/* * Copyright 2021 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include "dcn32_clk_mgr_smu_msg.h" #include "clk_mgr_internal.h" #include "reg_helper.h" #include "dalsmc.h" #include "smu13_driver_if.h" #define mmDAL_MSG_REG 0x1628A #define mmDAL_ARG_REG 0x16273 #define mmDAL_RESP_REG 0x16274 #define REG(reg_name) \ mm ## reg_name #include "logger_types.h" #define smu_print(str, ...) {DC_LOG_SMU(str, ##__VA_ARGS__); } /* * Function to be used instead of REG_WAIT macro because the wait ends when * the register is NOT EQUAL to zero, and because the translation in msg_if.h * won't work with REG_WAIT. */ static uint32_t dcn32_smu_wait_for_response(struct clk_mgr_internal *clk_mgr, unsigned int delay_us, unsigned int max_retries) { const uint32_t initial_max_retries = max_retries; uint32_t reg = 0; do { reg = REG_READ(DAL_RESP_REG); if (reg) break; if (delay_us >= 1000) msleep(delay_us/1000); else if (delay_us > 0) udelay(delay_us); } while (max_retries--); TRACE_SMU_DELAY(delay_us * (initial_max_retries - max_retries), clk_mgr->base.ctx); return reg; } static bool dcn32_smu_send_msg_with_param(struct clk_mgr_internal *clk_mgr, uint32_t msg_id, uint32_t param_in, uint32_t *param_out) { /* Wait for response register to be ready */ dcn32_smu_wait_for_response(clk_mgr, 10, 200000); /* Clear response register */ REG_WRITE(DAL_RESP_REG, 0); /* Set the parameter register for the SMU message */ REG_WRITE(DAL_ARG_REG, param_in); /* Trigger the message transaction by writing the message ID */ REG_WRITE(DAL_MSG_REG, msg_id); TRACE_SMU_MSG(msg_id, param_in, clk_mgr->base.ctx); /* Wait for response */ if (dcn32_smu_wait_for_response(clk_mgr, 10, 200000) == DALSMC_Result_OK) { if (param_out) *param_out = REG_READ(DAL_ARG_REG); return true; } return false; } /* * Use these functions to return back delay information so we can aggregate the total * delay when requesting hardmin clk * * dcn32_smu_wait_for_response_delay * dcn32_smu_send_msg_with_param_delay * */ static uint32_t dcn32_smu_wait_for_response_delay(struct clk_mgr_internal *clk_mgr, unsigned int delay_us, unsigned int max_retries, unsigned int *total_delay_us) { uint32_t reg = 0; *total_delay_us = 0; do { reg = REG_READ(DAL_RESP_REG); if (reg) break; if (delay_us >= 1000) msleep(delay_us/1000); else if (delay_us > 0) udelay(delay_us); *total_delay_us += delay_us; } while (max_retries--); TRACE_SMU_DELAY(*total_delay_us, clk_mgr->base.ctx); return reg; } static bool dcn32_smu_send_msg_with_param_delay(struct clk_mgr_internal *clk_mgr, uint32_t msg_id, uint32_t param_in, uint32_t *param_out, unsigned int *total_delay_us) { unsigned int delay1_us, delay2_us; *total_delay_us = 0; /* Wait for response register to be ready */ dcn32_smu_wait_for_response_delay(clk_mgr, 10, 200000, &delay1_us); /* Clear response register */ REG_WRITE(DAL_RESP_REG, 0); /* Set the parameter register for the SMU message */ REG_WRITE(DAL_ARG_REG, param_in); /* Trigger the message transaction by writing the message ID */ REG_WRITE(DAL_MSG_REG, msg_id); TRACE_SMU_MSG(msg_id, param_in, clk_mgr->base.ctx); /* Wait for response */ if (dcn32_smu_wait_for_response_delay(clk_mgr, 10, 200000, &delay2_us) == DALSMC_Result_OK) { if (param_out) *param_out = REG_READ(DAL_ARG_REG); *total_delay_us = delay1_us + delay2_us; return true; } *total_delay_us = delay1_us + 2000000; return false; } void dcn32_smu_send_fclk_pstate_message(struct clk_mgr_internal *clk_mgr, bool enable) { smu_print("FCLK P-state support value is : %d\n", enable); dcn32_smu_send_msg_with_param(clk_mgr, DALSMC_MSG_SetFclkSwitchAllow, enable ? FCLK_PSTATE_SUPPORTED : FCLK_PSTATE_NOTSUPPORTED, NULL); } void dcn32_smu_send_cab_for_uclk_message(struct clk_mgr_internal *clk_mgr, unsigned int num_ways) { uint32_t param = (num_ways << 1) | (num_ways > 0); dcn32_smu_send_msg_with_param(clk_mgr, DALSMC_MSG_SetCabForUclkPstate, param, NULL); smu_print("Numways for SubVP : %d\n", num_ways); } void dcn32_smu_transfer_wm_table_dram_2_smu(struct clk_mgr_internal *clk_mgr) { smu_print("SMU Transfer WM table DRAM 2 SMU\n"); dcn32_smu_send_msg_with_param(clk_mgr, DALSMC_MSG_TransferTableDram2Smu, TABLE_WATERMARKS, NULL); } void dcn32_smu_set_pme_workaround(struct clk_mgr_internal *clk_mgr) { smu_print("SMU Set PME workaround\n"); dcn32_smu_send_msg_with_param(clk_mgr, DALSMC_MSG_BacoAudioD3PME, 0, NULL); } /* Check PMFW version if it supports ReturnHardMinStatus message */ static bool dcn32_get_hard_min_status_supported(struct clk_mgr_internal *clk_mgr) { if (ASICREV_IS_GC_11_0_0(clk_mgr->base.ctx->asic_id.hw_internal_rev)) { if (clk_mgr->smu_ver >= 0x4e6a00) return true; } else if (ASICREV_IS_GC_11_0_2(clk_mgr->base.ctx->asic_id.hw_internal_rev)) { if (clk_mgr->smu_ver >= 0x524e00) return true; } else { /* ASICREV_IS_GC_11_0_3 */ if (clk_mgr->smu_ver >= 0x503900) return true; } return false; } /* Returns the clocks which were fulfilled by the DAL hard min arbiter in PMFW */ static unsigned int dcn32_smu_get_hard_min_status(struct clk_mgr_internal *clk_mgr, bool *no_timeout, unsigned int *total_delay_us) { uint32_t response = 0; /* bits 23:16 for clock type, lower 16 bits for frequency in MHz */ uint32_t param = 0; *no_timeout = dcn32_smu_send_msg_with_param_delay(clk_mgr, DALSMC_MSG_ReturnHardMinStatus, param, &response, total_delay_us); smu_print("SMU Get hard min status: no_timeout %d delay %d us clk bits %x\n", *no_timeout, *total_delay_us, response); return response; } static bool dcn32_smu_wait_get_hard_min_status(struct clk_mgr_internal *clk_mgr, uint32_t clk) { int readDalHardMinClkBits, checkDalHardMinClkBits; unsigned int total_delay_us, read_total_delay_us; bool no_timeout, hard_min_done; static unsigned int cur_wait_get_hard_min_max_us; static unsigned int cur_wait_get_hard_min_max_timeouts; checkDalHardMinClkBits = CHECK_HARD_MIN_CLK_DPREFCLK; if (clk == PPCLK_DISPCLK) checkDalHardMinClkBits |= CHECK_HARD_MIN_CLK_DISPCLK; if (clk == PPCLK_DPPCLK) checkDalHardMinClkBits |= CHECK_HARD_MIN_CLK_DPPCLK; if (clk == PPCLK_DCFCLK) checkDalHardMinClkBits |= CHECK_HARD_MIN_CLK_DCFCLK; if (clk == PPCLK_DTBCLK) checkDalHardMinClkBits |= CHECK_HARD_MIN_CLK_DTBCLK; if (clk == PPCLK_UCLK) checkDalHardMinClkBits |= CHECK_HARD_MIN_CLK_UCLK; if (checkDalHardMinClkBits == CHECK_HARD_MIN_CLK_DPREFCLK) return 0; total_delay_us = 0; hard_min_done = false; while (1) { readDalHardMinClkBits = dcn32_smu_get_hard_min_status(clk_mgr, &no_timeout, &read_total_delay_us); total_delay_us += read_total_delay_us; if (checkDalHardMinClkBits == (readDalHardMinClkBits & checkDalHardMinClkBits)) { hard_min_done = true; break; } if (total_delay_us >= 2000000) { cur_wait_get_hard_min_max_timeouts++; smu_print("SMU Wait get hard min status: %d timeouts\n", cur_wait_get_hard_min_max_timeouts); break; } msleep(1); total_delay_us += 1000; } if (total_delay_us > cur_wait_get_hard_min_max_us) cur_wait_get_hard_min_max_us = total_delay_us; smu_print("SMU Wait get hard min status: no_timeout %d, delay %d us, max %d us, read %x, check %x\n", no_timeout, total_delay_us, cur_wait_get_hard_min_max_us, readDalHardMinClkBits, checkDalHardMinClkBits); return hard_min_done; } /* Returns the actual frequency that was set in MHz, 0 on failure */ unsigned int dcn32_smu_set_hard_min_by_freq(struct clk_mgr_internal *clk_mgr, uint32_t clk, uint16_t freq_mhz) { uint32_t response = 0; bool hard_min_done = false; /* bits 23:16 for clock type, lower 16 bits for frequency in MHz */ uint32_t param = (clk << 16) | freq_mhz; smu_print("SMU Set hard min by freq: clk = %d, freq_mhz = %d MHz\n", clk, freq_mhz); dcn32_smu_send_msg_with_param(clk_mgr, DALSMC_MSG_SetHardMinByFreq, param, &response); if (dcn32_get_hard_min_status_supported(clk_mgr)) { hard_min_done = dcn32_smu_wait_get_hard_min_status(clk_mgr, clk); smu_print("SMU Frequency set = %d KHz hard_min_done %d\n", response, hard_min_done); } else smu_print("SMU Frequency set = %d KHz\n", response); return response; } void dcn32_smu_wait_for_dmub_ack_mclk(struct clk_mgr_internal *clk_mgr, bool enable) { smu_print("PMFW to wait for DMCUB ack for MCLK : %d\n", enable); dcn32_smu_send_msg_with_param(clk_mgr, 0x14, enable ? 1 : 0, NULL); }