LCLK), FEA_MAP(DS_DCFCLK), FEA_MAP(DS_UCLK), FEA_MAP(GFX_ULV), FEA_MAP(FW_DSTATE), FEA_MAP(GFXOFF), FEA_MAP(BACO), FEA_MAP(MM_DPM), FEA_MAP(SOC_MPCLK_DS), FEA_MAP(BACO_MPCLK_DS), FEA_MAP(THROTTLERS), FEA_MAP(SMARTSHIFT), FEA_MAP(GTHR), FEA_MAP(ACDC), FEA_MAP(VR0HOT), FEA_MAP(FW_CTF), FEA_MAP(FAN_CONTROL), FEA_MAP(GFX_DCS), FEA_MAP(GFX_READ_MARGIN), FEA_MAP(LED_DISPLAY), FEA_MAP(GFXCLK_SPREAD_SPECTRUM), FEA_MAP(OUT_OF_BAND_MONITOR), FEA_MAP(OPTIMIZED_VMIN), FEA_MAP(GFX_IMU), FEA_MAP(BOOT_TIME_CAL), FEA_MAP(GFX_PCC_DFLL), FEA_MAP(SOC_CG), FEA_MAP(DF_CSTATE), FEA_MAP(GFX_EDC), FEA_MAP(BOOT_POWER_OPT), FEA_MAP(CLOCK_POWER_DOWN_BYPASS), FEA_MAP(DS_VCN), FEA_MAP(BACO_CG), FEA_MAP(MEM_TEMP_READ), FEA_MAP(ATHUB_MMHUB_PG), FEA_MAP(SOC_PCC), [SMU_FEATURE_DPM_VCLK_BIT] = {1, FEATURE_MM_DPM_BIT}, [SMU_FEATURE_DPM_DCLK_BIT] = {1, FEATURE_MM_DPM_BIT}, [SMU_FEATURE_PPT_BIT] = {1, FEATURE_THROTTLERS_BIT}, }; static struct cmn2asic_mapping smu_v13_0_0_table_map[SMU_TABLE_COUNT] = { TAB_MAP(PPTABLE), TAB_MAP(WATERMARKS), TAB_MAP(AVFS_PSM_DEBUG), TAB_MAP(PMSTATUSLOG), TAB_MAP(SMU_METRICS), TAB_MAP(DRIVER_SMU_CONFIG), TAB_MAP(ACTIVITY_MONITOR_COEFF), [SMU_TABLE_COMBO_PPTABLE] = {1, TABLE_COMBO_PPTABLE}, TAB_MAP(I2C_COMMANDS), TAB_MAP(ECCINFO), TAB_MAP(OVERDRIVE), TAB_MAP(WIFIBAND), }; static struct cmn2asic_mapping smu_v13_0_0_pwr_src_map[SMU_POWER_SOURCE_COUNT] = { PWR_MAP(AC), PWR_MAP(DC), }; static struct cmn2asic_mapping smu_v13_0_0_workload_map[PP_SMC_POWER_PROFILE_COUNT] = { WORKLOAD_MAP(PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT, WORKLOAD_PPLIB_DEFAULT_BIT), WORKLOAD_MAP(PP_SMC_POWER_PROFILE_FULLSCREEN3D, WORKLOAD_PPLIB_FULL_SCREEN_3D_BIT), WORKLOAD_MAP(PP_SMC_POWER_PROFILE_POWERSAVING, WORKLOAD_PPLIB_POWER_SAVING_BIT), WORKLOAD_MAP(PP_SMC_POWER_PROFILE_VIDEO, WORKLOAD_PPLIB_VIDEO_BIT), WORKLOAD_MAP(PP_SMC_POWER_PROFILE_VR, WORKLOAD_PPLIB_VR_BIT), WORKLOAD_MAP(PP_SMC_POWER_PROFILE_COMPUTE, WORKLOAD_PPLIB_COMPUTE_BIT), WORKLOAD_MAP(PP_SMC_POWER_PROFILE_CUSTOM, WORKLOAD_PPLIB_CUSTOM_BIT), WORKLOAD_MAP(PP_SMC_POWER_PROFILE_WINDOW3D, WORKLOAD_PPLIB_WINDOW_3D_BIT), }; static const uint8_t smu_v13_0_0_throttler_map[] = { [THROTTLER_PPT0_BIT] = (SMU_THROTTLER_PPT0_BIT), [THROTTLER_PPT1_BIT] = (SMU_THROTTLER_PPT1_BIT), [THROTTLER_PPT2_BIT] = (SMU_THROTTLER_PPT2_BIT), [THROTTLER_PPT3_BIT] = (SMU_THROTTLER_PPT3_BIT), [THROTTLER_TDC_GFX_BIT] = (SMU_THROTTLER_TDC_GFX_BIT), [THROTTLER_TDC_SOC_BIT] = (SMU_THROTTLER_TDC_SOC_BIT), [THROTTLER_TEMP_EDGE_BIT] = (SMU_THROTTLER_TEMP_EDGE_BIT), [THROTTLER_TEMP_HOTSPOT_BIT] = (SMU_THROTTLER_TEMP_HOTSPOT_BIT), [THROTTLER_TEMP_MEM_BIT] = (SMU_THROTTLER_TEMP_MEM_BIT), [THROTTLER_TEMP_VR_GFX_BIT] = (SMU_THROTTLER_TEMP_VR_GFX_BIT), [THROTTLER_TEMP_VR_SOC_BIT] = (SMU_THROTTLER_TEMP_VR_SOC_BIT), [THROTTLER_TEMP_VR_MEM0_BIT] = (SMU_THROTTLER_TEMP_VR_MEM0_BIT), [THROTTLER_TEMP_VR_MEM1_BIT] = (SMU_THROTTLER_TEMP_VR_MEM1_BIT), [THROTTLER_TEMP_LIQUID0_BIT] = (SMU_THROTTLER_TEMP_LIQUID0_BIT), [THROTTLER_TEMP_LIQUID1_BIT] = (SMU_THROTTLER_TEMP_LIQUID1_BIT), [THROTTLER_GFX_APCC_PLUS_BIT] = (SMU_THROTTLER_APCC_BIT), [THROTTLER_FIT_BIT] = (SMU_THROTTLER_FIT_BIT), }; static int smu_v13_0_0_get_allowed_feature_mask(struct smu_context *smu, uint32_t *feature_mask, uint32_t num) { struct amdgpu_device *adev = smu->adev; if (num > 2) return -EINVAL; memset(feature_mask, 0xff, sizeof(uint32_t) * num); if (!(adev->pm.pp_feature & PP_SCLK_DPM_MASK)) { *(uint64_t *)feature_mask &= ~FEATURE_MASK(FEATURE_DPM_GFXCLK_BIT); *(uint64_t *)feature_mask &= ~FEATURE_MASK(FEATURE_GFX_IMU_BIT); } if (!(adev->pg_flags & AMD_PG_SUPPORT_ATHUB) || !(adev->pg_flags & AMD_PG_SUPPORT_MMHUB)) *(uint64_t *)feature_mask &= ~FEATURE_MASK(FEATURE_ATHUB_MMHUB_PG_BIT); if (!(adev->pm.pp_feature & PP_SOCCLK_DPM_MASK)) *(uint64_t *)feature_mask &= ~FEATURE_MASK(FEATURE_DPM_SOCCLK_BIT); /* PMFW 78.58 contains a critical fix for gfxoff feature */ if ((smu->smc_fw_version < 0x004e3a00) || !(adev->pm.pp_feature & PP_GFXOFF_MASK)) *(uint64_t *)feature_mask &= ~FEATURE_MASK(FEATURE_GFXOFF_BIT); if (!(adev->pm.pp_feature & PP_MCLK_DPM_MASK)) { *(uint64_t *)feature_mask &= ~FEATURE_MASK(FEATURE_DPM_UCLK_BIT); *(uint64_t *)feature_mask &= ~FEATURE_MASK(FEATURE_VMEMP_SCALING_BIT); *(uint64_t *)feature_mask &= ~FEATURE_MASK(FEATURE_VDDIO_MEM_SCALING_BIT); } if (!(adev->pm.pp_feature & PP_SCLK_DEEP_SLEEP_MASK)) *(uint64_t *)feature_mask &= ~FEATURE_MASK(FEATURE_DS_GFXCLK_BIT); if (!(adev->pm.pp_feature & PP_PCIE_DPM_MASK)) { *(uint64_t *)feature_mask &= ~FEATURE_MASK(FEATURE_DPM_LINK_BIT); *(uint64_t *)feature_mask &= ~FEATURE_MASK(FEATURE_DS_LCLK_BIT); } if (!(adev->pm.pp_feature & PP_ULV_MASK)) *(uint64_t *)feature_mask &= ~FEATURE_MASK(FEATURE_GFX_ULV_BIT); return 0; } static int smu_v13_0_0_check_powerplay_table(struct smu_context *smu) { struct smu_table_context *table_context = &smu->smu_table; struct smu_13_0_0_powerplay_table *powerplay_table = table_context->power_play_table; struct smu_baco_context *smu_baco = &smu->smu_baco; PPTable_t *pptable = smu->smu_table.driver_pptable; const OverDriveLimits_t * const overdrive_upperlimits = &pptable->SkuTable.OverDriveLimitsBasicMax; const OverDriveLimits_t * const overdrive_lowerlimits = &pptable->SkuTable.OverDriveLimitsMin; if (powerplay_table->platform_caps & SMU_13_0_0_PP_PLATFORM_CAP_HARDWAREDC) smu->dc_controlled_by_gpio = true; if (powerplay_table->platform_caps & SMU_13_0_0_PP_PLATFORM_CAP_BACO) { smu_baco->platform_support = true; if (powerplay_table->platform_caps & SMU_13_0_0_PP_PLATFORM_CAP_MACO) smu_baco->maco_support = true; } if (!overdrive_lowerlimits->FeatureCtrlMask || !overdrive_upperlimits->FeatureCtrlMask) smu->od_enabled = false; table_context->thermal_controller_type = powerplay_table->thermal_controller_type; /* * Instead of having its own buffer space and get overdrive_table copied, * smu->od_settings just points to the actual overdrive_table */ smu->od_settings = &powerplay_table->overdrive_table; smu->adev->pm.no_fan = !(pptable->SkuTable.FeaturesToRun[0] & (1 << FEATURE_FAN_CONTROL_BIT)); return 0; } static int smu_v13_0_0_store_powerplay_table(struct smu_context *smu) { struct smu_table_context *table_context = &smu->smu_table; struct smu_13_0_0_powerplay_table *powerplay_table = table_context->power_play_table; memcpy(table_context->driver_pptable, &powerplay_table->smc_pptable, sizeof(PPTable_t)); return 0; } #ifndef atom_smc_dpm_info_table_13_0_0 struct atom_smc_dpm_info_table_13_0_0 { struct atom_common_table_header table_header; BoardTable_t BoardTable; }; #endif static int smu_v13_0_0_append_powerplay_table(struct smu_context *smu) { struct smu_table_context *table_context = &smu->smu_table; PPTable_t *smc_pptable = table_context->driver_pptable; struct atom_smc_dpm_info_table_13_0_0 *smc_dpm_table; BoardTable_t *BoardTable = &smc_pptable->BoardTable; int index, ret; index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1, smc_dpm_info); ret = amdgpu_atombios_get_data_table(smu->adev, index, NULL, NULL, NULL, (uint8_t **)&smc_dpm_table); if (ret) return ret; memcpy(BoardTable, &smc_dpm_table->BoardTable, sizeof(BoardTable_t)); return 0; } static int smu_v13_0_0_get_pptable_from_pmfw(struct smu_context *smu, void **table, uint32_t *size) { struct smu_table_context *smu_table = &smu->smu_table; void *combo_pptable = smu_table->combo_pptable; int ret = 0; ret = smu_cmn_get_combo_pptable(smu); if (ret) return ret; *table = combo_pptable; *size = sizeof(struct smu_13_0_0_powerplay_table); return 0; } static int smu_v13_0_0_setup_pptable(struct smu_context *smu) { struct smu_table_context *smu_table = &smu->smu_table; struct amdgpu_device *adev = smu->adev; int ret = 0; if (amdgpu_sriov_vf(smu->adev)) return 0; ret = smu_v13_0_0_get_pptable_from_pmfw(smu, &smu_table->power_play_table, &smu_table->power_play_table_size); if (ret) return ret; ret = smu_v13_0_0_store_powerplay_table(smu); if (ret) return ret; /* * With SCPM enabled, the operation below will be handled * by PSP. Driver involvment is unnecessary and useless. */ if (!adev->scpm_enabled) { ret = smu_v13_0_0_append_powerplay_table(smu); if (ret) return ret; } ret = smu_v13_0_0_check_powerplay_table(smu); if (ret) return ret; return ret; } static int smu_v13_0_0_tables_init(struct smu_context *smu) { struct smu_table_context *smu_table = &smu->smu_table; struct smu_table *tables = smu_table->tables; SMU_TABLE_INIT(tables, SMU_TABLE_PPTABLE, sizeof(PPTable_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); SMU_TABLE_INIT(tables, SMU_TABLE_WATERMARKS, sizeof(Watermarks_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); SMU_TABLE_INIT(tables, SMU_TABLE_SMU_METRICS, sizeof(SmuMetricsExternal_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); SMU_TABLE_INIT(tables, SMU_TABLE_I2C_COMMANDS, sizeof(SwI2cRequest_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); SMU_TABLE_INIT(tables, SMU_TABLE_OVERDRIVE, sizeof(OverDriveTableExternal_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); SMU_TABLE_INIT(tables, SMU_TABLE_PMSTATUSLOG, SMU13_TOOL_SIZE, PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); SMU_TABLE_INIT(tables, SMU_TABLE_ACTIVITY_MONITOR_COEFF, sizeof(DpmActivityMonitorCoeffIntExternal_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); SMU_TABLE_INIT(tables, SMU_TABLE_COMBO_PPTABLE, MP0_MP1_DATA_REGION_SIZE_COMBOPPTABLE, PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); SMU_TABLE_INIT(tables, SMU_TABLE_ECCINFO, sizeof(EccInfoTable_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); SMU_TABLE_INIT(tables, SMU_TABLE_WIFIBAND, sizeof(WifiBandEntryTable_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); smu_table->metrics_table = kzalloc(sizeof(SmuMetricsExternal_t), GFP_KERNEL); if (!smu_table->metrics_table) goto err0_out; smu_table->metrics_time = 0; smu_table->gpu_metrics_table_size = sizeof(struct gpu_metrics_v1_3); smu_table->gpu_metrics_table = kzalloc(smu_table->gpu_metrics_table_size, GFP_KERNEL); if (!smu_table->gpu_metrics_table) goto err1_out; smu_table->watermarks_table = kzalloc(sizeof(Watermarks_t), GFP_KERNEL); if (!smu_table->watermarks_table) goto err2_out; smu_table->ecc_table = kzalloc(tables[SMU_TABLE_ECCINFO].size, GFP_KERNEL); if (!smu_table->ecc_table) goto err3_out; return 0; err3_out: kfree(smu_table->watermarks_table); err2_out: kfree(smu_table->gpu_metrics_table); err1_out: kfree(smu_table->metrics_table); err0_out: return -ENOMEM; } static int smu_v13_0_0_allocate_dpm_context(struct smu_context *smu) { struct smu_dpm_context *smu_dpm = &smu->smu_dpm; smu_dpm->dpm_context = kzalloc(sizeof(struct smu_13_0_dpm_context), GFP_KERNEL); if (!smu_dpm->dpm_context) return -ENOMEM; smu_dpm->dpm_context_size = sizeof(struct smu_13_0_dpm_context); return 0; } static int smu_v13_0_0_init_smc_tables(struct smu_context *smu) { int ret = 0; ret = smu_v13_0_0_tables_init(smu); if (ret) return ret; ret = smu_v13_0_0_allocate_dpm_context(smu); if (ret) return ret; return smu_v13_0_init_smc_tables(smu); } static int smu_v13_0_0_set_default_dpm_table(struct smu_context *smu) { struct smu_13_0_dpm_context *dpm_context = smu->smu_dpm.dpm_context; struct smu_table_context *table_context = &smu->smu_table; PPTable_t *pptable = table_context->driver_pptable; SkuTable_t *skutable = &pptable->SkuTable; struct smu_13_0_dpm_table *dpm_table; struct smu_13_0_pcie_table *pcie_table; uint32_t link_level; int ret = 0; /* socclk dpm table setup */ dpm_table = &dpm_context->dpm_tables.soc_table; if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) { ret = smu_v13_0_set_single_dpm_table(smu, SMU_SOCCLK, dpm_table); if (ret) return ret; } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.socclk / 100; dpm_table->dpm_levels[0].enabled = true; dpm_table->min = dpm_table->dpm_levels[0].value; dpm_table->max = dpm_table->dpm_levels[0].value; } /* gfxclk dpm table setup */ dpm_table = &dpm_context->dpm_tables.gfx_table; if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_GFXCLK_BIT)) { ret = smu_v13_0_set_single_dpm_table(smu, SMU_GFXCLK, dpm_table); if (ret) return ret; /* * Update the reported maximum shader clock to the value * which can be guarded to be achieved on all cards. This * is aligned with Window setting. And considering that value * might be not the peak frequency the card can achieve, it * is normal some real-time clock frequency can overtake this * labelled maximum clock frequency(for example in pp_dpm_sclk * sysfs output). */ if (skutable->DriverReportedClocks.GameClockAc && (dpm_table->dpm_levels[dpm_table->count - 1].value > skutable->DriverReportedClocks.GameClockAc)) { dpm_table->dpm_levels[dpm_table->count - 1].value = skutable->DriverReportedClocks.GameClockAc; dpm_table->max = skutable->DriverReportedClocks.GameClockAc; } } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.gfxclk / 100; dpm_table->dpm_levels[0].enabled = true; dpm_table->min = dpm_table->dpm_levels[0].value; dpm_table->max = dpm_table->dpm_levels[0].value; } /* uclk dpm table setup */ dpm_table = &dpm_context->dpm_tables.uclk_table; if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) { ret = smu_v13_0_set_single_dpm_table(smu, SMU_UCLK, dpm_table); if (ret) return ret; } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.uclk / 100; dpm_table->dpm_levels[0].enabled = true; dpm_table->min = dpm_table->dpm_levels[0].value; dpm_table->max = dpm_table->dpm_levels[0].value; } /* fclk dpm table setup */ dpm_table = &dpm_context->dpm_tables.fclk_table; if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_FCLK_BIT)) { ret = smu_v13_0_set_single_dpm_table(smu, SMU_FCLK, dpm_table); if (ret) return ret; } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.fclk / 100; dpm_table->dpm_levels[0].enabled = true; dpm_table->min = dpm_table->dpm_levels[0].value; dpm_table->max = dpm_table->dpm_levels[0].value; } /* vclk dpm table setup */ dpm_table = &dpm_context->dpm_tables.vclk_table; if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_VCLK_BIT)) { ret = smu_v13_0_set_single_dpm_table(smu, SMU_VCLK, dpm_table); if (ret) return ret; } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.vclk / 100; dpm_table->dpm_levels[0].enabled = true; dpm_table->min = dpm_table->dpm_levels[0].value; dpm_table->max = dpm_table->dpm_levels[0].value; } /* dclk dpm table setup */ dpm_table = &dpm_context->dpm_tables.dclk_table; if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_DCLK_BIT)) { ret = smu_v13_0_set_single_dpm_table(smu, SMU_DCLK, dpm_table); if (ret) return ret; } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.dclk / 100; dpm_table->dpm_levels[0].enabled = true; dpm_table->min = dpm_table->dpm_levels[0].value; dpm_table->max = dpm_table->dpm_levels[0].value; } /* lclk dpm table setup */ pcie_table = &dpm_context->dpm_tables.pcie_table; pcie_table->num_of_link_levels = 0; for (link_level = 0; link_level < NUM_LINK_LEVELS; link_level++) { if (!skutable->PcieGenSpeed[link_level] && !skutable->PcieLaneCount[link_level] && !skutable->LclkFreq[link_level]) continue; pcie_table->pcie_gen[pcie_table->num_of_link_levels] = skutable->PcieGenSpeed[link_level]; pcie_table->pcie_lane[pcie_table->num_of_link_levels] = skutable->PcieLaneCount[link_level]; pcie_table->clk_freq[pcie_table->num_of_link_levels] = skutable->LclkFreq[link_level]; pcie_table->num_of_link_levels++; } /* dcefclk dpm table setup */ dpm_table = &dpm_context->dpm_tables.dcef_table; if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_DCN_BIT)) { ret = smu_v13_0_set_single_dpm_table(smu, SMU_DCEFCLK, dpm_table); if (ret) return ret; } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.dcefclk / 100; dpm_table->dpm_levels[0].enabled = true; dpm_table->min = dpm_table->dpm_levels[0].value; dpm_table->max = dpm_table->dpm_levels[0].value; } return 0; } static bool smu_v13_0_0_is_dpm_running(struct smu_context *smu) { int ret = 0; uint64_t feature_enabled; ret = smu_cmn_get_enabled_mask(smu, &feature_enabled); if (ret) return false; return !!(feature_enabled & SMC_DPM_FEATURE); } static void smu_v13_0_0_dump_pptable(struct smu_context *smu) { struct smu_table_context *table_context = &smu->smu_table; PPTable_t *pptable = table_context->driver_pptable; SkuTable_t *skutable = &pptable->SkuTable; dev_info(smu->adev->dev, "Dumped PPTable:\n"); dev_info(smu->adev->dev, "Version = 0x%08x\n", skutable->Version); dev_info(smu->adev->dev, "FeaturesToRun[0] = 0x%08x\n", skutable->FeaturesToRun[0]); dev_info(smu->adev->dev, "FeaturesToRun[1] = 0x%08x\n", skutable->FeaturesToRun[1]); } static int smu_v13_0_0_system_features_control(struct smu_context *smu, bool en) { return smu_v13_0_system_features_control(smu, en); } static uint32_t smu_v13_0_get_throttler_status(SmuMetrics_t *metrics) { uint32_t throttler_status = 0; int i; for (i = 0; i < THROTTLER_COUNT; i++) throttler_status |= (metrics->ThrottlingPercentage[i] ? 1U << i : 0); return throttler_status; } #define SMU_13_0_0_BUSY_THRESHOLD 15 static int smu_v13_0_0_get_smu_metrics_data(struct smu_context *smu, MetricsMember_t member, uint32_t *value) { struct smu_table_context *smu_table = &smu->smu_table; SmuMetrics_t *metrics = &(((SmuMetricsExternal_t *)(smu_table->metrics_table))->SmuMetrics); int ret = 0; ret = smu_cmn_get_metrics_table(smu, NULL, false); if (ret) return ret; switch (member) { case METRICS_CURR_GFXCLK: *value = metrics->CurrClock[PPCLK_GFXCLK]; break; case METRICS_CURR_SOCCLK: *value = metrics->CurrClock[PPCLK_SOCCLK]; break; case METRICS_CURR_UCLK: *value = metrics->CurrClock[PPCLK_UCLK]; break; case METRICS_CURR_VCLK: *value = metrics->CurrClock[PPCLK_VCLK_0]; break; case METRICS_CURR_VCLK1: *value = metrics->CurrClock[PPCLK_VCLK_1]; break; case METRICS_CURR_DCLK: *value = metrics->CurrClock[PPCLK_DCLK_0]; break; case METRICS_CURR_DCLK1: *value = metrics->CurrClock[PPCLK_DCLK_1]; break; case METRICS_CURR_FCLK: *value = metrics->CurrClock[PPCLK_FCLK]; break; case METRICS_CURR_DCEFCLK: *value = metrics->CurrClock[PPCLK_DCFCLK]; break; case METRICS_AVERAGE_GFXCLK: if (metrics->AverageGfxActivity <= SMU_13_0_0_BUSY_THRESHOLD) *value = metrics->AverageGfxclkFrequencyPostDs; else *value = metrics->AverageGfxclkFrequencyPreDs; break; case METRICS_AVERAGE_FCLK: if (metrics->AverageUclkActivity <= SMU_13_0_0_BUSY_THRESHOLD) *value = metrics->AverageFclkFrequencyPostDs; else *value = metrics->AverageFclkFrequencyPreDs; break; case METRICS_AVERAGE_UCLK: if (metrics->AverageUclkActivity <= SMU_13_0_0_BUSY_THRESHOLD) *value = metrics->AverageMemclkFrequencyPostDs; else *value = metrics->AverageMemclkFrequencyPreDs; break; case METRICS_AVERAGE_VCLK: *value = metrics->AverageVclk0Frequency; break; case METRICS_AVERAGE_DCLK: *value = metrics->AverageDclk0Frequency; break; case METRICS_AVERAGE_VCLK1: *value = metrics->AverageVclk1Frequency; break; case METRICS_AVERAGE_DCLK1: *value = metrics->AverageDclk1Frequency; break; case METRICS_AVERAGE_GFXACTIVITY: *value = metrics->AverageGfxActivity; break; case METRICS_AVERAGE_MEMACTIVITY: *value = metrics->AverageUclkActivity; break; case METRICS_AVERAGE_SOCKETPOWER: *value = metrics->AverageSocketPower << 8; break; case METRICS_TEMPERATURE_EDGE: *value = metrics->AvgTemperature[TEMP_EDGE] * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; break; case METRICS_TEMPERATURE_HOTSPOT: *value = metrics->AvgTemperature[TEMP_HOTSPOT] * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; break; case METRICS_TEMPERATURE_MEM: *value = metrics->AvgTemperature[TEMP_MEM] * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; break; case METRICS_TEMPERATURE_VRGFX: *value = metrics->AvgTemperature[TEMP_VR_GFX] * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; break; case METRICS_TEMPERATURE_VRSOC: *value = metrics->AvgTemperature[TEMP_VR_SOC] * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; break; case METRICS_THROTTLER_STATUS: *value = smu_v13_0_get_throttler_status(metrics); break; case METRICS_CURR_FANSPEED: *value = metrics->AvgFanRpm; break; case METRICS_CURR_FANPWM: *value = metrics->AvgFanPwm; break; case METRICS_VOLTAGE_VDDGFX: *value = metrics->AvgVoltage[SVI_PLANE_GFX]; break; case METRICS_PCIE_RATE: *value = metrics->PcieRate; break; case METRICS_PCIE_WIDTH: *value = metrics->PcieWidth; break; default: *value = UINT_MAX; break; } return ret; } static int smu_v13_0_0_get_dpm_ultimate_freq(struct smu_context *smu, enum smu_clk_type clk_type, uint32_t *min, uint32_t *max) { struct smu_13_0_dpm_context *dpm_context = smu->smu_dpm.dpm_context; struct smu_13_0_dpm_table *dpm_table; switch (clk_type) { case SMU_MCLK: case SMU_UCLK: /* uclk dpm table */ dpm_table = &dpm_context->dpm_tables.uclk_table; break; case SMU_GFXCLK: case SMU_SCLK: /* gfxclk dpm table */ dpm_table = &dpm_context->dpm_tables.gfx_table; break; case SMU_SOCCLK: /* socclk dpm table */ dpm_table = &dpm_context->dpm_tables.soc_table; break; case SMU_FCLK: /* fclk dpm table */ dpm_table = &dpm_context->dpm_tables.fclk_table; break; case SMU_VCLK: case SMU_VCLK1: /* vclk dpm table */ dpm_table = &dpm_context->dpm_tables.vclk_table; break; case SMU_DCLK: case SMU_DCLK1: /* dclk dpm table */ dpm_table = &dpm_context->dpm_tables.dclk_table; break; default: dev_err(smu->adev->dev, "Unsupported clock type!\n"); return -EINVAL; } if (min) *min = dpm_table->min; if (max) *max = dpm_table->max; return 0; } static int smu_v13_0_0_read_sensor(struct smu_context *smu, enum amd_pp_sensors sensor, void *data, uint32_t *size) { struct smu_table_context *table_context = &smu->smu_table; PPTable_t *smc_pptable = table_context->driver_pptable; int ret = 0; switch (sensor) { case AMDGPU_PP_SENSOR_MAX_FAN_RPM: *(uint16_t *)data = smc_pptable->SkuTable.FanMaximumRpm; *size = 4; break; case AMDGPU_PP_SENSOR_MEM_LOAD: ret = smu_v13_0_0_get_smu_metrics_data(smu, METRICS_AVERAGE_MEMACTIVITY, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_GPU_LOAD: ret = smu_v13_0_0_get_smu_metrics_data(smu, METRICS_AVERAGE_GFXACTIVITY, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_GPU_AVG_POWER: ret = smu_v13_0_0_get_smu_metrics_data(smu, METRICS_AVERAGE_SOCKETPOWER, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_HOTSPOT_TEMP: ret = smu_v13_0_0_get_smu_metrics_data(smu, METRICS_TEMPERATURE_HOTSPOT, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_EDGE_TEMP: ret = smu_v13_0_0_get_smu_metrics_data(smu, METRICS_TEMPERATURE_EDGE, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_MEM_TEMP: ret = smu_v13_0_0_get_smu_metrics_data(smu, METRICS_TEMPERATURE_MEM, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_GFX_MCLK: ret = smu_v13_0_0_get_smu_metrics_data(smu, METRICS_CURR_UCLK, (uint32_t *)data); *(uint32_t *)data *= 100; *size = 4; break; case AMDGPU_PP_SENSOR_GFX_SCLK: ret = smu_v13_0_0_get_smu_metrics_data(smu, METRICS_AVERAGE_GFXCLK, (uint32_t *)data); *(uint32_t *)data *= 100; *size = 4; break; case AMDGPU_PP_SENSOR_VDDGFX: ret = smu_v13_0_0_get_smu_metrics_data(smu, METRICS_VOLTAGE_VDDGFX, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_GPU_INPUT_POWER: default: ret = -EOPNOTSUPP; break; } return ret; } static int smu_v13_0_0_get_current_clk_freq_by_table(struct smu_context *smu, enum smu_clk_type clk_type, uint32_t *value) { MetricsMember_t member_type; int clk_id = 0; clk_id = smu_cmn_to_asic_specific_index(smu, CMN2ASIC_MAPPING_CLK, clk_type); if (clk_id < 0) return -EINVAL; switch (clk_id) { case PPCLK_GFXCLK: member_type = METRICS_AVERAGE_GFXCLK; break; case PPCLK_UCLK: member_type = METRICS_CURR_UCLK; break; case PPCLK_FCLK: member_type = METRICS_CURR_FCLK; break; case PPCLK_SOCCLK: member_type = METRICS_CURR_SOCCLK; break; case PPCLK_VCLK_0: member_type = METRICS_AVERAGE_VCLK; break; case PPCLK_DCLK_0: member_type = METRICS_AVERAGE_DCLK; break; case PPCLK_VCLK_1: member_type = METRICS_AVERAGE_VCLK1; break; case PPCLK_DCLK_1: member_type = METRICS_AVERAGE_DCLK1; break; case PPCLK_DCFCLK: member_type = METRICS_CURR_DCEFCLK; break; default: return -EINVAL; } return smu_v13_0_0_get_smu_metrics_data(smu, member_type, value); } static bool smu_v13_0_0_is_od_feature_supported(struct smu_context *smu, int od_feature_bit) { PPTable_t *pptable = smu->smu_table.driver_pptable; const OverDriveLimits_t * const overdrive_upperlimits = &pptable->SkuTable.OverDriveLimitsBasicMax; return overdrive_upperlimits->FeatureCtrlMask & (1U << od_feature_bit); } static void smu_v13_0_0_get_od_setting_limits(struct smu_context *smu, int od_feature_bit, int32_t *min, int32_t *max) { PPTable_t *pptable = smu->smu_table.driver_pptable; const OverDriveLimits_t * const overdrive_upperlimits = &pptable->SkuTable.OverDriveLimitsBasicMax; const OverDriveLimits_t * const overdrive_lowerlimits = &pptable->SkuTable.OverDriveLimitsMin; int32_t od_min_setting, od_max_setting; switch (od_feature_bit) { case PP_OD_FEATURE_GFXCLK_FMIN: od_min_setting = overdrive_lowerlimits->GfxclkFmin; od_max_setting = overdrive_upperlimits->GfxclkFmin; break; case PP_OD_FEATURE_GFXCLK_FMAX: od_min_setting = overdrive_lowerlimits->GfxclkFmax; od_max_setting = overdrive_upperlimits->GfxclkFmax; break; case PP_OD_FEATURE_UCLK_FMIN: od_min_setting = overdrive_lowerlimits->UclkFmin; od_max_setting = overdrive_upperlimits->UclkFmin; break; case PP_OD_FEATURE_UCLK_FMAX: od_min_setting = overdrive_lowerlimits->UclkFmax; od_max_setting = overdrive_upperlimits->UclkFmax; break; case PP_OD_FEATURE_GFX_VF_CURVE: od_min_setting = overdrive_lowerlimits->VoltageOffsetPerZoneBoundary; od_max_setting = overdrive_upperlimits->VoltageOffsetPerZoneBoundary; break; case PP_OD_FEATURE_FAN_CURVE_TEMP: od_min_setting = overdrive_lowerlimits->FanLinearTempPoints; od_max_setting = overdrive_upperlimits->FanLinearTempPoints; break; case PP_OD_FEATURE_FAN_CURVE_PWM: od_min_setting = overdrive_lowerlimits->FanLinearPwmPoints; od_max_setting = overdrive_upperlimits->FanLinearPwmPoints; break; case PP_OD_FEATURE_FAN_ACOUSTIC_LIMIT: od_min_setting = overdrive_lowerlimits->AcousticLimitRpmThreshold; od_max_setting = overdrive_upperlimits->AcousticLimitRpmThreshold; break; case PP_OD_FEATURE_FAN_ACOUSTIC_TARGET: od_min_setting = overdrive_lowerlimits->AcousticTargetRpmThreshold; od_max_setting = overdrive_upperlimits->AcousticTargetRpmThreshold; break; case PP_OD_FEATURE_FAN_TARGET_TEMPERATURE: od_min_setting = overdrive_lowerlimits->FanTargetTemperature; od_max_setting = overdrive_upperlimits->FanTargetTemperature; break; case PP_OD_FEATURE_FAN_MINIMUM_PWM: od_min_setting = overdrive_lowerlimits->FanMinimumPwm; od_max_setting = overdrive_upperlimits->FanMinimumPwm; break; default: od_min_setting = od_max_setting = INT_MAX; break; } if (min) *min = od_min_setting; if (max) *max = od_max_setting; } static void smu_v13_0_0_dump_od_table(struct smu_context *smu, OverDriveTableExternal_t *od_table) { struct amdgpu_device *adev = smu->adev; dev_dbg(adev->dev, "OD: Gfxclk: (%d, %d)\n", od_table->OverDriveTable.GfxclkFmin, od_table->OverDriveTable.GfxclkFmax); dev_dbg(adev->dev, "OD: Uclk: (%d, %d)\n", od_table->OverDriveTable.UclkFmin, od_table->OverDriveTable.UclkFmax); } static int smu_v13_0_0_get_overdrive_table(struct smu_context *smu, OverDriveTableExternal_t *od_table) { int ret = 0; ret = smu_cmn_update_table(smu, SMU_TABLE_OVERDRIVE, 0, (void *)od_table, false); if (ret) dev_err(smu->adev->dev, "Failed to get overdrive table!\n"); return ret; } static int smu_v13_0_0_upload_overdrive_table(struct smu_context *smu, OverDriveTableExternal_t *od_table) { int ret = 0; ret = smu_cmn_update_table(smu, SMU_TABLE_OVERDRIVE, 0, (void *)od_table, true); if (ret) dev_err(smu->adev->dev, "Failed to upload overdrive table!\n"); return ret; } static int smu_v13_0_0_print_clk_levels(struct smu_context *smu, enum smu_clk_type clk_type, char *buf) { struct smu_dpm_context *smu_dpm = &smu->smu_dpm; struct smu_13_0_dpm_context *dpm_context = smu_dpm->dpm_context; OverDriveTableExternal_t *od_table = (OverDriveTableExternal_t *)smu->smu_table.overdrive_table; struct smu_13_0_dpm_table *single_dpm_table; struct smu_13_0_pcie_table *pcie_table; uint32_t gen_speed, lane_width; int i, curr_freq, size = 0; int32_t min_value, max_value; int ret = 0; smu_cmn_get_sysfs_buf(&buf, &size); if (amdgpu_ras_intr_triggered()) { size += sysfs_emit_at(buf, size, "unavailable\n"); return size; } switch (clk_type) { case SMU_SCLK: single_dpm_table = &(dpm_context->dpm_tables.gfx_table); break; case SMU_MCLK: single_dpm_table = &(dpm_context->dpm_tables.uclk_table); break; case SMU_SOCCLK: single_dpm_table = &(dpm_context->dpm_tables.soc_table); break; case SMU_FCLK: single_dpm_table = &(dpm_context->dpm_tables.fclk_table); break; case SMU_VCLK: case SMU_VCLK1: single_dpm_table = &(dpm_context->dpm_tables.vclk_table); break; case SMU_DCLK: case SMU_DCLK1: single_dpm_table = &(dpm_context->dpm_tables.dclk_table); break; case SMU_DCEFCLK: single_dpm_table = &(dpm_context->dpm_tables.dcef_table); break; default: break; } switch (clk_type) { case SMU_SCLK: case SMU_MCLK: case SMU_SOCCLK: case SMU_FCLK: case SMU_VCLK: case SMU_VCLK1: case SMU_DCLK: case SMU_DCLK1: case SMU_DCEFCLK: ret = smu_v13_0_0_get_current_clk_freq_by_table(smu, clk_type, &curr_freq); if (ret) { dev_err(smu->adev->dev, "Failed to get current clock freq!"); return ret; } if (single_dpm_table->is_fine_grained) { /* * For fine grained dpms, there are only two dpm levels: * - level 0 -> min clock freq * - level 1 -> max clock freq * And the current clock frequency can be any value between them. * So, if the current clock frequency is not at level 0 or level 1, * we will fake it as three dpm levels: * - level 0 -> min clock freq * - level 1 -> current actual clock freq * - level 2 -> max clock freq */ if ((single_dpm_table->dpm_levels[0].value != curr_freq) && (single_dpm_table->dpm_levels[1].value != curr_freq)) { size += sysfs_emit_at(buf, size, "0: %uMhz\n", single_dpm_table->dpm_levels[0].value); size += sysfs_emit_at(buf, size, "1: %uMhz *\n", curr_freq); size += sysfs_emit_at(buf, size, "2: %uMhz\n", single_dpm_table->dpm_levels[1].value); } else { size += sysfs_emit_at(buf, size, "0: %uMhz %s\n", single_dpm_table->dpm_levels[0].value, single_dpm_table->dpm_levels[0].value == curr_freq ? "*" : ""); size += sysfs_emit_at(buf, size, "1: %uMhz %s\n", single_dpm_table->dpm_levels[1].value, single_dpm_table->dpm_levels[1].value == curr_freq ? "*" : ""); } } else { for (i = 0; i < single_dpm_table->count; i++) size += sysfs_emit_at(buf, size, "%d: %uMhz %s\n", i, single_dpm_table->dpm_levels[i].value, single_dpm_table->dpm_levels[i].value == curr_freq ? "*" : ""); } break; case SMU_PCIE: ret = smu_v13_0_0_get_smu_metrics_data(smu, METRICS_PCIE_RATE, &gen_speed); if (ret) return ret; ret = smu_v13_0_0_get_smu_metrics_data(smu, METRICS_PCIE_WIDTH, &lane_width); if (ret) return ret; pcie_table = &(dpm_context->dpm_tables.pcie_table); for (i = 0; i < pcie_table->num_of_link_levels; i++) size += sysfs_emit_at(buf, size, "%d: %s %s %dMhz %s\n", i, (pcie_table->pcie_gen[i] == 0) ? "2.5GT/s," : (pcie_table->pcie_gen[i] == 1) ? "5.0GT/s," : (pcie_table->pcie_gen[i] == 2) ? "8.0GT/s," : (pcie_table->pcie_gen[i] == 3) ? "16.0GT/s," : "", (pcie_table->pcie_lane[i] == 1) ? "x1" : (pcie_table->pcie_lane[i] == 2) ? "x2" : (pcie_table->pcie_lane[i] == 3) ? "x4" : (pcie_table->pcie_lane[i] == 4) ? "x8" : (pcie_table->pcie_lane[i] == 5) ? "x12" : (pcie_table->pcie_lane[i] == 6) ? "x16" : "", pcie_table->clk_freq[i], (gen_speed == DECODE_GEN_SPEED(pcie_table->pcie_gen[i])) && (lane_width == DECODE_LANE_WIDTH(pcie_table->pcie_lane[i])) ? "*" : ""); break; case SMU_OD_SCLK: if (!smu_v13_0_0_is_od_feature_supported(smu, PP_OD_FEATURE_GFXCLK_BIT)) break; size += sysfs_emit_at(buf, size, "OD_SCLK:\n"); size += sysfs_emit_at(buf, size, "0: %uMhz\n1: %uMhz\n", od_table->OverDriveTable.GfxclkFmin, od_table->OverDriveTable.GfxclkFmax); break; case SMU_OD_MCLK: if (!smu_v13_0_0_is_od_feature_supported(smu, PP_OD_FEATURE_UCLK_BIT)) break; size += sysfs_emit_at(buf, size, "OD_MCLK:\n"); size += sysfs_emit_at(buf, size, "0: %uMhz\n1: %uMHz\n", od_table->OverDriveTable.UclkFmin, od_table->OverDriveTable.UclkFmax); break; case SMU_OD_VDDGFX_OFFSET: if (!smu_v13_0_0_is_od_feature_supported(smu, PP_OD_FEATURE_GFX_VF_CURVE_BIT)) break; size += sysfs_emit_at(buf, size, "OD_VDDGFX_OFFSET:\n"); size += sysfs_emit_at(buf, size, "%dmV\n", od_table->OverDriveTable.VoltageOffsetPerZoneBoundary[0]); break; case SMU_OD_FAN_CURVE: if (!smu_v13_0_0_is_od_feature_supported(smu, PP_OD_FEATURE_FAN_CURVE_BIT)) break; size += sysfs_emit_at(buf, size, "OD_FAN_CURVE:\n"); for (i = 0; i < NUM_OD_FAN_MAX_POINTS - 1; i++) size += sysfs_emit_at(buf, size, "%d: %dC %d%%\n", i, (int)od_table->OverDriveTable.FanLinearTempPoints[i], (int)od_table->OverDriveTable.FanLinearPwmPoints[i]); size += sysfs_emit_at(buf, size, "%s:\n", "OD_RANGE"); smu_v13_0_0_get_od_setting_limits(smu, PP_OD_FEATURE_FAN_CURVE_TEMP, &min_value, &max_value); size += sysfs_emit_at(buf, size, "FAN_CURVE(hotspot temp): %uC %uC\n", min_value, max_value); smu_v13_0_0_get_od_setting_limits(smu, PP_OD_FEATURE_FAN_CURVE_PWM, &min_value, &max_value); size += sysfs_emit_at(buf, size, "FAN_CURVE(fan speed): %u%% %u%%\n", min_value, max_value); break; case SMU_OD_ACOUSTIC_LIMIT: if (!smu_v13_0_0_is_od_feature_supported(smu, PP_OD_FEATURE_FAN_CURVE_BIT)) break; size += sysfs_emit_at(buf, size, "OD_ACOUSTIC_LIMIT:\n"); size += sysfs_emit_at(buf, size, "%d\n", (int)od_table->OverDriveTable.AcousticLimitRpmThreshold); size += sysfs_emit_at(buf, size, "%s:\n", "OD_RANGE"); smu_v13_0_0_get_od_setting_limits(smu, PP_OD_FEATURE_FAN_ACOUSTIC_LIMIT, &min_value, &max_value); size += sysfs_emit_at(buf, size, "ACOUSTIC_LIMIT: %u %u\n", min_value, max_value); break; case SMU_OD_ACOUSTIC_TARGET: if (!smu_v13_0_0_is_od_feature_supported(smu, PP_OD_FEATURE_FAN_CURVE_BIT)) break; size += sysfs_emit_at(buf, size, "OD_ACOUSTIC_TARGET:\n"); size += sysfs_emit_at(buf, size, "%d\n", (int)od_table->OverDriveTable.AcousticTargetRpmThreshold); size += sysfs_emit_at(buf, size, "%s:\n", "OD_RANGE"); smu_v13_0_0_get_od_setting_limits(smu, PP_OD_FEATURE_FAN_ACOUSTIC_TARGET, &min_value, &max_value); size += sysfs_emit_at(buf, size, "ACOUSTIC_TARGET: %u %u\n", min_value, max_value); break; case SMU_OD_FAN_TARGET_TEMPERATURE: if (!smu_v13_0_0_is_od_feature_supported(smu, PP_OD_FEATURE_FAN_CURVE_BIT)) break; size += sysfs_emit_at(buf, size, "FAN_TARGET_TEMPERATURE:\n"); size += sysfs_emit_at(buf, size, "%d\n", (int)od_table->OverDriveTable.FanTargetTemperature); size += sysfs_emit_at(buf, size, "%s:\n", "OD_RANGE"); smu_v13_0_0_get_od_setting_limits(smu, PP_OD_FEATURE_FAN_TARGET_TEMPERATURE, &min_value, &max_value); size += sysfs_emit_at(buf, size, "TARGET_TEMPERATURE: %u %u\n", min_value, max_value); break; case SMU_OD_FAN_MINIMUM_PWM: if (!smu_v13_0_0_is_od_feature_supported(smu, PP_OD_FEATURE_FAN_CURVE_BIT)) break; size += sysfs_emit_at(buf, size, "FAN_MINIMUM_PWM:\n"); size += sysfs_emit_at(buf, size, "%d\n", (int)od_table->OverDriveTable.FanMinimumPwm); size += sysfs_emit_at(buf, size, "%s:\n", "OD_RANGE"); smu_v13_0_0_get_od_setting_limits(smu, PP_OD_FEATURE_FAN_MINIMUM_PWM, &min_value, &max_value); size += sysfs_emit_at(buf, size, "MINIMUM_PWM: %u %u\n", min_value, max_value); break; case SMU_OD_RANGE: if (!smu_v13_0_0_is_od_feature_supported(smu, PP_OD_FEATURE_GFXCLK_BIT) && !smu_v13_0_0_is_od_feature_supported(smu, PP_OD_FEATURE_UCLK_BIT) && !smu_v13_0_0_is_od_feature_supported(smu, PP_OD_FEATURE_GFX_VF_CURVE_BIT)) break; size += sysfs_emit_at(buf, size, "%s:\n", "OD_RANGE"); if (smu_v13_0_0_is_od_feature_supported(smu, PP_OD_FEATURE_GFXCLK_BIT)) { smu_v13_0_0_get_od_setting_limits(smu, PP_OD_FEATURE_GFXCLK_FMIN, &min_value, NULL); smu_v13_0_0_get_od_setting_limits(smu, PP_OD_FEATURE_GFXCLK_FMAX, NULL, &max_value); size += sysfs_emit_at(buf, size, "SCLK: %7uMhz %10uMhz\n", min_value, max_value); } if (smu_v13_0_0_is_od_feature_supported(smu, PP_OD_FEATURE_UCLK_BIT)) { smu_v13_0_0_get_od_setting_limits(smu, PP_OD_FEATURE_UCLK_FMIN, &min_value, NULL); smu_v13_0_0_get_od_setting_limits(smu, PP_OD_FEATURE_UCLK_FMAX, NULL, &max_value); size += sysfs_emit_at(buf, size, "MCLK: %7uMhz %10uMhz\n", min_value, max_value); } if (smu_v13_0_0_is_od_feature_supported(smu, PP_OD_FEATURE_GFX_VF_CURVE_BIT)) { smu_v13_0_0_get_od_setting_limits(smu, PP_OD_FEATURE_GFX_VF_CURVE, &min_value, &max_value); size += sysfs_emit_at(buf, size, "VDDGFX_OFFSET: %7dmv %10dmv\n", min_value, max_value); } break; default: break; } return size; } static int smu_v13_0_0_od_restore_table_single(struct smu_context *smu, long input) { struct smu_table_context *table_context = &smu->smu_table; OverDriveTableExternal_t *boot_overdrive_table = (OverDriveTableExternal_t *)table_context->boot_overdrive_table; OverDriveTableExternal_t *od_table = (OverDriveTableExternal_t *)table_context->overdrive_table; struct amdgpu_device *adev = smu->adev; int i; switch (input) { case PP_OD_EDIT_FAN_CURVE: for (i = 0; i < NUM_OD_FAN_MAX_POINTS; i++) { od_table->OverDriveTable.FanLinearTempPoints[i] = boot_overdrive_table->OverDriveTable.FanLinearTempPoints[i]; od_table->OverDriveTable.FanLinearPwmPoints[i] = boot_overdrive_table->OverDriveTable.FanLinearPwmPoints[i]; } od_table->OverDriveTable.FanMode = FAN_MODE_AUTO; od_table->OverDriveTable.FeatureCtrlMask |= BIT(PP_OD_FEATURE_FAN_CURVE_BIT); break; case PP_OD_EDIT_ACOUSTIC_LIMIT: od_table->OverDriveTable.AcousticLimitRpmThreshold = boot_overdrive_table->OverDriveTable.AcousticLimitRpmThreshold; od_table->OverDriveTable.FanMode = FAN_MODE_AUTO; od_table->OverDriveTable.FeatureCtrlMask |= BIT(PP_OD_FEATURE_FAN_CURVE_BIT); break; case PP_OD_EDIT_ACOUSTIC_TARGET: od_table->OverDriveTable.AcousticTargetRpmThreshold = boot_overdrive_table->OverDriveTable.AcousticTargetRpmThreshold; od_table->OverDriveTable.FanMode = FAN_MODE_AUTO; od_table->OverDriveTable.FeatureCtrlMask |= BIT(PP_OD_FEATURE_FAN_CURVE_BIT); break; case PP_OD_EDIT_FAN_TARGET_TEMPERATURE: od_table->OverDriveTable.FanTargetTemperature = boot_overdrive_table->OverDriveTable.FanTargetTemperature; od_table->OverDriveTable.FanMode = FAN_MODE_AUTO; od_table->OverDriveTable.FeatureCtrlMask |= BIT(PP_OD_FEATURE_FAN_CURVE_BIT); break; case PP_OD_EDIT_FAN_MINIMUM_PWM: od_table->OverDriveTable.FanMinimumPwm = boot_overdrive_table->OverDriveTable.FanMinimumPwm; od_table->OverDriveTable.FanMode = FAN_MODE_AUTO; od_table->OverDriveTable.FeatureCtrlMask |= BIT(PP_OD_FEATURE_FAN_CURVE_BIT); break; default: dev_info(adev->dev, "Invalid table index: %ld\n", input); return -EINVAL; } return 0; } static int smu_v13_0_0_od_edit_dpm_table(struct smu_context *smu, enum PP_OD_DPM_TABLE_COMMAND type, long input[], uint32_t size) { struct smu_table_context *table_context = &smu->smu_table; OverDriveTableExternal_t *od_table = (OverDriveTableExternal_t *)table_context->overdrive_table; struct amdgpu_device *adev = smu->adev; uint32_t offset_of_voltageoffset; int32_t minimum, maximum; uint32_t feature_ctrlmask; int i, ret = 0; switch (type) { case PP_OD_EDIT_SCLK_VDDC_TABLE: if (!smu_v13_0_0_is_od_feature_supported(smu, PP_OD_FEATURE_GFXCLK_BIT)) { dev_warn(adev->dev, "GFXCLK_LIMITS setting not supported!\n"); return -ENOTSUPP; } for (i = 0; i < size; i += 2) { if (i + 2 > size) { dev_info(adev->dev, "invalid number of input parameters %d\n", size); return -EINVAL; } switch (input[i]) { case 0: smu_v13_0_0_get_od_setting_limits(smu, PP_OD_FEATURE_GFXCLK_FMIN, &minimum, &maximum); if (input[i + 1] < minimum || input[i + 1] > maximum) { dev_info(adev->dev, "GfxclkFmin (%ld) must be within [%u, %u]!\n", input[i + 1], minimum, maximum); return -EINVAL; } od_table->OverDriveTable.GfxclkFmin = input[i + 1]; od_table->OverDriveTable.FeatureCtrlMask |= 1U << PP_OD_FEATURE_GFXCLK_BIT; break; case 1: smu_v13_0_0_get_od_setting_limits(smu, PP_OD_FEATURE_GFXCLK_FMAX, &minimum, &maximum); if (input[i + 1] < minimum || input[i + 1] > maximum) { dev_info(adev->dev, "GfxclkFmax (%ld) must be within [%u, %u]!\n", input[i + 1], minimum, maximum); return -EINVAL; } od_table->OverDriveTable.GfxclkFmax = input[i + 1]; od_table->OverDriveTable.FeatureCtrlMask |= 1U << PP_OD_FEATURE_GFXCLK_BIT; break; default: dev_info(adev->dev, "Invalid SCLK_VDDC_TABLE index: %ld\n", input[i]); dev_info(adev->dev, "Supported indices: [0:min,1:max]\n"); return -EINVAL; } } if (od_table->OverDriveTable.GfxclkFmin > od_table->OverDriveTable.GfxclkFmax) { dev_err(adev->dev, "Invalid setting: GfxclkFmin(%u) is bigger than GfxclkFmax(%u)\n", (uint32_t)od_table->OverDriveTable.GfxclkFmin, (uint32_t)od_table->OverDriveTable.GfxclkFmax); return -EINVAL; } break; case PP_OD_EDIT_MCLK_VDDC_TABLE: if (!smu_v13_0_0_is_od_feature_supported(smu, PP_OD_FEATURE_UCLK_BIT)) { dev_warn(adev->dev, "UCLK_LIMITS setting not supported!\n"); return -ENOTSUPP; } for (i = 0; i < size; i += 2) { if (i + 2 > size) { dev_info(adev->dev, "invalid number of input parameters %d\n", size); return -EINVAL; } switch (input[i]) { case 0: smu_v13_0_0_get_od_setting_limits(smu, PP_OD_FEATURE_UCLK_FMIN, &minimum, &maximum); if (input[i + 1] < minimum || input[i + 1] > maximum) { dev_info(adev->dev, "UclkFmin (%ld) must be within [%u, %u]!\n", input[i + 1], minimum, maximum); return -EINVAL; } od_table->OverDriveTable.UclkFmin = input[i + 1]; od_table->OverDriveTable.FeatureCtrlMask |= 1U << PP_OD_FEATURE_UCLK_BIT; break; case 1: smu_v13_0_0_get_od_setting_limits(smu, PP_OD_FEATURE_UCLK_FMAX, &minimum, &maximum); if (input[i + 1] < minimum || input[i + 1] > maximum) { dev_info(adev->dev, "UclkFmax (%ld) must be within [%u, %u]!\n", input[i + 1], minimum, maximum); return -EINVAL; } od_table->OverDriveTable.UclkFmax = input[i + 1]; od_table->OverDriveTable.FeatureCtrlMask |= 1U << PP_OD_FEATURE_UCLK_BIT; break; default: dev_info(adev->dev, "Invalid MCLK_VDDC_TABLE index: %ld\n", input[i]); dev_info(adev->dev, "Supported indices: [0:min,1:max]\n"); return -EINVAL; } } if (od_table->OverDriveTable.UclkFmin > od_table->OverDriveTable.UclkFmax) { dev_err(adev->dev, "Invalid setting: UclkFmin(%u) is bigger than UclkFmax(%u)\n", (uint32_t)od_table->OverDriveTable.UclkFmin, (uint32_t)od_table->OverDriveTable.UclkFmax); return -EINVAL; } break; case PP_OD_EDIT_VDDGFX_OFFSET: if (!smu_v13_0_0_is_od_feature_supported(smu, PP_OD_FEATURE_GFX_VF_CURVE_BIT)) { dev_warn(adev->dev, "Gfx offset setting not supported!\n"); return -ENOTSUPP; } smu_v13_0_0_get_od_setting_limits(smu, PP_OD_FEATURE_GFX_VF_CURVE, &minimum, &maximum); if (input[0] < minimum || input[0] > maximum) { dev_info(adev->dev, "Voltage offset (%ld) must be within [%d, %d]!\n", input[0], minimum, maximum); return -EINVAL; } for (i = 0; i < PP_NUM_OD_VF_CURVE_POINTS; i++) od_table->OverDriveTable.VoltageOffsetPerZoneBoundary[i] = input[0]; od_table->OverDriveTable.FeatureCtrlMask |= BIT(PP_OD_FEATURE_GFX_VF_CURVE_BIT); break; case PP_OD_EDIT_FAN_CURVE: if (!smu_v13_0_0_is_od_feature_supported(smu, PP_OD_FEATURE_FAN_CURVE_BIT)) { dev_warn(adev->dev, "Fan curve setting not supported!\n"); return -ENOTSUPP; } if (input[0] >= NUM_OD_FAN_MAX_POINTS - 1 || input[0] < 0) return -EINVAL; smu_v13_0_0_get_od_setting_limits(smu, PP_OD_FEATURE_FAN_CURVE_TEMP, &minimum, &maximum); if (input[1] < minimum || input[1] > maximum) { dev_info(adev->dev, "Fan curve temp setting(%ld) must be within [%d, %d]!\n", input[1], minimum, maximum); return -EINVAL; } smu_v13_0_0_get_od_setting_limits(smu, PP_OD_FEATURE_FAN_CURVE_PWM, &minimum, &maximum); if (input[2] < minimum || input[2] > maximum) { dev_info(adev->dev, "Fan curve pwm setting(%ld) must be within [%d, %d]!\n", input[2], minimum, maximum); return -EINVAL; } od_table->OverDriveTable.FanLinearTempPoints[input[0]] = input[1]; od_table->OverDriveTable.FanLinearPwmPoints[input[0]] = input[2]; od_table->OverDriveTable.FanMode = FAN_MODE_MANUAL_LINEAR; od_table->OverDriveTable.FeatureCtrlMask |= BIT(PP_OD_FEATURE_FAN_CURVE_BIT); break; case PP_OD_EDIT_ACOUSTIC_LIMIT: if (!smu_v13_0_0_is_od_feature_supported(smu, PP_OD_FEATURE_FAN_CURVE_BIT)) { dev_warn(adev->dev, "Fan curve setting not supported!\n"); return -ENOTSUPP; } smu_v13_0_0_get_od_setting_limits(smu, PP_OD_FEATURE_FAN_ACOUSTIC_LIMIT, &minimum, &maximum); if (input[0] < minimum || input[0] > maximum) { dev_info(adev->dev, "acoustic limit threshold setting(%ld) must be within [%d, %d]!\n", input[0], minimum, maximum); return -EINVAL; } od_table->OverDriveTable.AcousticLimitRpmThreshold = input[0]; od_table->OverDriveTable.FanMode = FAN_MODE_AUTO; od_table->OverDriveTable.FeatureCtrlMask |= BIT(PP_OD_FEATURE_FAN_CURVE_BIT); break; case PP_OD_EDIT_ACOUSTIC_TARGET: if (!smu_v13_0_0_is_od_feature_supported(smu, PP_OD_FEATURE_FAN_CURVE_BIT)) { dev_warn(adev->dev, "Fan curve setting not supported!\n"); return -ENOTSUPP; } smu_v13_0_0_get_od_setting_limits(smu, PP_OD_FEATURE_FAN_ACOUSTIC_TARGET, &minimum, &maximum); if (input[0] < minimum || input[0] > maximum) { dev_info(adev->dev, "acoustic target threshold setting(%ld) must be within [%d, %d]!\n", input[0], minimum, maximum); return -EINVAL; } od_table->OverDriveTable.AcousticTargetRpmThreshold = input[0]; od_table->OverDriveTable.FanMode = FAN_MODE_AUTO; od_table->OverDriveTable.FeatureCtrlMask |= BIT(PP_OD_FEATURE_FAN_CURVE_BIT); break; case PP_OD_EDIT_FAN_TARGET_TEMPERATURE: if (!smu_v13_0_0_is_od_feature_supported(smu, PP_OD_FEATURE_FAN_CURVE_BIT)) { dev_warn(adev->dev, "Fan curve setting not supported!\n"); return -ENOTSUPP; } smu_v13_0_0_get_od_setting_limits(smu, PP_OD_FEATURE_FAN_TARGET_TEMPERATURE, &minimum, &maximum); if (input[0] < minimum || input[0] > maximum) { dev_info(adev->dev, "fan target temperature setting(%ld) must be within [%d, %d]!\n", input[0], minimum, maximum); return -EINVAL; } od_table->OverDriveTable.FanTargetTemperature = input[0]; od_table->OverDriveTable.FanMode = FAN_MODE_AUTO; od_table->OverDriveTable.FeatureCtrlMask |= BIT(PP_OD_FEATURE_FAN_CURVE_BIT); break; case PP_OD_EDIT_FAN_MINIMUM_PWM: if (!smu_v13_0_0_is_od_feature_supported(smu, PP_OD_FEATURE_FAN_CURVE_BIT)) { dev_warn(adev->dev, "Fan curve setting not supported!\n"); return -ENOTSUPP; } smu_v13_0_0_get_od_setting_limits(smu, PP_OD_FEATURE_FAN_MINIMUM_PWM, &minimum, &maximum); if (input[0] < minimum || input[0] > maximum) { dev_info(adev->dev, "fan minimum pwm setting(%ld) must be within [%d, %d]!\n", input[0], minimum, maximum); return -EINVAL; } od_table->OverDriveTable.FanMinimumPwm = input[0]; od_table->OverDriveTable.FanMode = FAN_MODE_AUTO; od_table->OverDriveTable.FeatureCtrlMask |= BIT(PP_OD_FEATURE_FAN_CURVE_BIT); break; case PP_OD_RESTORE_DEFAULT_TABLE: if (size == 1) { ret = smu_v13_0_0_od_restore_table_single(smu, input[0]); if (ret) return ret; } else { feature_ctrlmask = od_table->OverDriveTable.FeatureCtrlMask; memcpy(od_table, table_context->boot_overdrive_table, sizeof(OverDriveTableExternal_t)); od_table->OverDriveTable.FeatureCtrlMask = feature_ctrlmask; } fallthrough; case PP_OD_COMMIT_DPM_TABLE: /* * The member below instructs PMFW the settings focused in * this single operation. * `uint32_t FeatureCtrlMask;` * It does not contain actual informations about user's custom * settings. Thus we do not cache it. */ offset_of_voltageoffset = offsetof(OverDriveTable_t, VoltageOffsetPerZoneBoundary); if (memcmp((u8 *)od_table + offset_of_voltageoffset, table_context->user_overdrive_table + offset_of_voltageoffset, sizeof(OverDriveTableExternal_t) - offset_of_voltageoffset)) { smu_v13_0_0_dump_od_table(smu, od_table); ret = smu_v13_0_0_upload_overdrive_table(smu, od_table); if (ret) { dev_err(adev->dev, "Failed to upload overdrive table!\n"); return ret; } od_table->OverDriveTable.FeatureCtrlMask = 0; memcpy(table_context->user_overdrive_table + offset_of_voltageoffset, (u8 *)od_table + offset_of_voltageoffset, sizeof(OverDriveTableExternal_t) - offset_of_voltageoffset); if (!memcmp(table_context->user_overdrive_table, table_context->boot_overdrive_table, sizeof(OverDriveTableExternal_t))) smu->user_dpm_profile.user_od = false; else smu->user_dpm_profile.user_od = true; } break; default: return -ENOSYS; } return ret; } static int smu_v13_0_0_force_clk_levels(struct smu_context *smu, enum smu_clk_type clk_type, uint32_t mask) { struct smu_dpm_context *smu_dpm = &smu->smu_dpm; struct smu_13_0_dpm_context *dpm_context = smu_dpm->dpm_context; struct smu_13_0_dpm_table *single_dpm_table; uint32_t soft_min_level, soft_max_level; uint32_t min_freq, max_freq; int ret = 0; soft_min_level = mask ? (ffs(mask) - 1) : 0; soft_max_level = mask ? (fls(mask) - 1) : 0; switch (clk_type) { case SMU_GFXCLK: case SMU_SCLK: single_dpm_table = &(dpm_context->dpm_tables.gfx_table); break; case SMU_MCLK: case SMU_UCLK: single_dpm_table = &(dpm_context->dpm_tables.uclk_table); break; case SMU_SOCCLK: single_dpm_table = &(dpm_context->dpm_tables.soc_table); break; case SMU_FCLK: single_dpm_table = &(dpm_context->dpm_tables.fclk_table); break; case SMU_VCLK: case SMU_VCLK1: single_dpm_table = &(dpm_context->dpm_tables.vclk_table); break; case SMU_DCLK: case SMU_DCLK1: single_dpm_table = &(dpm_context->dpm_tables.dclk_table); break; default: break; } switch (clk_type) { case SMU_GFXCLK: case SMU_SCLK: case SMU_MCLK: case SMU_UCLK: case SMU_SOCCLK: case SMU_FCLK: case SMU_VCLK: case SMU_VCLK1: case SMU_DCLK: case SMU_DCLK1: if (single_dpm_table->is_fine_grained) { /* There is only 2 levels for fine grained DPM */ soft_max_level = (soft_max_level >= 1 ? 1 : 0); soft_min_level = (soft_min_level >= 1 ? 1 : 0); } else { if ((soft_max_level >= single_dpm_table->count) || (soft_min_level >= single_dpm_table->count)) return -EINVAL; } min_freq = single_dpm_table->dpm_levels[soft_min_level].value; max_freq = single_dpm_table->dpm_levels[soft_max_level].value; ret = smu_v13_0_set_soft_freq_limited_range(smu, clk_type, min_freq, max_freq); break; case SMU_DCEFCLK: case SMU_PCIE: default: break; } return ret; } static const struct smu_temperature_range smu13_thermal_policy[] = { {-273150, 99000, 99000, -273150, 99000, 99000, -273150, 99000, 99000}, { 120000, 120000, 120000, 120000, 120000, 120000, 120000, 120000, 120000}, }; static int smu_v13_0_0_get_thermal_temperature_range(struct smu_context *smu, struct smu_temperature_range *range) { struct smu_table_context *table_context = &smu->smu_table; struct smu_13_0_0_powerplay_table *powerplay_table = table_context->power_play_table; PPTable_t *pptable = smu->smu_table.driver_pptable; if (amdgpu_sriov_vf(smu->adev)) return 0; if (!range) return -EINVAL; memcpy(range, &smu13_thermal_policy[0], sizeof(struct smu_temperature_range)); range->max = pptable->SkuTable.TemperatureLimit[TEMP_EDGE] * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; range->edge_emergency_max = (pptable->SkuTable.TemperatureLimit[TEMP_EDGE] + CTF_OFFSET_EDGE) * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; range->hotspot_crit_max = pptable->SkuTable.TemperatureLimit[TEMP_HOTSPOT] * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; range->hotspot_emergency_max = (pptable->SkuTable.TemperatureLimit[TEMP_HOTSPOT] + CTF_OFFSET_HOTSPOT) * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; range->mem_crit_max = pptable->SkuTable.TemperatureLimit[TEMP_MEM] * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; range->mem_emergency_max = (pptable->SkuTable.TemperatureLimit[TEMP_MEM] + CTF_OFFSET_MEM)* SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; range->software_shutdown_temp = powerplay_table->software_shutdown_temp; range->software_shutdown_temp_offset = pptable->SkuTable.FanAbnormalTempLimitOffset; return 0; } static ssize_t smu_v13_0_0_get_gpu_metrics(struct smu_context *smu, void **table) { struct smu_table_context *smu_table = &smu->smu_table; struct gpu_metrics_v1_3 *gpu_metrics = (struct gpu_metrics_v1_3 *)smu_table->gpu_metrics_table; SmuMetricsExternal_t metrics_ext; SmuMetrics_t *metrics = &metrics_ext.SmuMetrics; int ret = 0; ret = smu_cmn_get_metrics_table(smu, &metrics_ext, true); if (ret) return ret; smu_cmn_init_soft_gpu_metrics(gpu_metrics, 1, 3); gpu_metrics->temperature_edge = metrics->AvgTemperature[TEMP_EDGE]; gpu_metrics->temperature_hotspot = metrics->AvgTemperature[TEMP_HOTSPOT]; gpu_metrics->temperature_mem = metrics->AvgTemperature[TEMP_MEM]; gpu_metrics->temperature_vrgfx = metrics->AvgTemperature[TEMP_VR_GFX]; gpu_metrics->temperature_vrsoc = metrics->AvgTemperature[TEMP_VR_SOC]; gpu_metrics->temperature_vrmem = max(metrics->AvgTemperature[TEMP_VR_MEM0], metrics->AvgTemperature[TEMP_VR_MEM1]); gpu_metrics->average_gfx_activity = metrics->AverageGfxActivity; gpu_metrics->average_umc_activity = metrics->AverageUclkActivity; gpu_metrics->average_mm_activity = max(metrics->Vcn0ActivityPercentage, metrics->Vcn1ActivityPercentage); gpu_metrics->average_socket_power = metrics->AverageSocketPower; gpu_metrics->energy_accumulator = metrics->EnergyAccumulator; if (metrics->AverageGfxActivity <= SMU_13_0_0_BUSY_THRESHOLD) gpu_metrics->average_gfxclk_frequency = metrics->AverageGfxclkFrequencyPostDs; else gpu_metrics->average_gfxclk_frequency = metrics->AverageGfxclkFrequencyPreDs; if (metrics->AverageUclkActivity <= SMU_13_0_0_BUSY_THRESHOLD) gpu_metrics->average_uclk_frequency = metrics->AverageMemclkFrequencyPostDs; else gpu_metrics->average_uclk_frequency = metrics->AverageMemclkFrequencyPreDs; gpu_metrics->average_vclk0_frequency = metrics->AverageVclk0Frequency; gpu_metrics->average_dclk0_frequency = metrics->AverageDclk0Frequency; gpu_metrics->average_vclk1_frequency = metrics->AverageVclk1Frequency; gpu_metrics->average_dclk1_frequency = metrics->AverageDclk1Frequency; gpu_metrics->current_gfxclk = gpu_metrics->average_gfxclk_frequency; gpu_metrics->current_socclk = metrics->CurrClock[PPCLK_SOCCLK]; gpu_metrics->current_uclk = metrics->CurrClock[PPCLK_UCLK]; gpu_metrics->current_vclk0 = metrics->CurrClock[PPCLK_VCLK_0]; gpu_metrics->current_dclk0 = metrics->CurrClock[PPCLK_DCLK_0]; gpu_metrics->current_vclk1 = metrics->CurrClock[PPCLK_VCLK_1]; gpu_metrics->current_dclk1 = metrics->CurrClock[PPCLK_DCLK_1]; gpu_metrics->throttle_status = smu_v13_0_get_throttler_status(metrics); gpu_metrics->indep_throttle_status = smu_cmn_get_indep_throttler_status(gpu_metrics->throttle_status, smu_v13_0_0_throttler_map); gpu_metrics->current_fan_speed = metrics->AvgFanRpm; gpu_metrics->pcie_link_width = metrics->PcieWidth; if ((metrics->PcieRate - 1) > LINK_SPEED_MAX) gpu_metrics->pcie_link_speed = pcie_gen_to_speed(1); else gpu_metrics->pcie_link_speed = pcie_gen_to_speed(metrics->PcieRate); gpu_metrics->system_clock_counter = ktime_get_boottime_ns(); gpu_metrics->voltage_gfx = metrics->AvgVoltage[SVI_PLANE_GFX]; gpu_metrics->voltage_soc = metrics->AvgVoltage[SVI_PLANE_SOC]; gpu_metrics->voltage_mem = metrics->AvgVoltage[SVI_PLANE_VMEMP]; *table = (void *)gpu_metrics; return sizeof(struct gpu_metrics_v1_3); } static void smu_v13_0_0_set_supported_od_feature_mask(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; if (smu_v13_0_0_is_od_feature_supported(smu, PP_OD_FEATURE_FAN_CURVE_BIT)) adev->pm.od_feature_mask |= OD_OPS_SUPPORT_FAN_CURVE_RETRIEVE | OD_OPS_SUPPORT_FAN_CURVE_SET | OD_OPS_SUPPORT_ACOUSTIC_LIMIT_THRESHOLD_RETRIEVE | OD_OPS_SUPPORT_ACOUSTIC_LIMIT_THRESHOLD_SET | OD_OPS_SUPPORT_ACOUSTIC_TARGET_THRESHOLD_RETRIEVE | OD_OPS_SUPPORT_ACOUSTIC_TARGET_THRESHOLD_SET | OD_OPS_SUPPORT_FAN_TARGET_TEMPERATURE_RETRIEVE | OD_OPS_SUPPORT_FAN_TARGET_TEMPERATURE_SET | OD_OPS_SUPPORT_FAN_MINIMUM_PWM_RETRIEVE | OD_OPS_SUPPORT_FAN_MINIMUM_PWM_SET; } static int smu_v13_0_0_set_default_od_settings(struct smu_context *smu) { OverDriveTableExternal_t *od_table = (OverDriveTableExternal_t *)smu->smu_table.overdrive_table; OverDriveTableExternal_t *boot_od_table = (OverDriveTableExternal_t *)smu->smu_table.boot_overdrive_table; OverDriveTableExternal_t *user_od_table = (OverDriveTableExternal_t *)smu->smu_table.user_overdrive_table; OverDriveTableExternal_t user_od_table_bak; int ret = 0; int i; ret = smu_v13_0_0_get_overdrive_table(smu, boot_od_table); if (ret) return ret; smu_v13_0_0_dump_od_table(smu, boot_od_table); memcpy(od_table, boot_od_table, sizeof(OverDriveTableExternal_t)); /* * For S3/S4/Runpm resume, we need to setup those overdrive tables again, * but we have to preserve user defined values in "user_od_table". */ if (!smu->adev->in_suspend) { memcpy(user_od_table, boot_od_table, sizeof(OverDriveTableExternal_t)); smu->user_dpm_profile.user_od = false; } else if (smu->user_dpm_profile.user_od) { memcpy(&user_od_table_bak, user_od_table, sizeof(OverDriveTableExternal_t)); memcpy(user_od_table, boot_od_table, sizeof(OverDriveTableExternal_t)); user_od_table->OverDriveTable.GfxclkFmin = user_od_table_bak.OverDriveTable.GfxclkFmin; user_od_table->OverDriveTable.GfxclkFmax = user_od_table_bak.OverDriveTable.GfxclkFmax; user_od_table->OverDriveTable.UclkFmin = user_od_table_bak.OverDriveTable.UclkFmin; user_od_table->OverDriveTable.UclkFmax = user_od_table_bak.OverDriveTable.UclkFmax; for (i = 0; i < PP_NUM_OD_VF_CURVE_POINTS; i++) user_od_table->OverDriveTable.VoltageOffsetPerZoneBoundary[i] = user_od_table_bak.OverDriveTable.VoltageOffsetPerZoneBoundary[i]; for (i = 0; i < NUM_OD_FAN_MAX_POINTS - 1; i++) { user_od_table->OverDriveTable.FanLinearTempPoints[i] = user_od_table_bak.OverDriveTable.FanLinearTempPoints[i]; user_od_table->OverDriveTable.FanLinearPwmPoints[i] = user_od_table_bak.OverDriveTable.FanLinearPwmPoints[i]; } user_od_table->OverDriveTable.AcousticLimitRpmThreshold = user_od_table_bak.OverDriveTable.AcousticLimitRpmThreshold; user_od_table->OverDriveTable.AcousticTargetRpmThreshold = user_od_table_bak.OverDriveTable.AcousticTargetRpmThreshold; user_od_table->OverDriveTable.FanTargetTemperature = user_od_table_bak.OverDriveTable.FanTargetTemperature; user_od_table->OverDriveTable.FanMinimumPwm = user_od_table_bak.OverDriveTable.FanMinimumPwm; } smu_v13_0_0_set_supported_od_feature_mask(smu); return 0; } static int smu_v13_0_0_restore_user_od_settings(struct smu_context *smu) { struct smu_table_context *table_context = &smu->smu_table; OverDriveTableExternal_t *od_table = table_context->overdrive_table; OverDriveTableExternal_t *user_od_table = table_context->user_overdrive_table; int res; user_od_table->OverDriveTable.FeatureCtrlMask = BIT(PP_OD_FEATURE_GFXCLK_BIT) | BIT(PP_OD_FEATURE_UCLK_BIT) | BIT(PP_OD_FEATURE_GFX_VF_CURVE_BIT) | BIT(PP_OD_FEATURE_FAN_CURVE_BIT); res = smu_v13_0_0_upload_overdrive_table(smu, user_od_table); user_od_table->OverDriveTable.FeatureCtrlMask = 0; if (res == 0) memcpy(od_table, user_od_table, sizeof(OverDriveTableExternal_t)); return res; } static int smu_v13_0_0_populate_umd_state_clk(struct smu_context *smu) { struct smu_13_0_dpm_context *dpm_context = smu->smu_dpm.dpm_context; struct smu_13_0_dpm_table *gfx_table = &dpm_context->dpm_tables.gfx_table; struct smu_13_0_dpm_table *mem_table = &dpm_context->dpm_tables.uclk_table; struct smu_13_0_dpm_table *soc_table = &dpm_context->dpm_tables.soc_table; struct smu_13_0_dpm_table *vclk_table = &dpm_context->dpm_tables.vclk_table; struct smu_13_0_dpm_table *dclk_table = &dpm_context->dpm_tables.dclk_table; struct smu_13_0_dpm_table *fclk_table = &dpm_context->dpm_tables.fclk_table; struct smu_umd_pstate_table *pstate_table = &smu->pstate_table; struct smu_table_context *table_context = &smu->smu_table; PPTable_t *pptable = table_context->driver_pptable; DriverReportedClocks_t driver_clocks = pptable->SkuTable.DriverReportedClocks; pstate_table->gfxclk_pstate.min = gfx_table->min; if (driver_clocks.GameClockAc && (driver_clocks.GameClockAc < gfx_table->max)) pstate_table->gfxclk_pstate.peak = driver_clocks.GameClockAc; else pstate_table->gfxclk_pstate.peak = gfx_table->max; pstate_table->uclk_pstate.min = mem_table->min; pstate_table->uclk_pstate.peak = mem_table->max; pstate_table->socclk_pstate.min = soc_table->min; pstate_table->socclk_pstate.peak = soc_table->max; pstate_table->vclk_pstate.min = vclk_table->min; pstate_table->vclk_pstate.peak = vclk_table->max; pstate_table->dclk_pstate.min = dclk_table->min; pstate_table->dclk_pstate.peak = dclk_table->max; pstate_table->fclk_pstate.min = fclk_table->min; pstate_table->fclk_pstate.peak = fclk_table->max; if (driver_clocks.BaseClockAc && driver_clocks.BaseClockAc < gfx_table->max) pstate_table->gfxclk_pstate.standard = driver_clocks.BaseClockAc; else pstate_table->gfxclk_pstate.standard = gfx_table->max; pstate_table->uclk_pstate.standard = mem_table->max; pstate_table->socclk_pstate.standard = soc_table->min; pstate_table->vclk_pstate.standard = vclk_table->min; pstate_table->dclk_pstate.standard = dclk_table->min; pstate_table->fclk_pstate.standard = fclk_table->min; return 0; } static void smu_v13_0_0_get_unique_id(struct smu_context *smu) { struct smu_table_context *smu_table = &smu->smu_table; SmuMetrics_t *metrics = &(((SmuMetricsExternal_t *)(smu_table->metrics_table))->SmuMetrics); struct amdgpu_device *adev = smu->adev; uint32_t upper32 = 0, lower32 = 0; int ret; ret = smu_cmn_get_metrics_table(smu, NULL, false); if (ret) goto out; upper32 = metrics->PublicSerialNumberUpper; lower32 = metrics->PublicSerialNumberLower; out: adev->unique_id = ((uint64_t)upper32 << 32) | lower32; } static int smu_v13_0_0_get_fan_speed_pwm(struct smu_context *smu, uint32_t *speed) { int ret; if (!speed) return -EINVAL; ret = smu_v13_0_0_get_smu_metrics_data(smu, METRICS_CURR_FANPWM, speed); if (ret) { dev_err(smu->adev->dev, "Failed to get fan speed(PWM)!"); return ret; } /* Convert the PMFW output which is in percent to pwm(255) based */ *speed = min(*speed * 255 / 100, (uint32_t)255); return 0; } static int smu_v13_0_0_get_fan_speed_rpm(struct smu_context *smu, uint32_t *speed) { if (!speed) return -EINVAL; return smu_v13_0_0_get_smu_metrics_data(smu, METRICS_CURR_FANSPEED, speed); } static int smu_v13_0_0_enable_mgpu_fan_boost(struct smu_context *smu) { struct smu_table_context *table_context = &smu->smu_table; PPTable_t *pptable = table_context->driver_pptable; SkuTable_t *skutable = &pptable->SkuTable; /* * Skip the MGpuFanBoost setting for those ASICs * which do not support it */ if (skutable->MGpuAcousticLimitRpmThreshold == 0) return 0; return smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetMGpuFanBoostLimitRpm, 0, NULL); } static int smu_v13_0_0_get_power_limit(struct smu_context *smu, uint32_t *current_power_limit, uint32_t *default_power_limit, uint32_t *max_power_limit, uint32_t *min_power_limit) { struct smu_table_context *table_context = &smu->smu_table; struct smu_13_0_0_powerplay_table *powerplay_table = (struct smu_13_0_0_powerplay_table *)table_context->power_play_table; PPTable_t *pptable = table_context->driver_pptable; SkuTable_t *skutable = &pptable->SkuTable; uint32_t power_limit, od_percent_upper = 0, od_percent_lower = 0; uint32_t msg_limit = skutable->MsgLimits.Power[PPT_THROTTLER_PPT0][POWER_SOURCE_AC]; if (smu_v13_0_get_current_power_limit(smu, &power_limit)) power_limit = smu->adev->pm.ac_power ? skutable->SocketPowerLimitAc[PPT_THROTTLER_PPT0] : skutable->SocketPowerLimitDc[PPT_THROTTLER_PPT0]; if (current_power_limit) *current_power_limit = power_limit; if (default_power_limit) *default_power_limit = power_limit; if (powerplay_table) { if (smu->od_enabled && smu_v13_0_0_is_od_feature_supported(smu, PP_OD_FEATURE_PPT_BIT)) { od_percent_upper = le32_to_cpu(powerplay_table->overdrive_table.max[SMU_13_0_0_ODSETTING_POWERPERCENTAGE]); od_percent_lower = le32_to_cpu(powerplay_table->overdrive_table.min[SMU_13_0_0_ODSETTING_POWERPERCENTAGE]); } else if (smu_v13_0_0_is_od_feature_supported(smu, PP_OD_FEATURE_PPT_BIT)) { od_percent_upper = 0; od_percent_lower = le32_to_cpu(powerplay_table->overdrive_table.min[SMU_13_0_0_ODSETTING_POWERPERCENTAGE]); } } dev_dbg(smu->adev->dev, "od percent upper:%d, od percent lower:%d (default power: %d)\n", od_percent_upper, od_percent_lower, power_limit); if (max_power_limit) { *max_power_limit = msg_limit * (100 + od_percent_upper); *max_power_limit /= 100; } if (min_power_limit) { *min_power_limit = power_limit * (100 - od_percent_lower); *min_power_limit /= 100; } return 0; } static int smu_v13_0_0_get_power_profile_mode(struct smu_context *smu, char *buf) { DpmActivityMonitorCoeffIntExternal_t activity_monitor_external; DpmActivityMonitorCoeffInt_t *activity_monitor = &(activity_monitor_external.DpmActivityMonitorCoeffInt); static const char *title[] = { "PROFILE_INDEX(NAME)", "CLOCK_TYPE(NAME)", "FPS", "MinActiveFreqType", "MinActiveFreq", "BoosterFreqType", "BoosterFreq", "PD_Data_limit_c", "PD_Data_error_coeff", "PD_Data_error_rate_coeff"}; int16_t workload_type = 0; uint32_t i, size = 0; int result = 0; if (!buf) return -EINVAL; size += sysfs_emit_at(buf, size, "%16s %s %s %s %s %s %s %s %s %s\n", title[0], title[1], title[2], title[3], title[4], title[5], title[6], title[7], title[8], title[9]); for (i = 0; i < PP_SMC_POWER_PROFILE_COUNT; i++) { /* conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT */ workload_type = smu_cmn_to_asic_specific_index(smu, CMN2ASIC_MAPPING_WORKLOAD, i); if (workload_type == -ENOTSUPP) continue; else if (workload_type < 0) return -EINVAL; result = smu_cmn_update_table(smu, SMU_TABLE_ACTIVITY_MONITOR_COEFF, workload_type, (void *)(&activity_monitor_external), false); if (result) { dev_err(smu->adev->dev, "[%s] Failed to get activity monitor!", __func__); return result; } size += sysfs_emit_at(buf, size, "%2d %14s%s:\n", i, amdgpu_pp_profile_name[i], (i == smu->power_profile_mode) ? "*" : " "); size += sysfs_emit_at(buf, size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d\n", " ", 0, "GFXCLK", activity_monitor->Gfx_FPS, activity_monitor->Gfx_MinActiveFreqType, activity_monitor->Gfx_MinActiveFreq, activity_monitor->Gfx_BoosterFreqType, activity_monitor->Gfx_BoosterFreq, activity_monitor->Gfx_PD_Data_limit_c, activity_monitor->Gfx_PD_Data_error_coeff, activity_monitor->Gfx_PD_Data_error_rate_coeff); size += sysfs_emit_at(buf, size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d\n", " ", 1, "FCLK", activity_monitor->Fclk_FPS, activity_monitor->Fclk_MinActiveFreqType, activity_monitor->Fclk_MinActiveFreq, activity_monitor->Fclk_BoosterFreqType, activity_monitor->Fclk_BoosterFreq, activity_monitor->Fclk_PD_Data_limit_c, activity_monitor->Fclk_PD_Data_error_coeff, activity_monitor->Fclk_PD_Data_error_rate_coeff); } return size; } static int smu_v13_0_0_set_power_profile_mode(struct smu_context *smu, long *input, uint32_t size) { DpmActivityMonitorCoeffIntExternal_t activity_monitor_external; DpmActivityMonitorCoeffInt_t *activity_monitor = &(activity_monitor_external.DpmActivityMonitorCoeffInt); int workload_type, ret = 0; u32 workload_mask; smu->power_profile_mode = input[size]; if (smu->power_profile_mode >= PP_SMC_POWER_PROFILE_COUNT) { dev_err(smu->adev->dev, "Invalid power profile mode %d\n", smu->power_profile_mode); return -EINVAL; } if (smu->power_profile_mode == PP_SMC_POWER_PROFILE_CUSTOM) { ret = smu_cmn_update_table(smu, SMU_TABLE_ACTIVITY_MONITOR_COEFF, WORKLOAD_PPLIB_CUSTOM_BIT, (void *)(&activity_monitor_external), false); if (ret) { dev_err(smu->adev->dev, "[%s] Failed to get activity monitor!", __func__); return ret; } switch (input[0]) { case 0: /* Gfxclk */ activity_monitor->Gfx_FPS = input[1]; activity_monitor->Gfx_MinActiveFreqType = input[2]; activity_monitor->Gfx_MinActiveFreq = input[3]; activity_monitor->Gfx_BoosterFreqType = input[4]; activity_monitor->Gfx_BoosterFreq = input[5]; activity_monitor->Gfx_PD_Data_limit_c = input[6]; activity_monitor->Gfx_PD_Data_error_coeff = input[7]; activity_monitor->Gfx_PD_Data_error_rate_coeff = input[8]; break; case 1: /* Fclk */ activity_monitor->Fclk_FPS = input[1]; activity_monitor->Fclk_MinActiveFreqType = input[2]; activity_monitor->Fclk_MinActiveFreq = input[3]; activity_monitor->Fclk_BoosterFreqType = input[4]; activity_monitor->Fclk_BoosterFreq = input[5]; activity_monitor->Fclk_PD_Data_limit_c = input[6]; activity_monitor->Fclk_PD_Data_error_coeff = input[7]; activity_monitor->Fclk_PD_Data_error_rate_coeff = input[8]; break; } ret = smu_cmn_update_table(smu, SMU_TABLE_ACTIVITY_MONITOR_COEFF, WORKLOAD_PPLIB_CUSTOM_BIT, (void *)(&activity_monitor_external), true); if (ret) { dev_err(smu->adev->dev, "[%s] Failed to set activity monitor!", __func__); return ret; } } /* conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT */ workload_type = smu_cmn_to_asic_specific_index(smu, CMN2ASIC_MAPPING_WORKLOAD, smu->power_profile_mode); if (workload_type < 0) return -EINVAL; workload_mask = 1 << workload_type; /* Add optimizations for SMU13.0.0/10. Reuse the power saving profile */ if (smu->power_profile_mode == PP_SMC_POWER_PROFILE_COMPUTE) { if ((amdgpu_ip_version(smu->adev, MP1_HWIP, 0) == IP_VERSION(13, 0, 0) && ((smu->adev->pm.fw_version == 0x004e6601) || (smu->adev->pm.fw_version >= 0x004e7300))) || (amdgpu_ip_version(smu->adev, MP1_HWIP, 0) == IP_VERSION(13, 0, 10) && smu->adev->pm.fw_version >= 0x00504500)) { workload_type = smu_cmn_to_asic_specific_index(smu, CMN2ASIC_MAPPING_WORKLOAD, PP_SMC_POWER_PROFILE_POWERSAVING); if (workload_type >= 0) workload_mask |= 1 << workload_type; } } return smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetWorkloadMask, workload_mask, NULL); } static bool smu_v13_0_0_is_mode1_reset_supported(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; u32 smu_version; int ret; /* SRIOV does not support SMU mode1 reset */ if (amdgpu_sriov_vf(adev)) return false; /* PMFW support is available since 78.41 */ ret = smu_cmn_get_smc_version(smu, NULL, &smu_version); if (ret) return false; if (smu_version < 0x004e2900) return false; return true; } static int smu_v13_0_0_i2c_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg *msg, int num_msgs) { struct amdgpu_smu_i2c_bus *smu_i2c = i2c_get_adapdata(i2c_adap); struct amdgpu_device *adev = smu_i2c->adev; struct smu_context *smu = adev->powerplay.pp_handle; struct smu_table_context *smu_table = &smu->smu_table; struct smu_table *table = &smu_table->driver_table; SwI2cRequest_t *req, *res = (SwI2cRequest_t *)table->cpu_addr; int i, j, r, c; u16 dir; if (!adev->pm.dpm_enabled) return -EBUSY; req = kzalloc(sizeof(*req), GFP_KERNEL); if (!req) return -ENOMEM; req->I2CcontrollerPort = smu_i2c->port; req->I2CSpeed = I2C_SPEED_FAST_400K; req->SlaveAddress = msg[0].addr << 1; /* wants an 8-bit address */ dir = msg[0].flags & I2C_M_RD; for (c = i = 0; i < num_msgs; i++) { for (j = 0; j < msg[i].len; j++, c++) { SwI2cCmd_t *cmd = &req->SwI2cCmds[c]; if (!(msg[i].flags & I2C_M_RD)) { /* write */ cmd->CmdConfig |= CMDCONFIG_READWRITE_MASK; cmd->ReadWriteData = msg[i].buf[j]; } if ((dir ^ msg[i].flags) & I2C_M_RD) { /* The direction changes. */ dir = msg[i].flags & I2C_M_RD; cmd->CmdConfig |= CMDCONFIG_RESTART_MASK; } req->NumCmds++; /* * Insert STOP if we are at the last byte of either last * message for the transaction or the client explicitly * requires a STOP at this particular message. */ if ((j == msg[i].len - 1) && ((i == num_msgs - 1) || (msg[i].flags & I2C_M_STOP))) { cmd->CmdConfig &= ~CMDCONFIG_RESTART_MASK; cmd->CmdConfig |= CMDCONFIG_STOP_MASK; } } } mutex_lock(&adev->pm.mutex); r = smu_cmn_update_table(smu, SMU_TABLE_I2C_COMMANDS, 0, req, true); if (r) goto fail; for (c = i = 0; i < num_msgs; i++) { if (!(msg[i].flags & I2C_M_RD)) { c += msg[i].len; continue; } for (j = 0; j < msg[i].len; j++, c++) { SwI2cCmd_t *cmd = &res->SwI2cCmds[c]; msg[i].buf[j] = cmd->ReadWriteData; } } r = num_msgs; fail: mutex_unlock(&adev->pm.mutex); kfree(req); return r; } static u32 smu_v13_0_0_i2c_func(struct i2c_adapter *adap) { return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL; } static const struct i2c_algorithm smu_v13_0_0_i2c_algo = { .master_xfer = smu_v13_0_0_i2c_xfer, .functionality = smu_v13_0_0_i2c_func, }; static const struct i2c_adapter_quirks smu_v13_0_0_i2c_control_quirks = { .flags = I2C_AQ_COMB | I2C_AQ_COMB_SAME_ADDR | I2C_AQ_NO_ZERO_LEN, .max_read_len = MAX_SW_I2C_COMMANDS, .max_write_len = MAX_SW_I2C_COMMANDS, .max_comb_1st_msg_len = 2, .max_comb_2nd_msg_len = MAX_SW_I2C_COMMANDS - 2, }; static int smu_v13_0_0_i2c_control_init(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; int res, i; for (i = 0; i < MAX_SMU_I2C_BUSES; i++) { struct amdgpu_smu_i2c_bus *smu_i2c = &adev->pm.smu_i2c[i]; struct i2c_adapter *control = &smu_i2c->adapter; smu_i2c->adev = adev; smu_i2c->port = i; mutex_init(&smu_i2c->mutex); control->owner = THIS_MODULE; control->dev.parent = &adev->pdev->dev; control->algo = &smu_v13_0_0_i2c_algo; snprintf(control->name, sizeof(control->name), "AMDGPU SMU %d", i); control->quirks = &smu_v13_0_0_i2c_control_quirks; i2c_set_adapdata(control, smu_i2c); res = i2c_add_adapter(control); if (res) { DRM_ERROR("Failed to register hw i2c, err: %d\n", res); goto Out_err; } } /* assign the buses used for the FRU EEPROM and RAS EEPROM */ /* XXX ideally this would be something in a vbios data table */ adev->pm.ras_eeprom_i2c_bus = &adev->pm.smu_i2c[1].adapter; adev->pm.fru_eeprom_i2c_bus = &adev->pm.smu_i2c[0].adapter; return 0; Out_err: for ( ; i >= 0; i--) { struct amdgpu_smu_i2c_bus *smu_i2c = &adev->pm.smu_i2c[i]; struct i2c_adapter *control = &smu_i2c->adapter; i2c_del_adapter(control); } return res; } static void smu_v13_0_0_i2c_control_fini(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; int i; for (i = 0; i < MAX_SMU_I2C_BUSES; i++) { struct amdgpu_smu_i2c_bus *smu_i2c = &adev->pm.smu_i2c[i]; struct i2c_adapter *control = &smu_i2c->adapter; i2c_del_adapter(control); } adev->pm.ras_eeprom_i2c_bus = NULL; adev->pm.fru_eeprom_i2c_bus = NULL; } static int smu_v13_0_0_set_mp1_state(struct smu_context *smu, enum pp_mp1_state mp1_state) { int ret; switch (mp1_state) { case PP_MP1_STATE_UNLOAD: ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_PrepareMp1ForUnload, 0x55, NULL); if (!ret && smu->smu_baco.state == SMU_BACO_STATE_EXIT) ret = smu_v13_0_disable_pmfw_state(smu); break; default: /* Ignore others */ ret = 0; } return ret; } static int smu_v13_0_0_set_df_cstate(struct smu_context *smu, enum pp_df_cstate state) { return smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_DFCstateControl, state, NULL); } static void smu_v13_0_0_set_mode1_reset_param(struct smu_context *smu, uint32_t supported_version, uint32_t *param) { struct amdgpu_device *adev = smu->adev; struct amdgpu_ras *ras = amdgpu_ras_get_context(adev); if ((smu->smc_fw_version >= supported_version) && ras && atomic_read(&ras->in_recovery)) /* Set RAS fatal error reset flag */ *param = 1 << 16; else *param = 0; } static int smu_v13_0_0_mode1_reset(struct smu_context *smu) { int ret; uint32_t param; struct amdgpu_device *adev = smu->adev; switch (amdgpu_ip_version(adev, MP1_HWIP, 0)) { case IP_VERSION(13, 0, 0): /* SMU 13_0_0 PMFW supports RAS fatal error reset from 78.77 */ smu_v13_0_0_set_mode1_reset_param(smu, 0x004e4d00, ¶m); ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_Mode1Reset, param, NULL); break; case IP_VERSION(13, 0, 10): /* SMU 13_0_10 PMFW supports RAS fatal error reset from 80.28 */ smu_v13_0_0_set_mode1_reset_param(smu, 0x00501c00, ¶m); ret = smu_cmn_send_debug_smc_msg_with_param(smu, DEBUGSMC_MSG_Mode1Reset, param); break; default: ret = smu_cmn_send_smc_msg(smu, SMU_MSG_Mode1Reset, NULL); break; } if (!ret) msleep(SMU13_MODE1_RESET_WAIT_TIME_IN_MS); return ret; } static int smu_v13_0_0_mode2_reset(struct smu_context *smu) { int ret; struct amdgpu_device *adev = smu->adev; if (amdgpu_ip_version(adev, MP1_HWIP, 0) == IP_VERSION(13, 0, 10)) ret = smu_cmn_send_smc_msg(smu, SMU_MSG_Mode2Reset, NULL); else return -EOPNOTSUPP; return ret; } static int smu_v13_0_0_enable_gfx_features(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; if (amdgpu_ip_version(adev, MP1_HWIP, 0) == IP_VERSION(13, 0, 10)) return smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_EnableAllSmuFeatures, FEATURE_PWR_GFX, NULL); else return -EOPNOTSUPP; } static void smu_v13_0_0_set_smu_mailbox_registers(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; smu->param_reg = SOC15_REG_OFFSET(MP1, 0, mmMP1_SMN_C2PMSG_82); smu->msg_reg = SOC15_REG_OFFSET(MP1, 0, mmMP1_SMN_C2PMSG_66); smu->resp_reg = SOC15_REG_OFFSET(MP1, 0, mmMP1_SMN_C2PMSG_90); smu->debug_param_reg = SOC15_REG_OFFSET(MP1, 0, mmMP1_SMN_C2PMSG_53); smu->debug_msg_reg = SOC15_REG_OFFSET(MP1, 0, mmMP1_SMN_C2PMSG_75); smu->debug_resp_reg = SOC15_REG_OFFSET(MP1, 0, mmMP1_SMN_C2PMSG_54); } static int smu_v13_0_0_smu_send_bad_mem_page_num(struct smu_context *smu, uint32_t size) { int ret = 0; /* message SMU to update the bad page number on SMUBUS */ ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetNumBadMemoryPagesRetired, size, NULL); if (ret) dev_err(smu->adev->dev, "[%s] failed to message SMU to update bad memory pages number\n", __func__); return ret; } static int smu_v13_0_0_send_bad_mem_channel_flag(struct smu_context *smu, uint32_t size) { int ret = 0; /* message SMU to update the bad channel info on SMUBUS */ ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetBadMemoryPagesRetiredFlagsPerChannel, size, NULL); if (ret) dev_err(smu->adev->dev, "[%s] failed to message SMU to update bad memory pages channel info\n", __func__); return ret; } static int smu_v13_0_0_check_ecc_table_support(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; int ret = 0; if ((amdgpu_ip_version(adev, MP1_HWIP, 0) == IP_VERSION(13, 0, 10)) && (smu->smc_fw_version >= SUPPORT_ECCTABLE_SMU_13_0_10_VERSION)) return ret; else return -EOPNOTSUPP; } static ssize_t smu_v13_0_0_get_ecc_info(struct smu_context *smu, void *table) { struct smu_table_context *smu_table = &smu->smu_table; struct amdgpu_device *adev = smu->adev; EccInfoTable_t *ecc_table = NULL; struct ecc_info_per_ch *ecc_info_per_channel = NULL; int i, ret = 0; struct umc_ecc_info *eccinfo = (struct umc_ecc_info *)table; ret = smu_v13_0_0_check_ecc_table_support(smu); if (ret) return ret; ret = smu_cmn_update_table(smu, SMU_TABLE_ECCINFO, 0, smu_table->ecc_table, false); if (ret) { dev_info(adev->dev, "Failed to export SMU ecc table!\n"); return ret; } ecc_table = (EccInfoTable_t *)smu_table->ecc_table; for (i = 0; i < ARRAY_SIZE(ecc_table->EccInfo); i++) { ecc_info_per_channel = &(eccinfo->ecc[i]); ecc_info_per_channel->ce_count_lo_chip = ecc_table->EccInfo[i].ce_count_lo_chip; ecc_info_per_channel->ce_count_hi_chip = ecc_table->EccInfo[i].ce_count_hi_chip; ecc_info_per_channel->mca_umc_status = ecc_table->EccInfo[i].mca_umc_status; ecc_info_per_channel->mca_umc_addr = ecc_table->EccInfo[i].mca_umc_addr; } return ret; } static bool smu_v13_0_0_wbrf_support_check(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; switch (amdgpu_ip_version(adev, MP1_HWIP, 0)) { case IP_VERSION(13, 0, 0): return smu->smc_fw_version >= 0x004e6300; case IP_VERSION(13, 0, 10): return smu->smc_fw_version >= 0x00503300; default: return false; } } static int smu_v13_0_0_set_power_limit(struct smu_context *smu, enum smu_ppt_limit_type limit_type, uint32_t limit) { PPTable_t *pptable = smu->smu_table.driver_pptable; SkuTable_t *skutable = &pptable->SkuTable; uint32_t msg_limit = skutable->MsgLimits.Power[PPT_THROTTLER_PPT0][POWER_SOURCE_AC]; struct smu_table_context *table_context = &smu->smu_table; OverDriveTableExternal_t *od_table = (OverDriveTableExternal_t *)table_context->overdrive_table; int ret = 0; if (limit_type != SMU_DEFAULT_PPT_LIMIT) return -EINVAL; if (limit <= msg_limit) { if (smu->current_power_limit > msg_limit) { od_table->OverDriveTable.Ppt = 0; od_table->OverDriveTable.FeatureCtrlMask |= 1U << PP_OD_FEATURE_PPT_BIT; ret = smu_v13_0_0_upload_overdrive_table(smu, od_table); if (ret) { dev_err(smu->adev->dev, "Failed to upload overdrive table!\n"); return ret; } } return smu_v13_0_set_power_limit(smu, limit_type, limit); } else if (smu->od_enabled) { ret = smu_v13_0_set_power_limit(smu, limit_type, msg_limit); if (ret) return ret; od_table->OverDriveTable.Ppt = (limit * 100) / msg_limit - 100; od_table->OverDriveTable.FeatureCtrlMask |= 1U << PP_OD_FEATURE_PPT_BIT; ret = smu_v13_0_0_upload_overdrive_table(smu, od_table); if (ret) { dev_err(smu->adev->dev, "Failed to upload overdrive table!\n"); return ret; } smu->current_power_limit = limit; } else { return -EINVAL; } return 0; } static const struct pptable_funcs smu_v13_0_0_ppt_funcs = { .get_allowed_feature_mask = smu_v13_0_0_get_allowed_feature_mask, .set_default_dpm_table = smu_v13_0_0_set_default_dpm_table, .i2c_init = smu_v13_0_0_i2c_control_init, .i2c_fini = smu_v13_0_0_i2c_control_fini, .is_dpm_running = smu_v13_0_0_is_dpm_running, .dump_pptable = smu_v13_0_0_dump_pptable, .init_microcode = smu_v13_0_init_microcode, .load_microcode = smu_v13_0_load_microcode, .fini_microcode = smu_v13_0_fini_microcode, .init_smc_tables = smu_v13_0_0_init_smc_tables, .fini_smc_tables = smu_v13_0_fini_smc_tables, .init_power = smu_v13_0_init_power, .fini_power = smu_v13_0_fini_power, .check_fw_status = smu_v13_0_check_fw_status, .setup_pptable = smu_v13_0_0_setup_pptable, .check_fw_version = smu_v13_0_check_fw_version, .write_pptable = smu_cmn_write_pptable, .set_driver_table_location = smu_v13_0_set_driver_table_location, .system_features_control = smu_v13_0_0_system_features_control, .set_allowed_mask = smu_v13_0_set_allowed_mask, .get_enabled_mask = smu_cmn_get_enabled_mask, .dpm_set_vcn_enable = smu_v13_0_set_vcn_enable, .dpm_set_jpeg_enable = smu_v13_0_set_jpeg_enable, .get_dpm_ultimate_freq = smu_v13_0_0_get_dpm_ultimate_freq, .get_vbios_bootup_values = smu_v13_0_get_vbios_bootup_values, .read_sensor = smu_v13_0_0_read_sensor, .feature_is_enabled = smu_cmn_feature_is_enabled, .print_clk_levels = smu_v13_0_0_print_clk_levels, .force_clk_levels = smu_v13_0_0_force_clk_levels, .update_pcie_parameters = smu_v13_0_update_pcie_parameters, .get_thermal_temperature_range = smu_v13_0_0_get_thermal_temperature_range, .register_irq_handler = smu_v13_0_register_irq_handler, .enable_thermal_alert = smu_v13_0_enable_thermal_alert, .disable_thermal_alert = smu_v13_0_disable_thermal_alert, .notify_memory_pool_location = smu_v13_0_notify_memory_pool_location, .get_gpu_metrics = smu_v13_0_0_get_gpu_metrics, .set_soft_freq_limited_range = smu_v13_0_set_soft_freq_limited_range, .set_default_od_settings = smu_v13_0_0_set_default_od_settings, .restore_user_od_settings = smu_v13_0_0_restore_user_od_settings, .od_edit_dpm_table = smu_v13_0_0_od_edit_dpm_table, .init_pptable_microcode = smu_v13_0_init_pptable_microcode, .populate_umd_state_clk = smu_v13_0_0_populate_umd_state_clk, .set_performance_level = smu_v13_0_set_performance_level, .gfx_off_control = smu_v13_0_gfx_off_control, .get_unique_id = smu_v13_0_0_get_unique_id, .get_fan_speed_pwm = smu_v13_0_0_get_fan_speed_pwm, .get_fan_speed_rpm = smu_v13_0_0_get_fan_speed_rpm, .set_fan_speed_pwm = smu_v13_0_set_fan_speed_pwm, .set_fan_speed_rpm = smu_v13_0_set_fan_speed_rpm, .get_fan_control_mode = smu_v13_0_get_fan_control_mode, .set_fan_control_mode = smu_v13_0_set_fan_control_mode, .enable_mgpu_fan_boost = smu_v13_0_0_enable_mgpu_fan_boost, .get_power_limit = smu_v13_0_0_get_power_limit, .set_power_limit = smu_v13_0_0_set_power_limit, .set_power_source = smu_v13_0_set_power_source, .get_power_profile_mode = smu_v13_0_0_get_power_profile_mode, .set_power_profile_mode = smu_v13_0_0_set_power_profile_mode, .run_btc = smu_v13_0_run_btc, .get_pp_feature_mask = smu_cmn_get_pp_feature_mask, .set_pp_feature_mask = smu_cmn_set_pp_feature_mask, .set_tool_table_location = smu_v13_0_set_tool_table_location, .deep_sleep_control = smu_v13_0_deep_sleep_control, .gfx_ulv_control = smu_v13_0_gfx_ulv_control, .baco_is_support = smu_v13_0_baco_is_support, .baco_enter = smu_v13_0_baco_enter, .baco_exit = smu_v13_0_baco_exit, .mode1_reset_is_support = smu_v13_0_0_is_mode1_reset_supported, .mode1_reset = smu_v13_0_0_mode1_reset, .mode2_reset = smu_v13_0_0_mode2_reset, .enable_gfx_features = smu_v13_0_0_enable_gfx_features, .set_mp1_state = smu_v13_0_0_set_mp1_state, .set_df_cstate = smu_v13_0_0_set_df_cstate, .send_hbm_bad_pages_num = smu_v13_0_0_smu_send_bad_mem_page_num, .send_hbm_bad_channel_flag = smu_v13_0_0_send_bad_mem_channel_flag, .gpo_control = smu_v13_0_gpo_control, .get_ecc_info = smu_v13_0_0_get_ecc_info, .notify_display_change = smu_v13_0_notify_display_change, .is_asic_wbrf_supported = smu_v13_0_0_wbrf_support_check, .enable_uclk_shadow = smu_v13_0_enable_uclk_shadow, .set_wbrf_exclusion_ranges = smu_v13_0_set_wbrf_exclusion_ranges, }; void smu_v13_0_0_set_ppt_funcs(struct smu_context *smu) { smu->ppt_funcs = &smu_v13_0_0_ppt_funcs; smu->message_map = smu_v13_0_0_message_map; smu->clock_map = smu_v13_0_0_clk_map; smu->feature_map = smu_v13_0_0_feature_mask_map; smu->table_map = smu_v13_0_0_table_map; smu->pwr_src_map = smu_v13_0_0_pwr_src_map; smu->workload_map = smu_v13_0_0_workload_map; smu->smc_driver_if_version = SMU13_0_0_DRIVER_IF_VERSION; smu_v13_0_0_set_smu_mailbox_registers(smu); }