// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2016-2019 HabanaLabs, Ltd. * All Rights Reserved. */ #include "../habanalabs.h" #include "../../include/hw_ip/mmu/mmu_general.h" #include #define MMU_V1_MAX_HOPS (MMU_HOP4 + 1) static inline u64 get_hop_pte_addr(struct hl_ctx *ctx, struct hl_mmu_properties *mmu_prop, u64 *hop_addr_arr, u64 virt_addr, enum mmu_hop_num hop_idx) { u64 mask, shift; mask = mmu_prop->hop_masks[hop_idx]; shift = mmu_prop->hop_shifts[hop_idx]; return hop_addr_arr[hop_idx] + ctx->hdev->asic_prop.mmu_pte_size * ((virt_addr & mask) >> shift); } static int dram_default_mapping_init(struct hl_ctx *ctx) { struct hl_device *hdev = ctx->hdev; struct asic_fixed_properties *prop = &hdev->asic_prop; u64 num_of_hop3, total_hops, hop0_addr, hop1_addr, hop2_addr, hop2_pte_addr, hop3_pte_addr, pte_val; int rc, i, j, hop3_allocated = 0; if ((!prop->dram_supports_virtual_memory) || (!hdev->dram_default_page_mapping) || (ctx->asid == HL_KERNEL_ASID_ID)) return 0; num_of_hop3 = prop->dram_size_for_default_page_mapping; do_div(num_of_hop3, prop->dram_page_size); do_div(num_of_hop3, HOP_PTE_ENTRIES_512); /* add hop1 and hop2 */ total_hops = num_of_hop3 + 2; ctx->dram_default_hops = kcalloc(total_hops, HL_PTE_SIZE, GFP_KERNEL); if (!ctx->dram_default_hops) return -ENOMEM; hop0_addr = hl_mmu_dr_get_hop0_addr(ctx); hop1_addr = hl_mmu_dr_alloc_hop(ctx); if (hop1_addr == ULLONG_MAX) { dev_err(hdev->dev, "failed to alloc hop 1\n"); rc = -ENOMEM; goto hop1_err; } ctx->dram_default_hops[total_hops - 1] = hop1_addr; hop2_addr = hl_mmu_dr_alloc_hop(ctx); if (hop2_addr == ULLONG_MAX) { dev_err(hdev->dev, "failed to alloc hop 2\n"); rc = -ENOMEM; goto hop2_err; } ctx->dram_default_hops[total_hops - 2] = hop2_addr; for (i = 0 ; i < num_of_hop3 ; i++) { ctx->dram_default_hops[i] = hl_mmu_dr_alloc_hop(ctx); if (ctx->dram_default_hops[i] == ULLONG_MAX) { dev_err(hdev->dev, "failed to alloc hop 3, i: %d\n", i); rc = -ENOMEM; goto hop3_err; } hop3_allocated++; } /* need only pte 0 in hops 0 and 1 */ pte_val = (hop1_addr & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK; hl_mmu_dr_write_pte(ctx, hop0_addr, pte_val); pte_val = (hop2_addr & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK; hl_mmu_dr_write_pte(ctx, hop1_addr, pte_val); hl_mmu_dr_get_pte(ctx, hop1_addr); hop2_pte_addr = hop2_addr; for (i = 0 ; i < num_of_hop3 ; i++) { pte_val = (ctx->dram_default_hops[i] & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK; hl_mmu_dr_write_pte(ctx, hop2_pte_addr, pte_val); hl_mmu_dr_get_pte(ctx, hop2_addr); hop2_pte_addr += HL_PTE_SIZE; } pte_val = (prop->mmu_dram_default_page_addr & HOP_PHYS_ADDR_MASK) | LAST_MASK | PAGE_PRESENT_MASK; for (i = 0 ; i < num_of_hop3 ; i++) { hop3_pte_addr = ctx->dram_default_hops[i]; for (j = 0 ; j < HOP_PTE_ENTRIES_512 ; j++) { hl_mmu_dr_write_final_pte(ctx, hop3_pte_addr, pte_val); hl_mmu_dr_get_pte(ctx, ctx->dram_default_hops[i]); hop3_pte_addr += HL_PTE_SIZE; } } hl_mmu_dr_flush(ctx); return 0; hop3_err: for (i = 0 ; i < hop3_allocated ; i++) hl_mmu_dr_free_hop(ctx, ctx->dram_default_hops[i]); hl_mmu_dr_free_hop(ctx, hop2_addr); hop2_err: hl_mmu_dr_free_hop(ctx, hop1_addr); hop1_err: kfree(ctx->dram_default_hops); return rc; } static void dram_default_mapping_fini(struct hl_ctx *ctx) { struct hl_device *hdev = ctx->hdev; struct asic_fixed_properties *prop = &hdev->asic_prop; u64 num_of_hop3, total_hops, hop0_addr, hop1_addr, hop2_addr, hop2_pte_addr, hop3_pte_addr; int i, j; if ((!prop->dram_supports_virtual_memory) || (!hdev->dram_default_page_mapping) || (ctx->asid == HL_KERNEL_ASID_ID)) return; num_of_hop3 = prop->dram_size_for_default_page_mapping; do_div(num_of_hop3, prop->dram_page_size); do_div(num_of_hop3, HOP_PTE_ENTRIES_512); hop0_addr = hl_mmu_dr_get_hop0_addr(ctx); /* add hop1 and hop2 */ total_hops = num_of_hop3 + 2; hop1_addr = ctx->dram_default_hops[total_hops - 1]; hop2_addr = ctx->dram_default_hops[total_hops - 2]; for (i = 0 ; i < num_of_hop3 ; i++) { hop3_pte_addr = ctx->dram_default_hops[i]; for (j = 0 ; j < HOP_PTE_ENTRIES_512 ; j++) { hl_mmu_dr_clear_pte(ctx, hop3_pte_addr); hl_mmu_dr_put_pte(ctx, ctx->dram_default_hops[i]); hop3_pte_addr += HL_PTE_SIZE; } } hop2_pte_addr = hop2_addr; for (i = 0 ; i < num_of_hop3 ; i++) { hl_mmu_dr_clear_pte(ctx, hop2_pte_addr); hl_mmu_dr_put_pte(ctx, hop2_addr); hop2_pte_addr += HL_PTE_SIZE; } hl_mmu_dr_clear_pte(ctx, hop1_addr); hl_mmu_dr_put_pte(ctx, hop1_addr); hl_mmu_dr_clear_pte(ctx, hop0_addr); kfree(ctx->dram_default_hops); hl_mmu_dr_flush(ctx); } /** * hl_mmu_v1_ctx_init() - initialize a context for using the MMU module. * @ctx: pointer to the context structure to initialize. * * Initialize a mutex to protect the concurrent mapping flow, a hash to hold all * page tables hops related to this context. * Return: 0 on success, non-zero otherwise. */ static int hl_mmu_v1_ctx_init(struct hl_ctx *ctx) { hash_init(ctx->mmu_shadow_hash); return dram_default_mapping_init(ctx); } /* * hl_mmu_ctx_fini - disable a ctx from using the mmu module * * @ctx: pointer to the context structure * * This function does the following: * - Free any pgts which were not freed yet * - Free the mutex * - Free DRAM default page mapping hops */ static void hl_mmu_v1_ctx_fini(struct hl_ctx *ctx) { struct hl_device *hdev = ctx->hdev; struct pgt_info *pgt_info; struct hlist_node *tmp; int i; dram_default_mapping_fini(ctx); if (!hash_empty(ctx->mmu_shadow_hash)) dev_err(hdev->dev, "ctx %d is freed while it has pgts in use\n", ctx->asid); hash_for_each_safe(ctx->mmu_shadow_hash, i, tmp, pgt_info, node) { dev_err_ratelimited(hdev->dev, "pgt_info of addr 0x%llx of asid %d was not destroyed, num_ptes: %d\n", pgt_info->phys_addr, ctx->asid, pgt_info->num_of_ptes); hl_mmu_dr_free_pgt_node(ctx, pgt_info); } } static int hl_mmu_v1_unmap(struct hl_ctx *ctx, u64 virt_addr, bool is_dram_addr) { u64 hop_addr[MMU_V1_MAX_HOPS] = {0}, hop_pte_addr[MMU_V1_MAX_HOPS] = {0}, curr_pte = 0; struct hl_device *hdev = ctx->hdev; struct asic_fixed_properties *prop = &hdev->asic_prop; struct hl_mmu_properties *mmu_prop; bool is_huge, clear_hop3 = true; int hop_idx; /* shifts and masks are the same in PMMU and HPMMU, use one of them */ mmu_prop = is_dram_addr ? &prop->dmmu : &prop->pmmu; for (hop_idx = MMU_HOP0; hop_idx < MMU_HOP4; hop_idx++) { if (hop_idx == MMU_HOP0) { hop_addr[hop_idx] = hl_mmu_dr_get_hop0_addr(ctx); } else { hop_addr[hop_idx] = hl_mmu_get_next_hop_addr(ctx, curr_pte); if (hop_addr[hop_idx] == ULLONG_MAX) goto not_mapped; } hop_pte_addr[hop_idx] = get_hop_pte_addr(ctx, mmu_prop, hop_addr, virt_addr, hop_idx); curr_pte = *(u64 *) (uintptr_t) hop_pte_addr[hop_idx]; } is_huge = curr_pte & mmu_prop->last_mask; if (is_dram_addr && !is_huge) { dev_err(hdev->dev, "DRAM unmapping should use huge pages only\n"); return -EFAULT; } if (!is_huge) { hop_idx = MMU_HOP4; hop_addr[hop_idx] = hl_mmu_get_next_hop_addr(ctx, curr_pte); if (hop_addr[hop_idx] == ULLONG_MAX) goto not_mapped; hop_pte_addr[hop_idx] = get_hop_pte_addr(ctx, mmu_prop, hop_addr, virt_addr, hop_idx); curr_pte = *(u64 *) (uintptr_t) hop_pte_addr[hop_idx]; clear_hop3 = false; } if (hdev->dram_default_page_mapping && is_dram_addr) { u64 default_pte = (prop->mmu_dram_default_page_addr & HOP_PHYS_ADDR_MASK) | mmu_prop->last_mask | PAGE_PRESENT_MASK; if (curr_pte == default_pte) { dev_err(hdev->dev, "DRAM: hop3 PTE points to zero page, can't unmap, va: 0x%llx\n", virt_addr); goto not_mapped; } if (!(curr_pte & PAGE_PRESENT_MASK)) { dev_err(hdev->dev, "DRAM: hop3 PTE is cleared! can't unmap, va: 0x%llx\n", virt_addr); goto not_mapped; } hop_idx = MMU_HOP3; hl_mmu_dr_write_final_pte(ctx, hop_pte_addr[hop_idx], default_pte); hl_mmu_dr_put_pte(ctx, hop_addr[hop_idx]); } else { if (!(curr_pte & PAGE_PRESENT_MASK)) goto not_mapped; if (hop_addr[MMU_HOP4]) hl_mmu_dr_clear_pte(ctx, hop_pte_addr[MMU_HOP4]); else hl_mmu_dr_clear_pte(ctx, hop_pte_addr[MMU_HOP3]); if (hop_addr[MMU_HOP4] && !hl_mmu_dr_put_pte(ctx, hop_addr[MMU_HOP4])) clear_hop3 = true; if (!clear_hop3) goto mapped; for (hop_idx = MMU_HOP3; hop_idx >= 0; hop_idx--) { hl_mmu_dr_clear_pte(ctx, hop_pte_addr[hop_idx]); if (hop_idx == MMU_HOP0) break; if (hl_mmu_dr_put_pte(ctx, hop_addr[hop_idx])) goto mapped; } } mapped: return 0; not_mapped: dev_err(hdev->dev, "virt addr 0x%llx is not mapped to phys addr\n", virt_addr); return -EINVAL; } static int hl_mmu_v1_map(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size, bool is_dram_addr) { u64 hop_addr[MMU_V1_MAX_HOPS] = {0}, hop_pte_addr[MMU_V1_MAX_HOPS] = {0}, curr_pte = 0; struct hl_device *hdev = ctx->hdev; struct asic_fixed_properties *prop = &hdev->asic_prop; struct hl_mmu_properties *mmu_prop; bool is_huge, hop_new[MMU_V1_MAX_HOPS] = {false}; int num_hops, hop_idx, prev_hop, rc = -ENOMEM; /* * This mapping function can map a page or a huge page. For huge page * there are only 3 hops rather than 4. Currently the DRAM allocation * uses huge pages only but user memory could have been allocated with * one of the two page sizes. Since this is a common code for all the * three cases, we need this hugs page check. */ if (is_dram_addr) { mmu_prop = &prop->dmmu; is_huge = true; } else if (page_size == prop->pmmu_huge.page_size) { mmu_prop = &prop->pmmu_huge; is_huge = true; } else { mmu_prop = &prop->pmmu; is_huge = false; } num_hops = is_huge ? (MMU_V1_MAX_HOPS - 1) : MMU_V1_MAX_HOPS; for (hop_idx = MMU_HOP0; hop_idx < num_hops; hop_idx++) { if (hop_idx == MMU_HOP0) { hop_addr[hop_idx] = hl_mmu_dr_get_hop0_addr(ctx); } else { hop_addr[hop_idx] = hl_mmu_dr_get_alloc_next_hop_addr(ctx, curr_pte, &hop_new[hop_idx]); if (hop_addr[hop_idx] == ULLONG_MAX) goto err; } hop_pte_addr[hop_idx] = get_hop_pte_addr(ctx, mmu_prop, hop_addr, virt_addr, hop_idx); curr_pte = *(u64 *) (uintptr_t) hop_pte_addr[hop_idx]; } if (hdev->dram_default_page_mapping && is_dram_addr) { u64 default_pte = (prop->mmu_dram_default_page_addr & HOP_PHYS_ADDR_MASK) | mmu_prop->last_mask | PAGE_PRESENT_MASK; if (curr_pte != default_pte) { dev_err(hdev->dev, "DRAM: mapping already exists for virt_addr 0x%llx\n", virt_addr); rc = -EINVAL; goto err; } for (hop_idx = MMU_HOP1; hop_idx < num_hops; hop_idx++) { if (hop_new[hop_idx]) { dev_err(hdev->dev, "DRAM mapping should not allocate more hops\n"); rc = -EFAULT; goto err; } } } else if (curr_pte & PAGE_PRESENT_MASK) { dev_err(hdev->dev, "mapping already exists for virt_addr 0x%llx\n", virt_addr); for (hop_idx = MMU_HOP0; hop_idx < num_hops; hop_idx++) dev_dbg(hdev->dev, "hop%d pte: 0x%llx (0x%llx)\n", hop_idx, *(u64 *) (uintptr_t) hop_pte_addr[hop_idx], hop_pte_addr[hop_idx]); rc = -EINVAL; goto err; } curr_pte = (phys_addr & HOP_PHYS_ADDR_MASK) | mmu_prop->last_mask | PAGE_PRESENT_MASK; hl_mmu_dr_write_final_pte(ctx, hop_pte_addr[num_hops - 1], curr_pte); for (hop_idx = MMU_HOP1; hop_idx < num_hops; hop_idx++) { prev_hop = hop_idx - 1; if (hop_new[hop_idx]) { curr_pte = (hop_addr[hop_idx] & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK; hl_mmu_dr_write_pte(ctx, hop_pte_addr[prev_hop], curr_pte); if (hop_idx != MMU_HOP1) hl_mmu_dr_get_pte(ctx, hop_addr[prev_hop]); } } hl_mmu_dr_get_pte(ctx, hop_addr[num_hops - 1]); return 0; err: for (hop_idx = num_hops; hop_idx > MMU_HOP0; hop_idx--) { if (hop_new[hop_idx]) hl_mmu_dr_free_hop(ctx, hop_addr[hop_idx]); } return rc; } /* * hl_mmu_v1_swap_out - marks all mapping of the given ctx as swapped out * * @ctx: pointer to the context structure * */ static void hl_mmu_v1_swap_out(struct hl_ctx *ctx) { } /* * hl_mmu_v1_swap_in - marks all mapping of the given ctx as swapped in * * @ctx: pointer to the context structure * */ static void hl_mmu_v1_swap_in(struct hl_ctx *ctx) { } static int hl_mmu_v1_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops) { struct hl_device *hdev = ctx->hdev; struct asic_fixed_properties *prop = &hdev->asic_prop; struct hl_mmu_properties *mmu_prop; bool is_dram_addr, is_pmmu_addr, is_pmmu_h_addr, is_huge; int i, used_hops; is_dram_addr = hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size, prop->dmmu.start_addr, prop->dmmu.end_addr); is_pmmu_addr = hl_mem_area_inside_range(virt_addr, prop->pmmu.page_size, prop->pmmu.start_addr, prop->pmmu.end_addr); is_pmmu_h_addr = hl_mem_area_inside_range(virt_addr, prop->pmmu_huge.page_size, prop->pmmu_huge.start_addr, prop->pmmu_huge.end_addr); if (is_dram_addr) { mmu_prop = &prop->dmmu; is_huge = true; } else if (is_pmmu_addr) { mmu_prop = &prop->pmmu; is_huge = false; } else if (is_pmmu_h_addr) { mmu_prop = &prop->pmmu_huge; is_huge = true; } else { return -EINVAL; } used_hops = mmu_prop->num_hops; /* huge pages use lesser hops */ if (is_huge) used_hops--; hops->hop_info[0].hop_addr = hl_mmu_dr_get_phys_hop0_addr(ctx); hops->hop_info[0].hop_pte_addr = hl_mmu_get_hop_pte_phys_addr(ctx, mmu_prop, 0, hops->hop_info[0].hop_addr, virt_addr); hops->hop_info[0].hop_pte_val = hdev->asic_funcs->read_pte(hdev, hops->hop_info[0].hop_pte_addr); for (i = 1 ; i < used_hops ; i++) { hops->hop_info[i].hop_addr = hl_mmu_get_next_hop_addr(ctx, hops->hop_info[i - 1].hop_pte_val); if (hops->hop_info[i].hop_addr == ULLONG_MAX) return -EFAULT; hops->hop_info[i].hop_pte_addr = hl_mmu_get_hop_pte_phys_addr(ctx, mmu_prop, i, hops->hop_info[i].hop_addr, virt_addr); hops->hop_info[i].hop_pte_val = hdev->asic_funcs->read_pte(hdev, hops->hop_info[i].hop_pte_addr); if (!(hops->hop_info[i].hop_pte_val & PAGE_PRESENT_MASK)) return -EFAULT; if (hops->hop_info[i].hop_pte_val & mmu_prop->last_mask) break; } /* if passed over all hops then no last hop was found */ if (i == mmu_prop->num_hops) return -EFAULT; if (!(hops->hop_info[i].hop_pte_val & PAGE_PRESENT_MASK)) return -EFAULT; hops->used_hops = i + 1; return 0; } /* * hl_mmu_v1_prepare - prepare mmu for working with mmu v1 * * @hdev: pointer to the device structure */ void hl_mmu_v1_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu) { mmu->init = hl_mmu_dr_init; mmu->fini = hl_mmu_dr_fini; mmu->ctx_init = hl_mmu_v1_ctx_init; mmu->ctx_fini = hl_mmu_v1_ctx_fini; mmu->map = hl_mmu_v1_map; mmu->unmap = hl_mmu_v1_unmap; mmu->flush = hl_mmu_dr_flush; mmu->swap_out = hl_mmu_v1_swap_out; mmu->swap_in = hl_mmu_v1_swap_in; mmu->get_tlb_info = hl_mmu_v1_get_tlb_info; }