// SPDX-License-Identifier: GPL-2.0-only /* * runtime-wrappers.c - Runtime Services function call wrappers * * Implementation summary: * ----------------------- * 1. When user/kernel thread requests to execute efi_runtime_service(), * enqueue work to efi_rts_wq. * 2. Caller thread waits for completion until the work is finished * because it's dependent on the return status and execution of * efi_runtime_service(). * For instance, get_variable() and get_next_variable(). * * Copyright (C) 2014 Linaro Ltd. * * Split off from arch/x86/platform/efi/efi.c * * Copyright (C) 1999 VA Linux Systems * Copyright (C) 1999 Walt Drummond * Copyright (C) 1999-2002 Hewlett-Packard Co. * Copyright (C) 2005-2008 Intel Co. * Copyright (C) 2013 SuSE Labs */ #define pr_fmt(fmt) "efi: " fmt #include #include #include #include #include #include #include #include #include /* * Wrap around the new efi_call_virt_generic() macros so that the * code doesn't get too cluttered: */ #define efi_call_virt(f, args...) \ arch_efi_call_virt(efi.runtime, f, args) union efi_rts_args { struct { efi_time_t *time; efi_time_cap_t *capabilities; } GET_TIME; struct { efi_time_t *time; } SET_TIME; struct { efi_bool_t *enabled; efi_bool_t *pending; efi_time_t *time; } GET_WAKEUP_TIME; struct { efi_bool_t enable; efi_time_t *time; } SET_WAKEUP_TIME; struct { efi_char16_t *name; efi_guid_t *vendor; u32 *attr; unsigned long *data_size; void *data; } GET_VARIABLE; struct { unsigned long *name_size; efi_char16_t *name; efi_guid_t *vendor; } GET_NEXT_VARIABLE; struct { efi_char16_t *name; efi_guid_t *vendor; u32 attr; unsigned long data_size; void *data; } SET_VARIABLE; struct { u32 attr; u64 *storage_space; u64 *remaining_space; u64 *max_variable_size; } QUERY_VARIABLE_INFO; struct { u32 *high_count; } GET_NEXT_HIGH_MONO_COUNT; struct { efi_capsule_header_t **capsules; unsigned long count; unsigned long sg_list; } UPDATE_CAPSULE; struct { efi_capsule_header_t **capsules; unsigned long count; u64 *max_size; int *reset_type; } QUERY_CAPSULE_CAPS; struct { efi_status_t (__efiapi *acpi_prm_handler)(u64, void *); u64 param_buffer_addr; void *context; } ACPI_PRM_HANDLER; }; struct efi_runtime_work efi_rts_work; /* * efi_queue_work: Queue EFI runtime service call and wait for completion * @_rts: EFI runtime service function identifier * @_args: Arguments to pass to the EFI runtime service * * Accesses to efi_runtime_services() are serialized by a binary * semaphore (efi_runtime_lock) and caller waits until the work is * finished, hence _only_ one work is queued at a time and the caller * thread waits for completion. */ #define efi_queue_work(_rts, _args...) \ __efi_queue_work(EFI_ ## _rts, \ &(union efi_rts_args){ ._rts = { _args }}) #ifndef arch_efi_save_flags #define arch_efi_save_flags(state_flags) local_save_flags(state_flags) #define arch_efi_restore_flags(state_flags) local_irq_restore(state_flags) #endif unsigned long efi_call_virt_save_flags(void) { unsigned long flags; arch_efi_save_flags(flags); return flags; } void efi_call_virt_check_flags(unsigned long flags, const void *caller) { unsigned long cur_flags, mismatch; cur_flags = efi_call_virt_save_flags(); mismatch = flags ^ cur_flags; if (!WARN_ON_ONCE(mismatch & ARCH_EFI_IRQ_FLAGS_MASK)) return; add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_NOW_UNRELIABLE); pr_err_ratelimited(FW_BUG "IRQ flags corrupted (0x%08lx=>0x%08lx) by EFI call from %pS\n", flags, cur_flags, caller ?: __builtin_return_address(0)); arch_efi_restore_flags(flags); } /* * According to section 7.1 of the UEFI spec, Runtime Services are not fully * reentrant, and there are particular combinations of calls that need to be * serialized. (source: UEFI Specification v2.4A) * * Table 31. Rules for Reentry Into Runtime Services * +------------------------------------+-------------------------------+ * | If previous call is busy in | Forbidden to call | * +------------------------------------+-------------------------------+ * | Any | SetVirtualAddressMap() | * +------------------------------------+-------------------------------+ * | ConvertPointer() | ConvertPointer() | * +------------------------------------+-------------------------------+ * | SetVariable() | ResetSystem() | * | UpdateCapsule() | | * | SetTime() | | * | SetWakeupTime() | | * | GetNextHighMonotonicCount() | | * +------------------------------------+-------------------------------+ * | GetVariable() | GetVariable() | * | GetNextVariableName() | GetNextVariableName() | * | SetVariable() | SetVariable() | * | QueryVariableInfo() | QueryVariableInfo() | * | UpdateCapsule() | UpdateCapsule() | * | QueryCapsuleCapabilities() | QueryCapsuleCapabilities() | * | GetNextHighMonotonicCount() | GetNextHighMonotonicCount() | * +------------------------------------+-------------------------------+ * | GetTime() | GetTime() | * | SetTime() | SetTime() | * | GetWakeupTime() | GetWakeupTime() | * | SetWakeupTime() | SetWakeupTime() | * +------------------------------------+-------------------------------+ * * Due to the fact that the EFI pstore may write to the variable store in * interrupt context, we need to use a lock for at least the groups that * contain SetVariable() and QueryVariableInfo(). That leaves little else, as * none of the remaining functions are actually ever called at runtime. * So let's just use a single lock to serialize all Runtime Services calls. */ static DEFINE_SEMAPHORE(efi_runtime_lock, 1); /* * Expose the EFI runtime lock to the UV platform */ #ifdef CONFIG_X86_UV extern struct semaphore __efi_uv_runtime_lock __alias(efi_runtime_lock); #endif /* * Calls the appropriate efi_runtime_service() with the appropriate * arguments. */ static void efi_call_rts(struct work_struct *work) { const union efi_rts_args *args = efi_rts_work.args; efi_status_t status = EFI_NOT_FOUND; unsigned long flags; arch_efi_call_virt_setup(); flags = efi_call_virt_save_flags(); switch (efi_rts_work.efi_rts_id) { case EFI_GET_TIME: status = efi_call_virt(get_time, args->GET_TIME.time, args->GET_TIME.capabilities); break; case EFI_SET_TIME: status = efi_call_virt(set_time, args->SET_TIME.time); break; case EFI_GET_WAKEUP_TIME: status = efi_call_virt(get_wakeup_time, args->GET_WAKEUP_TIME.enabled, args->GET_WAKEUP_TIME.pending, args->GET_WAKEUP_TIME.time); break; case EFI_SET_WAKEUP_TIME: status = efi_call_virt(set_wakeup_time, args->SET_WAKEUP_TIME.enable, args->SET_WAKEUP_TIME.time); break; case EFI_GET_VARIABLE: status = efi_call_virt(get_variable, args->GET_VARIABLE.name, args->GET_VARIABLE.vendor, args->GET_VARIABLE.attr, args->GET_VARIABLE.data_size, args->GET_VARIABLE.data); break; case EFI_GET_NEXT_VARIABLE: status = efi_call_virt(get_next_variable, args->GET_NEXT_VARIABLE.name_size, args->GET_NEXT_VARIABLE.name, args->GET_NEXT_VARIABLE.vendor); break; case EFI_SET_VARIABLE: status = efi_call_virt(set_variable, args->SET_VARIABLE.name, args->SET_VARIABLE.vendor, args->SET_VARIABLE.attr, args->SET_VARIABLE.data_size, args->SET_VARIABLE.data); break; case EFI_QUERY_VARIABLE_INFO: status = efi_call_virt(query_variable_info, args->QUERY_VARIABLE_INFO.attr, args->QUERY_VARIABLE_INFO.storage_space, args->QUERY_VARIABLE_INFO.remaining_space, args->QUERY_VARIABLE_INFO.max_variable_size); break; case EFI_GET_NEXT_HIGH_MONO_COUNT: status = efi_call_virt(get_next_high_mono_count, args->GET_NEXT_HIGH_MONO_COUNT.high_count); break; case EFI_UPDATE_CAPSULE: status = efi_call_virt(update_capsule, args->UPDATE_CAPSULE.capsules, args->UPDATE_CAPSULE.count, args->UPDATE_CAPSULE.sg_list); break; case EFI_QUERY_CAPSULE_CAPS: status = efi_call_virt(query_capsule_caps, args->QUERY_CAPSULE_CAPS.capsules, args->QUERY_CAPSULE_CAPS.count, args->QUERY_CAPSULE_CAPS.max_size, args->QUERY_CAPSULE_CAPS.reset_type); break; case EFI_ACPI_PRM_HANDLER: #ifdef CONFIG_ACPI_PRMT status = arch_efi_call_virt(args, ACPI_PRM_HANDLER.acpi_prm_handler, args->ACPI_PRM_HANDLER.param_buffer_addr, args->ACPI_PRM_HANDLER.context); break; #endif default: /* * Ideally, we should never reach here because a caller of this * function should have put the right efi_runtime_service() * function identifier into efi_rts_work->efi_rts_id */ pr_err("Requested executing invalid EFI Runtime Service.\n"); } efi_call_virt_check_flags(flags, efi_rts_work.caller); arch_efi_call_virt_teardown(); efi_rts_work.status = status; complete(&efi_rts_work.efi_rts_comp); } static efi_status_t __efi_queue_work(enum efi_rts_ids id, union efi_rts_args *args) { efi_rts_work.efi_rts_id = id; efi_rts_work.args = args; efi_rts_work.caller = __builtin_return_address(0); efi_rts_work.status = EFI_ABORTED; if (!efi_enabled(EFI_RUNTIME_SERVICES)) { pr_warn_once("EFI Runtime Services are disabled!\n"); efi_rts_work.status = EFI_DEVICE_ERROR; goto exit; } init_completion(&efi_rts_work.efi_rts_comp); INIT_WORK(&efi_rts_work.work, efi_call_rts); /* * queue_work() returns 0 if work was already on queue, * _ideally_ this should never happen. */ if (queue_work(efi_rts_wq, &efi_rts_work.work)) wait_for_completion(&efi_rts_work.efi_rts_comp); else pr_err("Failed to queue work to efi_rts_wq.\n"); WARN_ON_ONCE(efi_rts_work.status == EFI_ABORTED); exit: efi_rts_work.efi_rts_id = EFI_NONE; return efi_rts_work.status; } static efi_status_t virt_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc) { efi_status_t status; if (down_interruptible(&efi_runtime_lock)) return EFI_ABORTED; status = efi_queue_work(GET_TIME, tm, tc); up(&efi_runtime_lock); return status; } static efi_status_t virt_efi_set_time(efi_time_t *tm) { efi_status_t status; if (down_interruptible(&efi_runtime_lock)) return EFI_ABORTED; status = efi_queue_work(SET_TIME, tm); up(&efi_runtime_lock); return status; } static efi_status_t virt_efi_get_wakeup_time(efi_bool_t *enabled, efi_bool_t *pending, efi_time_t *tm) { efi_status_t status; if (down_interruptible(&efi_runtime_lock)) return EFI_ABORTED; status = efi_queue_work(GET_WAKEUP_TIME, enabled, pending, tm); up(&efi_runtime_lock); return status; } static efi_status_t virt_efi_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm) { efi_status_t status; if (down_interruptible(&efi_runtime_lock)) return EFI_ABORTED; status = efi_queue_work(SET_WAKEUP_TIME, enabled, tm); up(&efi_runtime_lock); return status; } static efi_status_t virt_efi_get_variable(efi_char16_t *name, efi_guid_t *vendor, u32 *attr, unsigned long *data_size, void *data) { efi_status_t status; if (down_interruptible(&efi_runtime_lock)) return EFI_ABORTED; status = efi_queue_work(GET_VARIABLE, name, vendor, attr, data_size, data); up(&efi_runtime_lock); return status; } static efi_status_t virt_efi_get_next_variable(unsigned long *name_size, efi_char16_t *name, efi_guid_t *vendor) { efi_status_t status; if (down_interruptible(&efi_runtime_lock)) return EFI_ABORTED; status = efi_queue_work(GET_NEXT_VARIABLE, name_size, name, vendor); up(&efi_runtime_lock); return status; } static efi_status_t virt_efi_set_variable(efi_char16_t *name, efi_guid_t *vendor, u32 attr, unsigned long data_size, void *data) { efi_status_t status; if (down_interruptible(&efi_runtime_lock)) return EFI_ABORTED; status = efi_queue_work(SET_VARIABLE, name, vendor, attr, data_size, data); up(&efi_runtime_lock); return status; } static efi_status_t virt_efi_set_variable_nb(efi_char16_t *name, efi_guid_t *vendor, u32 attr, unsigned long data_size, void *data) { efi_status_t status; if (down_trylock(&efi_runtime_lock)) return EFI_NOT_READY; status = efi_call_virt_pointer(efi.runtime, set_variable, name, vendor, attr, data_size, data); up(&efi_runtime_lock); return status; } static efi_status_t virt_efi_query_variable_info(u32 attr, u64 *storage_space, u64 *remaining_space, u64 *max_variable_size) { efi_status_t status; if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION) return EFI_UNSUPPORTED; if (down_interruptible(&efi_runtime_lock)) return EFI_ABORTED; status = efi_queue_work(QUERY_VARIABLE_INFO, attr, storage_space, remaining_space, max_variable_size); up(&efi_runtime_lock); return status; } static efi_status_t virt_efi_query_variable_info_nb(u32 attr, u64 *storage_space, u64 *remaining_space, u64 *max_variable_size) { efi_status_t status; if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION) return EFI_UNSUPPORTED; if (down_trylock(&efi_runtime_lock)) return EFI_NOT_READY; status = efi_call_virt_pointer(efi.runtime, query_variable_info, attr, storage_space, remaining_space, max_variable_size); up(&efi_runtime_lock); return status; } static efi_status_t virt_efi_get_next_high_mono_count(u32 *count) { efi_status_t status; if (down_interruptible(&efi_runtime_lock)) return EFI_ABORTED; status = efi_queue_work(GET_NEXT_HIGH_MONO_COUNT, count); up(&efi_runtime_lock); return status; } static void virt_efi_reset_system(int reset_type, efi_status_t status, unsigned long data_size, efi_char16_t *data) { if (down_trylock(&efi_runtime_lock)) { pr_warn("failed to invoke the reset_system() runtime service:\n" "could not get exclusive access to the firmware\n"); return; } arch_efi_call_virt_setup(); efi_rts_work.efi_rts_id = EFI_RESET_SYSTEM; arch_efi_call_virt(efi.runtime, reset_system, reset_type, status, data_size, data); arch_efi_call_virt_teardown(); up(&efi_runtime_lock); } static efi_status_t virt_efi_update_capsule(efi_capsule_header_t **capsules, unsigned long count, unsigned long sg_list) { efi_status_t status; if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION) return EFI_UNSUPPORTED; if (down_interruptible(&efi_runtime_lock)) return EFI_ABORTED; status = efi_queue_work(UPDATE_CAPSULE, capsules, count, sg_list); up(&efi_runtime_lock); return status; } static efi_status_t virt_efi_query_capsule_caps(efi_capsule_header_t **capsules, unsigned long count, u64 *max_size, int *reset_type) { efi_status_t status; if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION) return EFI_UNSUPPORTED; if (down_interruptible(&efi_runtime_lock)) return EFI_ABORTED; status = efi_queue_work(QUERY_CAPSULE_CAPS, capsules, count, max_size, reset_type); up(&efi_runtime_lock); return status; } void __init efi_native_runtime_setup(void) { efi.get_time = virt_efi_get_time; efi.set_time = virt_efi_set_time; efi.get_wakeup_time = virt_efi_get_wakeup_time; efi.set_wakeup_time = virt_efi_set_wakeup_time; efi.get_variable = virt_efi_get_variable; efi.get_next_variable = virt_efi_get_next_variable; efi.set_variable = virt_efi_set_variable; efi.set_variable_nonblocking = virt_efi_set_variable_nb; efi.get_next_high_mono_count = virt_efi_get_next_high_mono_count; efi.reset_system = virt_efi_reset_system; efi.query_variable_info = virt_efi_query_variable_info; efi.query_variable_info_nonblocking = virt_efi_query_variable_info_nb; efi.update_capsule = virt_efi_update_capsule; efi.query_capsule_caps = virt_efi_query_capsule_caps; } #ifdef CONFIG_ACPI_PRMT efi_status_t efi_call_acpi_prm_handler(efi_status_t (__efiapi *handler_addr)(u64, void *), u64 param_buffer_addr, void *context) { efi_status_t status; if (down_interruptible(&efi_runtime_lock)) return EFI_ABORTED; status = efi_queue_work(ACPI_PRM_HANDLER, handler_addr, param_buffer_addr, context); up(&efi_runtime_lock); return status; } #endif