// SPDX-License-Identifier: GPL-2.0-only #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_X86_64 # include #endif #include "cpu.h" static inline int rdmsrl_amd_safe(unsigned msr, unsigned long long *p) { u32 gprs[8] = { 0 }; int err; WARN_ONCE((boot_cpu_data.x86 != 0xf), "%s should only be used on K8!\n", __func__); gprs[1] = msr; gprs[7] = 0x9c5a203a; err = rdmsr_safe_regs(gprs); *p = gprs[0] | ((u64)gprs[2] << 32); return err; } static inline int wrmsrl_amd_safe(unsigned msr, unsigned long long val) { u32 gprs[8] = { 0 }; WARN_ONCE((boot_cpu_data.x86 != 0xf), "%s should only be used on K8!\n", __func__); gprs[0] = (u32)val; gprs[1] = msr; gprs[2] = val >> 32; gprs[7] = 0x9c5a203a; return wrmsr_safe_regs(gprs); } /* * B step AMD K6 before B 9730xxxx have hardware bugs that can cause * misexecution of code under Linux. Owners of such processors should * contact AMD for precise details and a CPU swap. * * See http://www.multimania.com/poulot/k6bug.html * and section 2.6.2 of "AMD-K6 Processor Revision Guide - Model 6" * (Publication # 21266 Issue Date: August 1998) * * The following test is erm.. interesting. AMD neglected to up * the chip setting when fixing the bug but they also tweaked some * performance at the same time.. */ #ifdef CONFIG_X86_32 extern __visible void vide(void); __asm__(".text\n" ".globl vide\n" ".type vide, @function\n" ".align 4\n" "vide: ret\n"); #endif static void init_amd_k5(struct cpuinfo_x86 *c) { #ifdef CONFIG_X86_32 /* * General Systems BIOSen alias the cpu frequency registers * of the Elan at 0x000df000. Unfortunately, one of the Linux * drivers subsequently pokes it, and changes the CPU speed. * Workaround : Remove the unneeded alias. */ #define CBAR (0xfffc) /* Configuration Base Address (32-bit) */ #define CBAR_ENB (0x80000000) #define CBAR_KEY (0X000000CB) if (c->x86_model == 9 || c->x86_model == 10) { if (inl(CBAR) & CBAR_ENB) outl(0 | CBAR_KEY, CBAR); } #endif } static void init_amd_k6(struct cpuinfo_x86 *c) { #ifdef CONFIG_X86_32 u32 l, h; int mbytes = get_num_physpages() >> (20-PAGE_SHIFT); if (c->x86_model < 6) { /* Based on AMD doc 20734R - June 2000 */ if (c->x86_model == 0) { clear_cpu_cap(c, X86_FEATURE_APIC); set_cpu_cap(c, X86_FEATURE_PGE); } return; } if (c->x86_model == 6 && c->x86_stepping == 1) { const int K6_BUG_LOOP = 1000000; int n; void (*f_vide)(void); u64 d, d2; pr_info("AMD K6 stepping B detected - "); /* * It looks like AMD fixed the 2.6.2 bug and improved indirect * calls at the same time. */ n = K6_BUG_LOOP; f_vide = vide; OPTIMIZER_HIDE_VAR(f_vide); d = rdtsc(); while (n--) f_vide(); d2 = rdtsc(); d = d2-d; if (d > 20*K6_BUG_LOOP) pr_cont("system stability may be impaired when more than 32 MB are used.\n"); else pr_cont("probably OK (after B9730xxxx).\n"); } /* K6 with old style WHCR */ if (c->x86_model < 8 || (c->x86_model == 8 && c->x86_stepping < 8)) { /* We can only write allocate on the low 508Mb */ if (mbytes > 508) mbytes = 508; rdmsr(MSR_K6_WHCR, l, h); if ((l&0x0000FFFF) == 0) { unsigned long flags; l = (1<<0)|((mbytes/4)<<1); local_irq_save(flags); wbinvd(); wrmsr(MSR_K6_WHCR, l, h); local_irq_restore(flags); pr_info("Enabling old style K6 write allocation for %d Mb\n", mbytes); } return; } if ((c->x86_model == 8 && c->x86_stepping > 7) || c->x86_model == 9 || c->x86_model == 13) { /* The more serious chips .. */ if (mbytes > 4092) mbytes = 4092; rdmsr(MSR_K6_WHCR, l, h); if ((l&0xFFFF0000) == 0) { unsigned long flags; l = ((mbytes>>2)<<22)|(1<<16); local_irq_save(flags); wbinvd(); wrmsr(MSR_K6_WHCR, l, h); local_irq_restore(flags); pr_info("Enabling new style K6 write allocation for %d Mb\n", mbytes); } return; } if (c->x86_model == 10) { /* AMD Geode LX is model 10 */ /* placeholder for any needed mods */ return; } #endif } static void init_amd_k7(struct cpuinfo_x86 *c) { #ifdef CONFIG_X86_32 u32 l, h; /* * Bit 15 of Athlon specific MSR 15, needs to be 0 * to enable SSE on Palomino/Morgan/Barton CPU's. * If the BIOS didn't enable it already, enable it here. */ if (c->x86_model >= 6 && c->x86_model <= 10) { if (!cpu_has(c, X86_FEATURE_XMM)) { pr_info("Enabling disabled K7/SSE Support.\n"); msr_clear_bit(MSR_K7_HWCR, 15); set_cpu_cap(c, X86_FEATURE_XMM); } } /* * It's been determined by AMD that Athlons since model 8 stepping 1 * are more robust with CLK_CTL set to 200xxxxx instead of 600xxxxx * As per AMD technical note 27212 0.2 */ if ((c->x86_model == 8 && c->x86_stepping >= 1) || (c->x86_model > 8)) { rdmsr(MSR_K7_CLK_CTL, l, h); if ((l & 0xfff00000) != 0x20000000) { pr_info("CPU: CLK_CTL MSR was %x. Reprogramming to %x\n", l, ((l & 0x000fffff)|0x20000000)); wrmsr(MSR_K7_CLK_CTL, (l & 0x000fffff)|0x20000000, h); } } /* calling is from identify_secondary_cpu() ? */ if (!c->cpu_index) return; /* * Certain Athlons might work (for various values of 'work') in SMP * but they are not certified as MP capable. */ /* Athlon 660/661 is valid. */ if ((c->x86_model == 6) && ((c->x86_stepping == 0) || (c->x86_stepping == 1))) return; /* Duron 670 is valid */ if ((c->x86_model == 7) && (c->x86_stepping == 0)) return; /* * Athlon 662, Duron 671, and Athlon >model 7 have capability * bit. It's worth noting that the A5 stepping (662) of some * Athlon XP's have the MP bit set. * See http://www.heise.de/newsticker/data/jow-18.10.01-000 for * more. */ if (((c->x86_model == 6) && (c->x86_stepping >= 2)) || ((c->x86_model == 7) && (c->x86_stepping >= 1)) || (c->x86_model > 7)) if (cpu_has(c, X86_FEATURE_MP)) return; /* If we get here, not a certified SMP capable AMD system. */ /* * Don't taint if we are running SMP kernel on a single non-MP * approved Athlon */ WARN_ONCE(1, "WARNING: This combination of AMD" " processors is not suitable for SMP.\n"); add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE); #endif } #ifdef CONFIG_NUMA /* * To workaround broken NUMA config. Read the comment in * srat_detect_node(). */ static int nearby_node(int apicid) { int i, node; for (i = apicid - 1; i >= 0; i--) { node = __apicid_to_node[i]; if (node != NUMA_NO_NODE && node_online(node)) return node; } for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) { node = __apicid_to_node[i]; if (node != NUMA_NO_NODE && node_online(node)) return node; } return first_node(node_online_map); /* Shouldn't happen */ } #endif static void srat_detect_node(struct cpuinfo_x86 *c) { #ifdef CONFIG_NUMA int cpu = smp_processor_id(); int node; unsigned apicid = c->topo.apicid; node = numa_cpu_node(cpu); if (node == NUMA_NO_NODE) node = per_cpu_llc_id(cpu); /* * On multi-fabric platform (e.g. Numascale NumaChip) a * platform-specific handler needs to be called to fixup some * IDs of the CPU. */ if (x86_cpuinit.fixup_cpu_id) x86_cpuinit.fixup_cpu_id(c, node); if (!node_online(node)) { /* * Two possibilities here: * * - The CPU is missing memory and no node was created. In * that case try picking one from a nearby CPU. * * - The APIC IDs differ from the HyperTransport node IDs * which the K8 northbridge parsing fills in. Assume * they are all increased by a constant offset, but in * the same order as the HT nodeids. If that doesn't * result in a usable node fall back to the path for the * previous case. * * This workaround operates directly on the mapping between * APIC ID and NUMA node, assuming certain relationship * between APIC ID, HT node ID and NUMA topology. As going * through CPU mapping may alter the outcome, directly * access __apicid_to_node[]. */ int ht_nodeid = c->topo.initial_apicid; if (__apicid_to_node[ht_nodeid] != NUMA_NO_NODE) node = __apicid_to_node[ht_nodeid]; /* Pick a nearby node */ if (!node_online(node)) node = nearby_node(apicid); } numa_set_node(cpu, node); #endif } static void bsp_determine_snp(struct cpuinfo_x86 *c) { #ifdef CONFIG_ARCH_HAS_CC_PLATFORM cc_vendor = CC_VENDOR_AMD; if (cpu_has(c, X86_FEATURE_SEV_SNP)) { /* * RMP table entry format is not architectural and is defined by the * per-processor PPR. Restrict SNP support on the known CPU models * for which the RMP table entry format is currently defined for. */ if (!cpu_has(c, X86_FEATURE_HYPERVISOR) && c->x86 >= 0x19 && snp_probe_rmptable_info()) { cc_platform_set(CC_ATTR_HOST_SEV_SNP); } else { setup_clear_cpu_cap(X86_FEATURE_SEV_SNP); cc_platform_clear(CC_ATTR_HOST_SEV_SNP); } } #endif } static void bsp_init_amd(struct cpuinfo_x86 *c) { if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) { if (c->x86 > 0x10 || (c->x86 == 0x10 && c->x86_model >= 0x2)) { u64 val; rdmsrl(MSR_K7_HWCR, val); if (!(val & BIT(24))) pr_warn(FW_BUG "TSC doesn't count with P0 frequency!\n"); } } if (c->x86 == 0x15) { unsigned long upperbit; u32 cpuid, assoc; cpuid = cpuid_edx(0x80000005); assoc = cpuid >> 16 & 0xff; upperbit = ((cpuid >> 24) << 10) / assoc; va_align.mask = (upperbit - 1) & PAGE_MASK; va_align.flags = ALIGN_VA_32 | ALIGN_VA_64; /* A random value per boot for bit slice [12:upper_bit) */ va_align.bits = get_random_u32() & va_align.mask; } if (cpu_has(c, X86_FEATURE_MWAITX)) use_mwaitx_delay(); if (!boot_cpu_has(X86_FEATURE_AMD_SSBD) && !boot_cpu_has(X86_FEATURE_VIRT_SSBD) && c->x86 >= 0x15 && c->x86 <= 0x17) { unsigned int bit; switch (c->x86) { case 0x15: bit = 54; break; case 0x16: bit = 33; break; case 0x17: bit = 10; break; default: return; } /* * Try to cache the base value so further operations can * avoid RMW. If that faults, do not enable SSBD. */ if (!rdmsrl_safe(MSR_AMD64_LS_CFG, &x86_amd_ls_cfg_base)) { setup_force_cpu_cap(X86_FEATURE_LS_CFG_SSBD); setup_force_cpu_cap(X86_FEATURE_SSBD); x86_amd_ls_cfg_ssbd_mask = 1ULL << bit; } } resctrl_cpu_detect(c); /* Figure out Zen generations: */ switch (c->x86) { case 0x17: switch (c->x86_model) { case 0x00 ... 0x2f: case 0x50 ... 0x5f: setup_force_cpu_cap(X86_FEATURE_ZEN1); break; case 0x30 ... 0x4f: case 0x60 ... 0x7f: case 0x90 ... 0x91: case 0xa0 ... 0xaf: setup_force_cpu_cap(X86_FEATURE_ZEN2); break; default: goto warn; } break; case 0x19: switch (c->x86_model) { case 0x00 ... 0x0f: case 0x20 ... 0x5f: setup_force_cpu_cap(X86_FEATURE_ZEN3); break; case 0x10 ... 0x1f: case 0x60 ... 0xaf: setup_force_cpu_cap(X86_FEATURE_ZEN4); break; default: goto warn; } break; case 0x1a: switch (c->x86_model) { case 0x00 ... 0x2f: case 0x40 ... 0x4f: case 0x70 ... 0x7f: setup_force_cpu_cap(X86_FEATURE_ZEN5); break; default: goto warn; } break; default: break; } bsp_determine_snp(c); return; warn: WARN_ONCE(1, "Family 0x%x, model: 0x%x??\n", c->x86, c->x86_model); } static void early_detect_mem_encrypt(struct cpuinfo_x86 *c) { u64 msr; /* * BIOS support is required for SME and SEV. * For SME: If BIOS has enabled SME then adjust x86_phys_bits by * the SME physical address space reduction value. * If BIOS has not enabled SME then don't advertise the * SME feature (set in scattered.c). * If the kernel has not enabled SME via any means then * don't advertise the SME feature. * For SEV: If BIOS has not enabled SEV then don't advertise SEV and * any additional functionality based on it. * * In all cases, since support for SME and SEV requires long mode, * don't advertise the feature under CONFIG_X86_32. */ if (cpu_has(c, X86_FEATURE_SME) || cpu_has(c, X86_FEATURE_SEV)) { /* Check if memory encryption is enabled */ rdmsrl(MSR_AMD64_SYSCFG, msr); if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT)) goto clear_all; /* * Always adjust physical address bits. Even though this * will be a value above 32-bits this is still done for * CONFIG_X86_32 so that accurate values are reported. */ c->x86_phys_bits -= (cpuid_ebx(0x8000001f) >> 6) & 0x3f; if (IS_ENABLED(CONFIG_X86_32)) goto clear_all; if (!sme_me_mask) setup_clear_cpu_cap(X86_FEATURE_SME); rdmsrl(MSR_K7_HWCR, msr); if (!(msr & MSR_K7_HWCR_SMMLOCK)) goto clear_sev; return; clear_all: setup_clear_cpu_cap(X86_FEATURE_SME); clear_sev: setup_clear_cpu_cap(X86_FEATURE_SEV); setup_clear_cpu_cap(X86_FEATURE_SEV_ES); setup_clear_cpu_cap(X86_FEATURE_SEV_SNP); } } static void early_init_amd(struct cpuinfo_x86 *c) { u32 dummy; if (c->x86 >= 0xf) set_cpu_cap(c, X86_FEATURE_K8); rdmsr_safe(MSR_AMD64_PATCH_LEVEL, &c->microcode, &dummy); /* * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate * with P/T states and does not stop in deep C-states */ if (c->x86_power & (1 << 8)) { set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC); set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC); } /* Bit 12 of 8000_0007 edx is accumulated power mechanism. */ if (c->x86_power & BIT(12)) set_cpu_cap(c, X86_FEATURE_ACC_POWER); /* Bit 14 indicates the Runtime Average Power Limit interface. */ if (c->x86_power & BIT(14)) set_cpu_cap(c, X86_FEATURE_RAPL); #ifdef CONFIG_X86_64 set_cpu_cap(c, X86_FEATURE_SYSCALL32); #else /* Set MTRR capability flag if appropriate */ if (c->x86 == 5) if (c->x86_model == 13 || c->x86_model == 9 || (c->x86_model == 8 && c->x86_stepping >= 8)) set_cpu_cap(c, X86_FEATURE_K6_MTRR); #endif #if defined(CONFIG_X86_LOCAL_APIC) && defined(CONFIG_PCI) /* * ApicID can always be treated as an 8-bit value for AMD APIC versions * >= 0x10, but even old K8s came out of reset with version 0x10. So, we * can safely set X86_FEATURE_EXTD_APICID unconditionally for families * after 16h. */ if (boot_cpu_has(X86_FEATURE_APIC)) { if (c->x86 > 0x16) set_cpu_cap(c, X86_FEATURE_EXTD_APICID); else if (c->x86 >= 0xf) { /* check CPU config space for extended APIC ID */ unsigned int val; val = read_pci_config(0, 24, 0, 0x68); if ((val >> 17 & 0x3) == 0x3) set_cpu_cap(c, X86_FEATURE_EXTD_APICID); } } #endif /* * This is only needed to tell the kernel whether to use VMCALL * and VMMCALL. VMMCALL is never executed except under virt, so * we can set it unconditionally. */ set_cpu_cap(c, X86_FEATURE_VMMCALL); /* F16h erratum 793, CVE-2013-6885 */ if (c->x86 == 0x16 && c->x86_model <= 0xf) msr_set_bit(MSR_AMD64_LS_CFG, 15); early_detect_mem_encrypt(c); if (!cpu_has(c, X86_FEATURE_HYPERVISOR) && !cpu_has(c, X86_FEATURE_IBPB_BRTYPE)) { if (c->x86 == 0x17 && boot_cpu_has(X86_FEATURE_AMD_IBPB)) setup_force_cpu_cap(X86_FEATURE_IBPB_BRTYPE); else if (c->x86 >= 0x19 && !wrmsrl_safe(MSR_IA32_PRED_CMD, PRED_CMD_SBPB)) { setup_force_cpu_cap(X86_FEATURE_IBPB_BRTYPE); setup_force_cpu_cap(X86_FEATURE_SBPB); } } } static void init_amd_k8(struct cpuinfo_x86 *c) { u32 level; u64 value; /* On C+ stepping K8 rep microcode works well for copy/memset */ level = cpuid_eax(1); if ((level >= 0x0f48 && level < 0x0f50) || level >= 0x0f58) set_cpu_cap(c, X86_FEATURE_REP_GOOD); /* * Some BIOSes incorrectly force this feature, but only K8 revision D * (model = 0x14) and later actually support it. * (AMD Erratum #110, docId: 25759). */ if (c->x86_model < 0x14 && cpu_has(c, X86_FEATURE_LAHF_LM)) { clear_cpu_cap(c, X86_FEATURE_LAHF_LM); if (!rdmsrl_amd_safe(0xc001100d, &value)) { value &= ~BIT_64(32); wrmsrl_amd_safe(0xc001100d, value); } } if (!c->x86_model_id[0]) strcpy(c->x86_model_id, "Hammer"); #ifdef CONFIG_SMP /* * Disable TLB flush filter by setting HWCR.FFDIS on K8 * bit 6 of msr C001_0015 * * Errata 63 for SH-B3 steppings * Errata 122 for all steppings (F+ have it disabled by default) */ msr_set_bit(MSR_K7_HWCR, 6); #endif set_cpu_bug(c, X86_BUG_SWAPGS_FENCE); /* * Check models and steppings affected by erratum 400. This is * used to select the proper idle routine and to enable the * check whether the machine is affected in arch_post_acpi_subsys_init() * which sets the X86_BUG_AMD_APIC_C1E bug depending on the MSR check. */ if (c->x86_model > 0x41 || (c->x86_model == 0x41 && c->x86_stepping >= 0x2)) setup_force_cpu_bug(X86_BUG_AMD_E400); } static void init_amd_gh(struct cpuinfo_x86 *c) { #ifdef CONFIG_MMCONF_FAM10H /* do this for boot cpu */ if (c == &boot_cpu_data) check_enable_amd_mmconf_dmi(); fam10h_check_enable_mmcfg(); #endif /* * Disable GART TLB Walk Errors on Fam10h. We do this here because this * is always needed when GART is enabled, even in a kernel which has no * MCE support built in. BIOS should disable GartTlbWlk Errors already. * If it doesn't, we do it here as suggested by the BKDG. * * Fixes: https://bugzilla.kernel.org/show_bug.cgi?id=33012 */ msr_set_bit(MSR_AMD64_MCx_MASK(4), 10); /* * On family 10h BIOS may not have properly enabled WC+ support, causing * it to be converted to CD memtype. This may result in performance * degradation for certain nested-paging guests. Prevent this conversion * by clearing bit 24 in MSR_AMD64_BU_CFG2. * * NOTE: we want to use the _safe accessors so as not to #GP kvm * guests on older kvm hosts. */ msr_clear_bit(MSR_AMD64_BU_CFG2, 24); set_cpu_bug(c, X86_BUG_AMD_TLB_MMATCH); /* * Check models and steppings affected by erratum 400. This is * used to select the proper idle routine and to enable the * check whether the machine is affected in arch_post_acpi_subsys_init() * which sets the X86_BUG_AMD_APIC_C1E bug depending on the MSR check. */ if (c->x86_model > 0x2 || (c->x86_model == 0x2 && c->x86_stepping >= 0x1)) setup_force_cpu_bug(X86_BUG_AMD_E400); } static void init_amd_ln(struct cpuinfo_x86 *c) { /* * Apply erratum 665 fix unconditionally so machines without a BIOS * fix work. */ msr_set_bit(MSR_AMD64_DE_CFG, 31); } static bool rdrand_force; static int __init rdrand_cmdline(char *str) { if (!str) return -EINVAL; if (!strcmp(str, "force")) rdrand_force = true; else return -EINVAL; return 0; } early_param("rdrand", rdrand_cmdline); static void clear_rdrand_cpuid_bit(struct cpuinfo_x86 *c) { /* * Saving of the MSR used to hide the RDRAND support during * suspend/resume is done by arch/x86/power/cpu.c, which is * dependent on CONFIG_PM_SLEEP. */ if (!IS_ENABLED(CONFIG_PM_SLEEP)) return; /* * The self-test can clear X86_FEATURE_RDRAND, so check for * RDRAND support using the CPUID function directly. */ if (!(cpuid_ecx(1) & BIT(30)) || rdrand_force) return; msr_clear_bit(MSR_AMD64_CPUID_FN_1, 62); /* * Verify that the CPUID change has occurred in case the kernel is * running virtualized and the hypervisor doesn't support the MSR. */ if (cpuid_ecx(1) & BIT(30)) { pr_info_once("BIOS may not properly restore RDRAND after suspend, but hypervisor does not support hiding RDRAND via CPUID.\n"); return; } clear_cpu_cap(c, X86_FEATURE_RDRAND); pr_info_once("BIOS may not properly restore RDRAND after suspend, hiding RDRAND via CPUID. Use rdrand=force to reenable.\n"); } static void init_amd_jg(struct cpuinfo_x86 *c) { /* * Some BIOS implementations do not restore proper RDRAND support * across suspend and resume. Check on whether to hide the RDRAND * instruction support via CPUID. */ clear_rdrand_cpuid_bit(c); } static void init_amd_bd(struct cpuinfo_x86 *c) { u64 value; /* * The way access filter has a performance penalty on some workloads. * Disable it on the affected CPUs. */ if ((c->x86_model >= 0x02) && (c->x86_model < 0x20)) { if (!rdmsrl_safe(MSR_F15H_IC_CFG, &value) && !(value & 0x1E)) { value |= 0x1E; wrmsrl_safe(MSR_F15H_IC_CFG, value); } } /* * Some BIOS implementations do not restore proper RDRAND support * across suspend and resume. Check on whether to hide the RDRAND * instruction support via CPUID. */ clear_rdrand_cpuid_bit(c); } static void fix_erratum_1386(struct cpuinfo_x86 *c) { /* * Work around Erratum 1386. The XSAVES instruction malfunctions in * certain circumstances on Zen1/2 uarch, and not all parts have had * updated microcode at the time of writing (March 2023). * * Affected parts all have no supervisor XSAVE states, meaning that * the XSAVEC instruction (which works fine) is equivalent. */ clear_cpu_cap(c, X86_FEATURE_XSAVES); } void init_spectral_chicken(struct cpuinfo_x86 *c) { #ifdef CONFIG_MITIGATION_UNRET_ENTRY u64 value; /* * On Zen2 we offer this chicken (bit) on the altar of Speculation. * * This suppresses speculation from the middle of a basic block, i.e. it * suppresses non-branch predictions. */ if (!cpu_has(c, X86_FEATURE_HYPERVISOR)) { if (!rdmsrl_safe(MSR_ZEN2_SPECTRAL_CHICKEN, &value)) { value |= MSR_ZEN2_SPECTRAL_CHICKEN_BIT; wrmsrl_safe(MSR_ZEN2_SPECTRAL_CHICKEN, value); } } #endif } static void init_amd_zen_common(void) { setup_force_cpu_cap(X86_FEATURE_ZEN); #ifdef CONFIG_NUMA node_reclaim_distance = 32; #endif } static void init_amd_zen1(struct cpuinfo_x86 *c) { fix_erratum_1386(c); /* Fix up CPUID bits, but only if not virtualised. */ if (!cpu_has(c, X86_FEATURE_HYPERVISOR)) { /* Erratum 1076: CPB feature bit not being set in CPUID. */ if (!cpu_has(c, X86_FEATURE_CPB)) set_cpu_cap(c, X86_FEATURE_CPB); } pr_notice_once("AMD Zen1 DIV0 bug detected. Disable SMT for full protection.\n"); setup_force_cpu_bug(X86_BUG_DIV0); } static bool cpu_has_zenbleed_microcode(void) { u32 good_rev = 0; switch (boot_cpu_data.x86_model) { case 0x30 ... 0x3f: good_rev = 0x0830107b; break; case 0x60 ... 0x67: good_rev = 0x0860010c; break; case 0x68 ... 0x6f: good_rev = 0x08608107; break; case 0x70 ... 0x7f: good_rev = 0x08701033; break; case 0xa0 ... 0xaf: good_rev = 0x08a00009; break; default: return false; } if (boot_cpu_data.microcode < good_rev) return false; return true; } static void zen2_zenbleed_check(struct cpuinfo_x86 *c) { if (cpu_has(c, X86_FEATURE_HYPERVISOR)) return; if (!cpu_has(c, X86_FEATURE_AVX)) return; if (!cpu_has_zenbleed_microcode()) { pr_notice_once("Zenbleed: please update your microcode for the most optimal fix\n"); msr_set_bit(MSR_AMD64_DE_CFG, MSR_AMD64_DE_CFG_ZEN2_FP_BACKUP_FIX_BIT); } else { msr_clear_bit(MSR_AMD64_DE_CFG, MSR_AMD64_DE_CFG_ZEN2_FP_BACKUP_FIX_BIT); } } static void init_amd_zen2(struct cpuinfo_x86 *c) { init_spectral_chicken(c); fix_erratum_1386(c); zen2_zenbleed_check(c); } static void init_amd_zen3(struct cpuinfo_x86 *c) { if (!cpu_has(c, X86_FEATURE_HYPERVISOR)) { /* * Zen3 (Fam19 model < 0x10) parts are not susceptible to * Branch Type Confusion, but predate the allocation of the * BTC_NO bit. */ if (!cpu_has(c, X86_FEATURE_BTC_NO)) set_cpu_cap(c, X86_FEATURE_BTC_NO); } } static void init_amd_zen4(struct cpuinfo_x86 *c) { if (!cpu_has(c, X86_FEATURE_HYPERVISOR)) msr_set_bit(MSR_ZEN4_BP_CFG, MSR_ZEN4_BP_CFG_SHARED_BTB_FIX_BIT); } static void init_amd_zen5(struct cpuinfo_x86 *c) { } static void init_amd(struct cpuinfo_x86 *c) { u64 vm_cr; early_init_amd(c); /* * Bit 31 in normal CPUID used for nonstandard 3DNow ID; * 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway */ clear_cpu_cap(c, 0*32+31); if (c->x86 >= 0x10) set_cpu_cap(c, X86_FEATURE_REP_GOOD); /* AMD FSRM also implies FSRS */ if (cpu_has(c, X86_FEATURE_FSRM)) set_cpu_cap(c, X86_FEATURE_FSRS); /* K6s reports MCEs but don't actually have all the MSRs */ if (c->x86 < 6) clear_cpu_cap(c, X86_FEATURE_MCE); switch (c->x86) { case 4: init_amd_k5(c); break; case 5: init_amd_k6(c); break; case 6: init_amd_k7(c); break; case 0xf: init_amd_k8(c); break; case 0x10: init_amd_gh(c); break; case 0x12: init_amd_ln(c); break; case 0x15: init_amd_bd(c); break; case 0x16: init_amd_jg(c); break; } /* * Save up on some future enablement work and do common Zen * settings. */ if (c->x86 >= 0x17) init_amd_zen_common(); if (boot_cpu_has(X86_FEATURE_ZEN1)) init_amd_zen1(c); else if (boot_cpu_has(X86_FEATURE_ZEN2)) init_amd_zen2(c); else if (boot_cpu_has(X86_FEATURE_ZEN3)) init_amd_zen3(c); else if (boot_cpu_has(X86_FEATURE_ZEN4)) init_amd_zen4(c); else if (boot_cpu_has(X86_FEATURE_ZEN5)) init_amd_zen5(c); /* * Enable workaround for FXSAVE leak on CPUs * without a XSaveErPtr feature */ if ((c->x86 >= 6) && (!cpu_has(c, X86_FEATURE_XSAVEERPTR))) set_cpu_bug(c, X86_BUG_FXSAVE_LEAK); cpu_detect_cache_sizes(c); srat_detect_node(c); init_amd_cacheinfo(c); if (cpu_has(c, X86_FEATURE_SVM)) { rdmsrl(MSR_VM_CR, vm_cr); if (vm_cr & SVM_VM_CR_SVM_DIS_MASK) { pr_notice_once("SVM disabled (by BIOS) in MSR_VM_CR\n"); clear_cpu_cap(c, X86_FEATURE_SVM); } } if (!cpu_has(c, X86_FEATURE_LFENCE_RDTSC) && cpu_has(c, X86_FEATURE_XMM2)) { /* * Use LFENCE for execution serialization. On families which * don't have that MSR, LFENCE is already serializing. * msr_set_bit() uses the safe accessors, too, even if the MSR * is not present. */ msr_set_bit(MSR_AMD64_DE_CFG, MSR_AMD64_DE_CFG_LFENCE_SERIALIZE_BIT); /* A serializing LFENCE stops RDTSC speculation */ set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC); } /* * Family 0x12 and above processors have APIC timer * running in deep C states. */ if (c->x86 > 0x11) set_cpu_cap(c, X86_FEATURE_ARAT); /* 3DNow or LM implies PREFETCHW */ if (!cpu_has(c, X86_FEATURE_3DNOWPREFETCH)) if (cpu_has(c, X86_FEATURE_3DNOW) || cpu_has(c, X86_FEATURE_LM)) set_cpu_cap(c, X86_FEATURE_3DNOWPREFETCH); /* AMD CPUs don't reset SS attributes on SYSRET, Xen does. */ if (!cpu_feature_enabled(X86_FEATURE_XENPV)) set_cpu_bug(c, X86_BUG_SYSRET_SS_ATTRS); /* * Turn on the Instructions Retired free counter on machines not * susceptible to erratum #1054 "Instructions Retired Performance * Counter May Be Inaccurate". */ if (cpu_has(c, X86_FEATURE_IRPERF) && (boot_cpu_has(X86_FEATURE_ZEN1) && c->x86_model > 0x2f)) msr_set_bit(MSR_K7_HWCR, MSR_K7_HWCR_IRPERF_EN_BIT); check_null_seg_clears_base(c); /* * Make sure EFER[AIBRSE - Automatic IBRS Enable] is set. The APs are brought up * using the trampoline code and as part of it, MSR_EFER gets prepared there in * order to be replicated onto them. Regardless, set it here again, if not set, * to protect against any future refactoring/code reorganization which might * miss setting this important bit. */ if (spectre_v2_in_eibrs_mode(spectre_v2_enabled) && cpu_has(c, X86_FEATURE_AUTOIBRS)) WARN_ON_ONCE(msr_set_bit(MSR_EFER, _EFER_AUTOIBRS)); /* AMD CPUs don't need fencing after x2APIC/TSC_DEADLINE MSR writes. */ clear_cpu_cap(c, X86_FEATURE_APIC_MSRS_FENCE); } #ifdef CONFIG_X86_32 static unsigned int amd_size_cache(struct cpuinfo_x86 *c, unsigned int size) { /* AMD errata T13 (order #21922) */ if (c->x86 == 6) { /* Duron Rev A0 */ if (c->x86_model == 3 && c->x86_stepping == 0) size = 64; /* Tbird rev A1/A2 */ if (c->x86_model == 4 && (c->x86_stepping == 0 || c->x86_stepping == 1)) size = 256; } return size; } #endif static void cpu_detect_tlb_amd(struct cpuinfo_x86 *c) { u32 ebx, eax, ecx, edx; u16 mask = 0xfff; if (c->x86 < 0xf) return; if (c->extended_cpuid_level < 0x80000006) return; cpuid(0x80000006, &eax, &ebx, &ecx, &edx); tlb_lld_4k[ENTRIES] = (ebx >> 16) & mask; tlb_lli_4k[ENTRIES] = ebx & mask; /* * K8 doesn't have 2M/4M entries in the L2 TLB so read out the L1 TLB * characteristics from the CPUID function 0x80000005 instead. */ if (c->x86 == 0xf) { cpuid(0x80000005, &eax, &ebx, &ecx, &edx); mask = 0xff; } /* Handle DTLB 2M and 4M sizes, fall back to L1 if L2 is disabled */ if (!((eax >> 16) & mask)) tlb_lld_2m[ENTRIES] = (cpuid_eax(0x80000005) >> 16) & 0xff; else tlb_lld_2m[ENTRIES] = (eax >> 16) & mask; /* a 4M entry uses two 2M entries */ tlb_lld_4m[ENTRIES] = tlb_lld_2m[ENTRIES] >> 1; /* Handle ITLB 2M and 4M sizes, fall back to L1 if L2 is disabled */ if (!(eax & mask)) { /* Erratum 658 */ if (c->x86 == 0x15 && c->x86_model <= 0x1f) { tlb_lli_2m[ENTRIES] = 1024; } else { cpuid(0x80000005, &eax, &ebx, &ecx, &edx); tlb_lli_2m[ENTRIES] = eax & 0xff; } } else tlb_lli_2m[ENTRIES] = eax & mask; tlb_lli_4m[ENTRIES] = tlb_lli_2m[ENTRIES] >> 1; } static const struct cpu_dev amd_cpu_dev = { .c_vendor = "AMD", .c_ident = { "AuthenticAMD" }, #ifdef CONFIG_X86_32 .legacy_models = { { .family = 4, .model_names = { [3] = "486 DX/2", [7] = "486 DX/2-WB", [8] = "486 DX/4", [9] = "486 DX/4-WB", [14] = "Am5x86-WT", [15] = "Am5x86-WB" } }, }, .legacy_cache_size = amd_size_cache, #endif .c_early_init = early_init_amd, .c_detect_tlb = cpu_detect_tlb_amd, .c_bsp_init = bsp_init_amd, .c_init = init_amd, .c_x86_vendor = X86_VENDOR_AMD, }; cpu_dev_register(amd_cpu_dev); static DEFINE_PER_CPU_READ_MOSTLY(unsigned long[4], amd_dr_addr_mask); static unsigned int amd_msr_dr_addr_masks[] = { MSR_F16H_DR0_ADDR_MASK, MSR_F16H_DR1_ADDR_MASK, MSR_F16H_DR1_ADDR_MASK + 1, MSR_F16H_DR1_ADDR_MASK + 2 }; void amd_set_dr_addr_mask(unsigned long mask, unsigned int dr) { int cpu = smp_processor_id(); if (!cpu_feature_enabled(X86_FEATURE_BPEXT)) return; if (WARN_ON_ONCE(dr >= ARRAY_SIZE(amd_msr_dr_addr_masks))) return; if (per_cpu(amd_dr_addr_mask, cpu)[dr] == mask) return; wrmsr(amd_msr_dr_addr_masks[dr], mask, 0); per_cpu(amd_dr_addr_mask, cpu)[dr] = mask; } unsigned long amd_get_dr_addr_mask(unsigned int dr) { if (!cpu_feature_enabled(X86_FEATURE_BPEXT)) return 0; if (WARN_ON_ONCE(dr >= ARRAY_SIZE(amd_msr_dr_addr_masks))) return 0; return per_cpu(amd_dr_addr_mask[dr], smp_processor_id()); } EXPORT_SYMBOL_GPL(amd_get_dr_addr_mask); u32 amd_get_highest_perf(void) { struct cpuinfo_x86 *c = &boot_cpu_data; if (c->x86 == 0x17 && ((c->x86_model >= 0x30 && c->x86_model < 0x40) || (c->x86_model >= 0x70 && c->x86_model < 0x80))) return 166; if (c->x86 == 0x19 && ((c->x86_model >= 0x20 && c->x86_model < 0x30) || (c->x86_model >= 0x40 && c->x86_model < 0x70))) return 166; return 255; } EXPORT_SYMBOL_GPL(amd_get_highest_perf); static void zenbleed_check_cpu(void *unused) { struct cpuinfo_x86 *c = &cpu_data(smp_processor_id()); zen2_zenbleed_check(c); } void amd_check_microcode(void) { if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD) return; on_each_cpu(zenbleed_check_cpu, NULL, 1); } /* * Issue a DIV 0/1 insn to clear any division data from previous DIV * operations. */ void noinstr amd_clear_divider(void) { asm volatile(ALTERNATIVE("", "div %2\n\t", X86_BUG_DIV0) :: "a" (0), "d" (0), "r" (1)); } EXPORT_SYMBOL_GPL(amd_clear_divider);