/* SPDX-License-Identifier: GPL-2.0-only */ /* * Kernel-based Virtual Machine driver for Linux * * This header defines architecture specific interfaces, x86 version */ #ifndef _ASM_X86_KVM_HOST_H #define _ASM_X86_KVM_HOST_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define __KVM_HAVE_ARCH_VCPU_DEBUGFS /* * CONFIG_KVM_MAX_NR_VCPUS is defined iff CONFIG_KVM!=n, provide a dummy max if * KVM is disabled (arbitrarily use the default from CONFIG_KVM_MAX_NR_VCPUS). */ #ifdef CONFIG_KVM_MAX_NR_VCPUS #define KVM_MAX_VCPUS CONFIG_KVM_MAX_NR_VCPUS #else #define KVM_MAX_VCPUS 1024 #endif /* * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs * might be larger than the actual number of VCPUs because the * APIC ID encodes CPU topology information. * * In the worst case, we'll need less than one extra bit for the * Core ID, and less than one extra bit for the Package (Die) ID, * so ratio of 4 should be enough. */ #define KVM_VCPU_ID_RATIO 4 #define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO) /* memory slots that are not exposed to userspace */ #define KVM_INTERNAL_MEM_SLOTS 3 #define KVM_HALT_POLL_NS_DEFAULT 200000 #define KVM_IRQCHIP_NUM_PINS KVM_IOAPIC_NUM_PINS #define KVM_DIRTY_LOG_MANUAL_CAPS (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \ KVM_DIRTY_LOG_INITIALLY_SET) #define KVM_BUS_LOCK_DETECTION_VALID_MODE (KVM_BUS_LOCK_DETECTION_OFF | \ KVM_BUS_LOCK_DETECTION_EXIT) #define KVM_X86_NOTIFY_VMEXIT_VALID_BITS (KVM_X86_NOTIFY_VMEXIT_ENABLED | \ KVM_X86_NOTIFY_VMEXIT_USER) /* x86-specific vcpu->requests bit members */ #define KVM_REQ_MIGRATE_TIMER KVM_ARCH_REQ(0) #define KVM_REQ_REPORT_TPR_ACCESS KVM_ARCH_REQ(1) #define KVM_REQ_TRIPLE_FAULT KVM_ARCH_REQ(2) #define KVM_REQ_MMU_SYNC KVM_ARCH_REQ(3) #define KVM_REQ_CLOCK_UPDATE KVM_ARCH_REQ(4) #define KVM_REQ_LOAD_MMU_PGD KVM_ARCH_REQ(5) #define KVM_REQ_EVENT KVM_ARCH_REQ(6) #define KVM_REQ_APF_HALT KVM_ARCH_REQ(7) #define KVM_REQ_STEAL_UPDATE KVM_ARCH_REQ(8) #define KVM_REQ_NMI KVM_ARCH_REQ(9) #define KVM_REQ_PMU KVM_ARCH_REQ(10) #define KVM_REQ_PMI KVM_ARCH_REQ(11) #ifdef CONFIG_KVM_SMM #define KVM_REQ_SMI KVM_ARCH_REQ(12) #endif #define KVM_REQ_MASTERCLOCK_UPDATE KVM_ARCH_REQ(13) #define KVM_REQ_MCLOCK_INPROGRESS \ KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) #define KVM_REQ_SCAN_IOAPIC \ KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) #define KVM_REQ_GLOBAL_CLOCK_UPDATE KVM_ARCH_REQ(16) #define KVM_REQ_APIC_PAGE_RELOAD \ KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) #define KVM_REQ_HV_CRASH KVM_ARCH_REQ(18) #define KVM_REQ_IOAPIC_EOI_EXIT KVM_ARCH_REQ(19) #define KVM_REQ_HV_RESET KVM_ARCH_REQ(20) #define KVM_REQ_HV_EXIT KVM_ARCH_REQ(21) #define KVM_REQ_HV_STIMER KVM_ARCH_REQ(22) #define KVM_REQ_LOAD_EOI_EXITMAP KVM_ARCH_REQ(23) #define KVM_REQ_GET_NESTED_STATE_PAGES KVM_ARCH_REQ(24) #define KVM_REQ_APICV_UPDATE \ KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) #define KVM_REQ_TLB_FLUSH_CURRENT KVM_ARCH_REQ(26) #define KVM_REQ_TLB_FLUSH_GUEST \ KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) #define KVM_REQ_APF_READY KVM_ARCH_REQ(28) #define KVM_REQ_MSR_FILTER_CHANGED KVM_ARCH_REQ(29) #define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \ KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) #define KVM_REQ_MMU_FREE_OBSOLETE_ROOTS \ KVM_ARCH_REQ_FLAGS(31, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) #define KVM_REQ_HV_TLB_FLUSH \ KVM_ARCH_REQ_FLAGS(32, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) #define CR0_RESERVED_BITS \ (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \ | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \ | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG)) #define CR4_RESERVED_BITS \ (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\ | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \ | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \ | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \ | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \ | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP \ | X86_CR4_LAM_SUP)) #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR) #define INVALID_PAGE (~(hpa_t)0) #define VALID_PAGE(x) ((x) != INVALID_PAGE) /* KVM Hugepage definitions for x86 */ #define KVM_MAX_HUGEPAGE_LEVEL PG_LEVEL_1G #define KVM_NR_PAGE_SIZES (KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1) #define KVM_HPAGE_GFN_SHIFT(x) (((x) - 1) * 9) #define KVM_HPAGE_SHIFT(x) (PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x)) #define KVM_HPAGE_SIZE(x) (1UL << KVM_HPAGE_SHIFT(x)) #define KVM_HPAGE_MASK(x) (~(KVM_HPAGE_SIZE(x) - 1)) #define KVM_PAGES_PER_HPAGE(x) (KVM_HPAGE_SIZE(x) / PAGE_SIZE) #define KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO 50 #define KVM_MIN_ALLOC_MMU_PAGES 64UL #define KVM_MMU_HASH_SHIFT 12 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT) #define KVM_MIN_FREE_MMU_PAGES 5 #define KVM_REFILL_PAGES 25 #define KVM_MAX_CPUID_ENTRIES 256 #define KVM_NR_FIXED_MTRR_REGION 88 #define KVM_NR_VAR_MTRR 8 #define ASYNC_PF_PER_VCPU 64 enum kvm_reg { VCPU_REGS_RAX = __VCPU_REGS_RAX, VCPU_REGS_RCX = __VCPU_REGS_RCX, VCPU_REGS_RDX = __VCPU_REGS_RDX, VCPU_REGS_RBX = __VCPU_REGS_RBX, VCPU_REGS_RSP = __VCPU_REGS_RSP, VCPU_REGS_RBP = __VCPU_REGS_RBP, VCPU_REGS_RSI = __VCPU_REGS_RSI, VCPU_REGS_RDI = __VCPU_REGS_RDI, #ifdef CONFIG_X86_64 VCPU_REGS_R8 = __VCPU_REGS_R8, VCPU_REGS_R9 = __VCPU_REGS_R9, VCPU_REGS_R10 = __VCPU_REGS_R10, VCPU_REGS_R11 = __VCPU_REGS_R11, VCPU_REGS_R12 = __VCPU_REGS_R12, VCPU_REGS_R13 = __VCPU_REGS_R13, VCPU_REGS_R14 = __VCPU_REGS_R14, VCPU_REGS_R15 = __VCPU_REGS_R15, #endif VCPU_REGS_RIP, NR_VCPU_REGS, VCPU_EXREG_PDPTR = NR_VCPU_REGS, VCPU_EXREG_CR0, VCPU_EXREG_CR3, VCPU_EXREG_CR4, VCPU_EXREG_RFLAGS, VCPU_EXREG_SEGMENTS, VCPU_EXREG_EXIT_INFO_1, VCPU_EXREG_EXIT_INFO_2, }; enum { VCPU_SREG_ES, VCPU_SREG_CS, VCPU_SREG_SS, VCPU_SREG_DS, VCPU_SREG_FS, VCPU_SREG_GS, VCPU_SREG_TR, VCPU_SREG_LDTR, }; enum exit_fastpath_completion { EXIT_FASTPATH_NONE, EXIT_FASTPATH_REENTER_GUEST, EXIT_FASTPATH_EXIT_HANDLED, }; typedef enum exit_fastpath_completion fastpath_t; struct x86_emulate_ctxt; struct x86_exception; union kvm_smram; enum x86_intercept; enum x86_intercept_stage; #define KVM_NR_DB_REGS 4 #define DR6_BUS_LOCK (1 << 11) #define DR6_BD (1 << 13) #define DR6_BS (1 << 14) #define DR6_BT (1 << 15) #define DR6_RTM (1 << 16) /* * DR6_ACTIVE_LOW combines fixed-1 and active-low bits. * We can regard all the bits in DR6_FIXED_1 as active_low bits; * they will never be 0 for now, but when they are defined * in the future it will require no code change. * * DR6_ACTIVE_LOW is also used as the init/reset value for DR6. */ #define DR6_ACTIVE_LOW 0xffff0ff0 #define DR6_VOLATILE 0x0001e80f #define DR6_FIXED_1 (DR6_ACTIVE_LOW & ~DR6_VOLATILE) #define DR7_BP_EN_MASK 0x000000ff #define DR7_GE (1 << 9) #define DR7_GD (1 << 13) #define DR7_FIXED_1 0x00000400 #define DR7_VOLATILE 0xffff2bff #define KVM_GUESTDBG_VALID_MASK \ (KVM_GUESTDBG_ENABLE | \ KVM_GUESTDBG_SINGLESTEP | \ KVM_GUESTDBG_USE_HW_BP | \ KVM_GUESTDBG_USE_SW_BP | \ KVM_GUESTDBG_INJECT_BP | \ KVM_GUESTDBG_INJECT_DB | \ KVM_GUESTDBG_BLOCKIRQ) #define PFERR_PRESENT_BIT 0 #define PFERR_WRITE_BIT 1 #define PFERR_USER_BIT 2 #define PFERR_RSVD_BIT 3 #define PFERR_FETCH_BIT 4 #define PFERR_PK_BIT 5 #define PFERR_SGX_BIT 15 #define PFERR_GUEST_FINAL_BIT 32 #define PFERR_GUEST_PAGE_BIT 33 #define PFERR_IMPLICIT_ACCESS_BIT 48 #define PFERR_PRESENT_MASK BIT(PFERR_PRESENT_BIT) #define PFERR_WRITE_MASK BIT(PFERR_WRITE_BIT) #define PFERR_USER_MASK BIT(PFERR_USER_BIT) #define PFERR_RSVD_MASK BIT(PFERR_RSVD_BIT) #define PFERR_FETCH_MASK BIT(PFERR_FETCH_BIT) #define PFERR_PK_MASK BIT(PFERR_PK_BIT) #define PFERR_SGX_MASK BIT(PFERR_SGX_BIT) #define PFERR_GUEST_FINAL_MASK BIT_ULL(PFERR_GUEST_FINAL_BIT) #define PFERR_GUEST_PAGE_MASK BIT_ULL(PFERR_GUEST_PAGE_BIT) #define PFERR_IMPLICIT_ACCESS BIT_ULL(PFERR_IMPLICIT_ACCESS_BIT) #define PFERR_NESTED_GUEST_PAGE (PFERR_GUEST_PAGE_MASK | \ PFERR_WRITE_MASK | \ PFERR_PRESENT_MASK) /* apic attention bits */ #define KVM_APIC_CHECK_VAPIC 0 /* * The following bit is set with PV-EOI, unset on EOI. * We detect PV-EOI changes by guest by comparing * this bit with PV-EOI in guest memory. * See the implementation in apic_update_pv_eoi. */ #define KVM_APIC_PV_EOI_PENDING 1 struct kvm_kernel_irq_routing_entry; /* * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page * also includes TDP pages) to determine whether or not a page can be used in * the given MMU context. This is a subset of the overall kvm_cpu_role to * minimize the size of kvm_memory_slot.arch.gfn_write_track, i.e. allows * allocating 2 bytes per gfn instead of 4 bytes per gfn. * * Upper-level shadow pages having gptes are tracked for write-protection via * gfn_write_track. As above, gfn_write_track is a 16 bit counter, so KVM must * not create more than 2^16-1 upper-level shadow pages at a single gfn, * otherwise gfn_write_track will overflow and explosions will ensue. * * A unique shadow page (SP) for a gfn is created if and only if an existing SP * cannot be reused. The ability to reuse a SP is tracked by its role, which * incorporates various mode bits and properties of the SP. Roughly speaking, * the number of unique SPs that can theoretically be created is 2^n, where n * is the number of bits that are used to compute the role. * * But, even though there are 19 bits in the mask below, not all combinations * of modes and flags are possible: * * - invalid shadow pages are not accounted, so the bits are effectively 18 * * - quadrant will only be used if has_4_byte_gpte=1 (non-PAE paging); * execonly and ad_disabled are only used for nested EPT which has * has_4_byte_gpte=0. Therefore, 2 bits are always unused. * * - the 4 bits of level are effectively limited to the values 2/3/4/5, * as 4k SPs are not tracked (allowed to go unsync). In addition non-PAE * paging has exactly one upper level, making level completely redundant * when has_4_byte_gpte=1. * * - on top of this, smep_andnot_wp and smap_andnot_wp are only set if * cr0_wp=0, therefore these three bits only give rise to 5 possibilities. * * Therefore, the maximum number of possible upper-level shadow pages for a * single gfn is a bit less than 2^13. */ union kvm_mmu_page_role { u32 word; struct { unsigned level:4; unsigned has_4_byte_gpte:1; unsigned quadrant:2; unsigned direct:1; unsigned access:3; unsigned invalid:1; unsigned efer_nx:1; unsigned cr0_wp:1; unsigned smep_andnot_wp:1; unsigned smap_andnot_wp:1; unsigned ad_disabled:1; unsigned guest_mode:1; unsigned passthrough:1; unsigned :5; /* * This is left at the top of the word so that * kvm_memslots_for_spte_role can extract it with a * simple shift. While there is room, give it a whole * byte so it is also faster to load it from memory. */ unsigned smm:8; }; }; /* * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties * relevant to the current MMU configuration. When loading CR0, CR4, or EFER, * including on nested transitions, if nothing in the full role changes then * MMU re-configuration can be skipped. @valid bit is set on first usage so we * don't treat all-zero structure as valid data. * * The properties that are tracked in the extended role but not the page role * are for things that either (a) do not affect the validity of the shadow page * or (b) are indirectly reflected in the shadow page's role. For example, * CR4.PKE only affects permission checks for software walks of the guest page * tables (because KVM doesn't support Protection Keys with shadow paging), and * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level. * * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role. * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and * SMAP, but the MMU's permission checks for software walks need to be SMEP and * SMAP aware regardless of CR0.WP. */ union kvm_mmu_extended_role { u32 word; struct { unsigned int valid:1; unsigned int execonly:1; unsigned int cr4_pse:1; unsigned int cr4_pke:1; unsigned int cr4_smap:1; unsigned int cr4_smep:1; unsigned int cr4_la57:1; unsigned int efer_lma:1; }; }; union kvm_cpu_role { u64 as_u64; struct { union kvm_mmu_page_role base; union kvm_mmu_extended_role ext; }; }; struct kvm_rmap_head { unsigned long val; }; struct kvm_pio_request { unsigned long linear_rip; unsigned long count; int in; int port; int size; }; #define PT64_ROOT_MAX_LEVEL 5 struct rsvd_bits_validate { u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL]; u64 bad_mt_xwr; }; struct kvm_mmu_root_info { gpa_t pgd; hpa_t hpa; }; #define KVM_MMU_ROOT_INFO_INVALID \ ((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE }) #define KVM_MMU_NUM_PREV_ROOTS 3 #define KVM_MMU_ROOT_CURRENT BIT(0) #define KVM_MMU_ROOT_PREVIOUS(i) BIT(1+i) #define KVM_MMU_ROOTS_ALL (BIT(1 + KVM_MMU_NUM_PREV_ROOTS) - 1) #define KVM_HAVE_MMU_RWLOCK struct kvm_mmu_page; struct kvm_page_fault; /* * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit, * and 2-level 32-bit). The kvm_mmu structure abstracts the details of the * current mmu mode. */ struct kvm_mmu { unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu); u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index); int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault); void (*inject_page_fault)(struct kvm_vcpu *vcpu, struct x86_exception *fault); gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, gpa_t gva_or_gpa, u64 access, struct x86_exception *exception); int (*sync_spte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, int i); struct kvm_mmu_root_info root; union kvm_cpu_role cpu_role; union kvm_mmu_page_role root_role; /* * The pkru_mask indicates if protection key checks are needed. It * consists of 16 domains indexed by page fault error code bits [4:1], * with PFEC.RSVD replaced by ACC_USER_MASK from the page tables. * Each domain has 2 bits which are ANDed with AD and WD from PKRU. */ u32 pkru_mask; struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS]; /* * Bitmap; bit set = permission fault * Byte index: page fault error code [4:1] * Bit index: pte permissions in ACC_* format */ u8 permissions[16]; u64 *pae_root; u64 *pml4_root; u64 *pml5_root; /* * check zero bits on shadow page table entries, these * bits include not only hardware reserved bits but also * the bits spte never used. */ struct rsvd_bits_validate shadow_zero_check; struct rsvd_bits_validate guest_rsvd_check; u64 pdptrs[4]; /* pae */ }; enum pmc_type { KVM_PMC_GP = 0, KVM_PMC_FIXED, }; struct kvm_pmc { enum pmc_type type; u8 idx; bool is_paused; bool intr; /* * Base value of the PMC counter, relative to the *consumed* count in * the associated perf_event. This value includes counter updates from * the perf_event and emulated_count since the last time the counter * was reprogrammed, but it is *not* the current value as seen by the * guest or userspace. * * The count is relative to the associated perf_event so that KVM * doesn't need to reprogram the perf_event every time the guest writes * to the counter. */ u64 counter; /* * PMC events triggered by KVM emulation that haven't been fully * processed, i.e. haven't undergone overflow detection. */ u64 emulated_counter; u64 eventsel; struct perf_event *perf_event; struct kvm_vcpu *vcpu; /* * only for creating or reusing perf_event, * eventsel value for general purpose counters, * ctrl value for fixed counters. */ u64 current_config; }; /* More counters may conflict with other existing Architectural MSRs */ #define KVM_INTEL_PMC_MAX_GENERIC 8 #define MSR_ARCH_PERFMON_PERFCTR_MAX (MSR_ARCH_PERFMON_PERFCTR0 + KVM_INTEL_PMC_MAX_GENERIC - 1) #define MSR_ARCH_PERFMON_EVENTSEL_MAX (MSR_ARCH_PERFMON_EVENTSEL0 + KVM_INTEL_PMC_MAX_GENERIC - 1) #define KVM_PMC_MAX_FIXED 3 #define MSR_ARCH_PERFMON_FIXED_CTR_MAX (MSR_ARCH_PERFMON_FIXED_CTR0 + KVM_PMC_MAX_FIXED - 1) #define KVM_AMD_PMC_MAX_GENERIC 6 struct kvm_pmu { u8 version; unsigned nr_arch_gp_counters; unsigned nr_arch_fixed_counters; unsigned available_event_types; u64 fixed_ctr_ctrl; u64 fixed_ctr_ctrl_mask; u64 global_ctrl; u64 global_status; u64 counter_bitmask[2]; u64 global_ctrl_mask; u64 global_status_mask; u64 reserved_bits; u64 raw_event_mask; struct kvm_pmc gp_counters[KVM_INTEL_PMC_MAX_GENERIC]; struct kvm_pmc fixed_counters[KVM_PMC_MAX_FIXED]; /* * Overlay the bitmap with a 64-bit atomic so that all bits can be * set in a single access, e.g. to reprogram all counters when the PMU * filter changes. */ union { DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX); atomic64_t __reprogram_pmi; }; DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX); DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX); u64 ds_area; u64 pebs_enable; u64 pebs_enable_mask; u64 pebs_data_cfg; u64 pebs_data_cfg_mask; /* * If a guest counter is cross-mapped to host counter with different * index, its PEBS capability will be temporarily disabled. * * The user should make sure that this mask is updated * after disabling interrupts and before perf_guest_get_msrs(); */ u64 host_cross_mapped_mask; /* * The gate to release perf_events not marked in * pmc_in_use only once in a vcpu time slice. */ bool need_cleanup; /* * The total number of programmed perf_events and it helps to avoid * redundant check before cleanup if guest don't use vPMU at all. */ u8 event_count; }; struct kvm_pmu_ops; enum { KVM_DEBUGREG_BP_ENABLED = 1, KVM_DEBUGREG_WONT_EXIT = 2, }; struct kvm_mtrr_range { u64 base; u64 mask; struct list_head node; }; struct kvm_mtrr { struct kvm_mtrr_range var_ranges[KVM_NR_VAR_MTRR]; mtrr_type fixed_ranges[KVM_NR_FIXED_MTRR_REGION]; u64 deftype; struct list_head head; }; /* Hyper-V SynIC timer */ struct kvm_vcpu_hv_stimer { struct hrtimer timer; int index; union hv_stimer_config config; u64 count; u64 exp_time; struct hv_message msg; bool msg_pending; }; /* Hyper-V synthetic interrupt controller (SynIC)*/ struct kvm_vcpu_hv_synic { u64 version; u64 control; u64 msg_page; u64 evt_page; atomic64_t sint[HV_SYNIC_SINT_COUNT]; atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT]; DECLARE_BITMAP(auto_eoi_bitmap, 256); DECLARE_BITMAP(vec_bitmap, 256); bool active; bool dont_zero_synic_pages; }; /* The maximum number of entries on the TLB flush fifo. */ #define KVM_HV_TLB_FLUSH_FIFO_SIZE (16) /* * Note: the following 'magic' entry is made up by KVM to avoid putting * anything besides GVA on the TLB flush fifo. It is theoretically possible * to observe a request to flush 4095 PFNs starting from 0xfffffffffffff000 * which will look identical. KVM's action to 'flush everything' instead of * flushing these particular addresses is, however, fully legitimate as * flushing more than requested is always OK. */ #define KVM_HV_TLB_FLUSHALL_ENTRY ((u64)-1) enum hv_tlb_flush_fifos { HV_L1_TLB_FLUSH_FIFO, HV_L2_TLB_FLUSH_FIFO, HV_NR_TLB_FLUSH_FIFOS, }; struct kvm_vcpu_hv_tlb_flush_fifo { spinlock_t write_lock; DECLARE_KFIFO(entries, u64, KVM_HV_TLB_FLUSH_FIFO_SIZE); }; /* Hyper-V per vcpu emulation context */ struct kvm_vcpu_hv { struct kvm_vcpu *vcpu; u32 vp_index; u64 hv_vapic; s64 runtime_offset; struct kvm_vcpu_hv_synic synic; struct kvm_hyperv_exit exit; struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT]; DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT); bool enforce_cpuid; struct { u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */ u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */ u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */ u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */ u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */ u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */ u32 nested_eax; /* HYPERV_CPUID_NESTED_FEATURES.EAX */ u32 nested_ebx; /* HYPERV_CPUID_NESTED_FEATURES.EBX */ } cpuid_cache; struct kvm_vcpu_hv_tlb_flush_fifo tlb_flush_fifo[HV_NR_TLB_FLUSH_FIFOS]; /* Preallocated buffer for handling hypercalls passing sparse vCPU set */ u64 sparse_banks[HV_MAX_SPARSE_VCPU_BANKS]; struct hv_vp_assist_page vp_assist_page; struct { u64 pa_page_gpa; u64 vm_id; u32 vp_id; } nested; }; struct kvm_hypervisor_cpuid { u32 base; u32 limit; }; #ifdef CONFIG_KVM_XEN /* Xen HVM per vcpu emulation context */ struct kvm_vcpu_xen { u64 hypercall_rip; u32 current_runstate; u8 upcall_vector; struct gfn_to_pfn_cache vcpu_info_cache; struct gfn_to_pfn_cache vcpu_time_info_cache; struct gfn_to_pfn_cache runstate_cache; struct gfn_to_pfn_cache runstate2_cache; u64 last_steal; u64 runstate_entry_time; u64 runstate_times[4]; unsigned long evtchn_pending_sel; u32 vcpu_id; /* The Xen / ACPI vCPU ID */ u32 timer_virq; u64 timer_expires; /* In guest epoch */ atomic_t timer_pending; struct hrtimer timer; int poll_evtchn; struct timer_list poll_timer; struct kvm_hypervisor_cpuid cpuid; }; #endif struct kvm_queued_exception { bool pending; bool injected; bool has_error_code; u8 vector; u32 error_code; unsigned long payload; bool has_payload; }; struct kvm_vcpu_arch { /* * rip and regs accesses must go through * kvm_{register,rip}_{read,write} functions. */ unsigned long regs[NR_VCPU_REGS]; u32 regs_avail; u32 regs_dirty; unsigned long cr0; unsigned long cr0_guest_owned_bits; unsigned long cr2; unsigned long cr3; unsigned long cr4; unsigned long cr4_guest_owned_bits; unsigned long cr4_guest_rsvd_bits; unsigned long cr8; u32 host_pkru; u32 pkru; u32 hflags; u64 efer; u64 apic_base; struct kvm_lapic *apic; /* kernel irqchip context */ bool load_eoi_exitmap_pending; DECLARE_BITMAP(ioapic_handled_vectors, 256); unsigned long apic_attention; int32_t apic_arb_prio; int mp_state; u64 ia32_misc_enable_msr; u64 smbase; u64 smi_count; bool at_instruction_boundary; bool tpr_access_reporting; bool xfd_no_write_intercept; u64 ia32_xss; u64 microcode_version; u64 arch_capabilities; u64 perf_capabilities; /* * Paging state of the vcpu * * If the vcpu runs in guest mode with two level paging this still saves * the paging mode of the l1 guest. This context is always used to * handle faults. */ struct kvm_mmu *mmu; /* Non-nested MMU for L1 */ struct kvm_mmu root_mmu; /* L1 MMU when running nested */ struct kvm_mmu guest_mmu; /* * Paging state of an L2 guest (used for nested npt) * * This context will save all necessary information to walk page tables * of an L2 guest. This context is only initialized for page table * walking and not for faulting since we never handle l2 page faults on * the host. */ struct kvm_mmu nested_mmu; /* * Pointer to the mmu context currently used for * gva_to_gpa translations. */ struct kvm_mmu *walk_mmu; struct kvm_mmu_memory_cache mmu_pte_list_desc_cache; struct kvm_mmu_memory_cache mmu_shadow_page_cache; struct kvm_mmu_memory_cache mmu_shadowed_info_cache; struct kvm_mmu_memory_cache mmu_page_header_cache; /* * QEMU userspace and the guest each have their own FPU state. * In vcpu_run, we switch between the user and guest FPU contexts. * While running a VCPU, the VCPU thread will have the guest FPU * context. * * Note that while the PKRU state lives inside the fpu registers, * it is switched out separately at VMENTER and VMEXIT time. The * "guest_fpstate" state here contains the guest FPU context, with the * host PRKU bits. */ struct fpu_guest guest_fpu; u64 xcr0; u64 guest_supported_xcr0; struct kvm_pio_request pio; void *pio_data; void *sev_pio_data; unsigned sev_pio_count; u8 event_exit_inst_len; bool exception_from_userspace; /* Exceptions to be injected to the guest. */ struct kvm_queued_exception exception; /* Exception VM-Exits to be synthesized to L1. */ struct kvm_queued_exception exception_vmexit; struct kvm_queued_interrupt { bool injected; bool soft; u8 nr; } interrupt; int halt_request; /* real mode on Intel only */ int cpuid_nent; struct kvm_cpuid_entry2 *cpuid_entries; struct kvm_hypervisor_cpuid kvm_cpuid; bool is_amd_compatible; /* * FIXME: Drop this macro and use KVM_NR_GOVERNED_FEATURES directly * when "struct kvm_vcpu_arch" is no longer defined in an * arch/x86/include/asm header. The max is mostly arbitrary, i.e. * can be increased as necessary. */ #define KVM_MAX_NR_GOVERNED_FEATURES BITS_PER_LONG /* * Track whether or not the guest is allowed to use features that are * governed by KVM, where "governed" means KVM needs to manage state * and/or explicitly enable the feature in hardware. Typically, but * not always, governed features can be used by the guest if and only * if both KVM and userspace want to expose the feature to the guest. */ struct { DECLARE_BITMAP(enabled, KVM_MAX_NR_GOVERNED_FEATURES); } governed_features; u64 reserved_gpa_bits; int maxphyaddr; /* emulate context */ struct x86_emulate_ctxt *emulate_ctxt; bool emulate_regs_need_sync_to_vcpu; bool emulate_regs_need_sync_from_vcpu; int (*complete_userspace_io)(struct kvm_vcpu *vcpu); gpa_t time; struct pvclock_vcpu_time_info hv_clock; unsigned int hw_tsc_khz; struct gfn_to_pfn_cache pv_time; /* set guest stopped flag in pvclock flags field */ bool pvclock_set_guest_stopped_request; struct { u8 preempted; u64 msr_val; u64 last_steal; struct gfn_to_hva_cache cache; } st; u64 l1_tsc_offset; u64 tsc_offset; /* current tsc offset */ u64 last_guest_tsc; u64 last_host_tsc; u64 tsc_offset_adjustment; u64 this_tsc_nsec; u64 this_tsc_write; u64 this_tsc_generation; bool tsc_catchup; bool tsc_always_catchup; s8 virtual_tsc_shift; u32 virtual_tsc_mult; u32 virtual_tsc_khz; s64 ia32_tsc_adjust_msr; u64 msr_ia32_power_ctl; u64 l1_tsc_scaling_ratio; u64 tsc_scaling_ratio; /* current scaling ratio */ atomic_t nmi_queued; /* unprocessed asynchronous NMIs */ /* Number of NMIs pending injection, not including hardware vNMIs. */ unsigned int nmi_pending; bool nmi_injected; /* Trying to inject an NMI this entry */ bool smi_pending; /* SMI queued after currently running handler */ u8 handling_intr_from_guest; struct kvm_mtrr mtrr_state; u64 pat; unsigned switch_db_regs; unsigned long db[KVM_NR_DB_REGS]; unsigned long dr6; unsigned long dr7; unsigned long eff_db[KVM_NR_DB_REGS]; unsigned long guest_debug_dr7; u64 msr_platform_info; u64 msr_misc_features_enables; u64 mcg_cap; u64 mcg_status; u64 mcg_ctl; u64 mcg_ext_ctl; u64 *mce_banks; u64 *mci_ctl2_banks; /* Cache MMIO info */ u64 mmio_gva; unsigned mmio_access; gfn_t mmio_gfn; u64 mmio_gen; struct kvm_pmu pmu; /* used for guest single stepping over the given code position */ unsigned long singlestep_rip; #ifdef CONFIG_KVM_HYPERV bool hyperv_enabled; struct kvm_vcpu_hv *hyperv; #endif #ifdef CONFIG_KVM_XEN struct kvm_vcpu_xen xen; #endif cpumask_var_t wbinvd_dirty_mask; unsigned long last_retry_eip; unsigned long last_retry_addr; struct { bool halted; gfn_t gfns[ASYNC_PF_PER_VCPU]; struct gfn_to_hva_cache data; u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */ u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */ u16 vec; u32 id; bool send_user_only; u32 host_apf_flags; bool delivery_as_pf_vmexit; bool pageready_pending; } apf; /* OSVW MSRs (AMD only) */ struct { u64 length; u64 status; } osvw; struct { u64 msr_val; struct gfn_to_hva_cache data; } pv_eoi; u64 msr_kvm_poll_control; /* set at EPT violation at this point */ unsigned long exit_qualification; /* pv related host specific info */ struct { bool pv_unhalted; } pv; int pending_ioapic_eoi; int pending_external_vector; /* be preempted when it's in kernel-mode(cpl=0) */ bool preempted_in_kernel; /* Flush the L1 Data cache for L1TF mitigation on VMENTER */ bool l1tf_flush_l1d; /* Host CPU on which VM-entry was most recently attempted */ int last_vmentry_cpu; /* AMD MSRC001_0015 Hardware Configuration */ u64 msr_hwcr; /* pv related cpuid info */ struct { /* * value of the eax register in the KVM_CPUID_FEATURES CPUID * leaf. */ u32 features; /* * indicates whether pv emulation should be disabled if features * are not present in the guest's cpuid */ bool enforce; } pv_cpuid; /* Protected Guests */ bool guest_state_protected; /* * Set when PDPTS were loaded directly by the userspace without * reading the guest memory */ bool pdptrs_from_userspace; #if IS_ENABLED(CONFIG_HYPERV) hpa_t hv_root_tdp; #endif }; struct kvm_lpage_info { int disallow_lpage; }; struct kvm_arch_memory_slot { struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES]; struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1]; unsigned short *gfn_write_track; }; /* * Track the mode of the optimized logical map, as the rules for decoding the * destination vary per mode. Enabling the optimized logical map requires all * software-enabled local APIs to be in the same mode, each addressable APIC to * be mapped to only one MDA, and each MDA to map to at most one APIC. */ enum kvm_apic_logical_mode { /* All local APICs are software disabled. */ KVM_APIC_MODE_SW_DISABLED, /* All software enabled local APICs in xAPIC cluster addressing mode. */ KVM_APIC_MODE_XAPIC_CLUSTER, /* All software enabled local APICs in xAPIC flat addressing mode. */ KVM_APIC_MODE_XAPIC_FLAT, /* All software enabled local APICs in x2APIC mode. */ KVM_APIC_MODE_X2APIC, /* * Optimized map disabled, e.g. not all local APICs in the same logical * mode, same logical ID assigned to multiple APICs, etc. */ KVM_APIC_MODE_MAP_DISABLED, }; struct kvm_apic_map { struct rcu_head rcu; enum kvm_apic_logical_mode logical_mode; u32 max_apic_id; union { struct kvm_lapic *xapic_flat_map[8]; struct kvm_lapic *xapic_cluster_map[16][4]; }; struct kvm_lapic *phys_map[]; }; /* Hyper-V synthetic debugger (SynDbg)*/ struct kvm_hv_syndbg { struct { u64 control; u64 status; u64 send_page; u64 recv_page; u64 pending_page; } control; u64 options; }; /* Current state of Hyper-V TSC page clocksource */ enum hv_tsc_page_status { /* TSC page was not set up or disabled */ HV_TSC_PAGE_UNSET = 0, /* TSC page MSR was written by the guest, update pending */ HV_TSC_PAGE_GUEST_CHANGED, /* TSC page update was triggered from the host side */ HV_TSC_PAGE_HOST_CHANGED, /* TSC page was properly set up and is currently active */ HV_TSC_PAGE_SET, /* TSC page was set up with an inaccessible GPA */ HV_TSC_PAGE_BROKEN, }; #ifdef CONFIG_KVM_HYPERV /* Hyper-V emulation context */ struct kvm_hv { struct mutex hv_lock; u64 hv_guest_os_id; u64 hv_hypercall; u64 hv_tsc_page; enum hv_tsc_page_status hv_tsc_page_status; /* Hyper-v based guest crash (NT kernel bugcheck) parameters */ u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS]; u64 hv_crash_ctl; struct ms_hyperv_tsc_page tsc_ref; struct idr conn_to_evt; u64 hv_reenlightenment_control; u64 hv_tsc_emulation_control; u64 hv_tsc_emulation_status; u64 hv_invtsc_control; /* How many vCPUs have VP index != vCPU index */ atomic_t num_mismatched_vp_indexes; /* * How many SynICs use 'AutoEOI' feature * (protected by arch.apicv_update_lock) */ unsigned int synic_auto_eoi_used; struct kvm_hv_syndbg hv_syndbg; bool xsaves_xsavec_checked; }; #endif struct msr_bitmap_range { u32 flags; u32 nmsrs; u32 base; unsigned long *bitmap; }; #ifdef CONFIG_KVM_XEN /* Xen emulation context */ struct kvm_xen { struct mutex xen_lock; u32 xen_version; bool long_mode; bool runstate_update_flag; u8 upcall_vector; struct gfn_to_pfn_cache shinfo_cache; struct idr evtchn_ports; unsigned long poll_mask[BITS_TO_LONGS(KVM_MAX_VCPUS)]; }; #endif enum kvm_irqchip_mode { KVM_IRQCHIP_NONE, KVM_IRQCHIP_KERNEL, /* created with KVM_CREATE_IRQCHIP */ KVM_IRQCHIP_SPLIT, /* created with KVM_CAP_SPLIT_IRQCHIP */ }; struct kvm_x86_msr_filter { u8 count; bool default_allow:1; struct msr_bitmap_range ranges[16]; }; struct kvm_x86_pmu_event_filter { __u32 action; __u32 nevents; __u32 fixed_counter_bitmap; __u32 flags; __u32 nr_includes; __u32 nr_excludes; __u64 *includes; __u64 *excludes; __u64 events[]; }; enum kvm_apicv_inhibit { /********************************************************************/ /* INHIBITs that are relevant to both Intel's APICv and AMD's AVIC. */ /********************************************************************/ /* * APIC acceleration is disabled by a module parameter * and/or not supported in hardware. */ APICV_INHIBIT_REASON_DISABLE, /* * APIC acceleration is inhibited because AutoEOI feature is * being used by a HyperV guest. */ APICV_INHIBIT_REASON_HYPERV, /* * APIC acceleration is inhibited because the userspace didn't yet * enable the kernel/split irqchip. */ APICV_INHIBIT_REASON_ABSENT, /* APIC acceleration is inhibited because KVM_GUESTDBG_BLOCKIRQ * (out of band, debug measure of blocking all interrupts on this vCPU) * was enabled, to avoid AVIC/APICv bypassing it. */ APICV_INHIBIT_REASON_BLOCKIRQ, /* * APICv is disabled because not all vCPUs have a 1:1 mapping between * APIC ID and vCPU, _and_ KVM is not applying its x2APIC hotplug hack. */ APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED, /* * For simplicity, the APIC acceleration is inhibited * first time either APIC ID or APIC base are changed by the guest * from their reset values. */ APICV_INHIBIT_REASON_APIC_ID_MODIFIED, APICV_INHIBIT_REASON_APIC_BASE_MODIFIED, /******************************************************/ /* INHIBITs that are relevant only to the AMD's AVIC. */ /******************************************************/ /* * AVIC is inhibited on a vCPU because it runs a nested guest. * * This is needed because unlike APICv, the peers of this vCPU * cannot use the doorbell mechanism to signal interrupts via AVIC when * a vCPU runs nested. */ APICV_INHIBIT_REASON_NESTED, /* * On SVM, the wait for the IRQ window is implemented with pending vIRQ, * which cannot be injected when the AVIC is enabled, thus AVIC * is inhibited while KVM waits for IRQ window. */ APICV_INHIBIT_REASON_IRQWIN, /* * PIT (i8254) 're-inject' mode, relies on EOI intercept, * which AVIC doesn't support for edge triggered interrupts. */ APICV_INHIBIT_REASON_PIT_REINJ, /* * AVIC is disabled because SEV doesn't support it. */ APICV_INHIBIT_REASON_SEV, /* * AVIC is disabled because not all vCPUs with a valid LDR have a 1:1 * mapping between logical ID and vCPU. */ APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED, }; struct kvm_arch { unsigned long vm_type; unsigned long n_used_mmu_pages; unsigned long n_requested_mmu_pages; unsigned long n_max_mmu_pages; unsigned int indirect_shadow_pages; u8 mmu_valid_gen; struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES]; struct list_head active_mmu_pages; struct list_head zapped_obsolete_pages; /* * A list of kvm_mmu_page structs that, if zapped, could possibly be * replaced by an NX huge page. A shadow page is on this list if its * existence disallows an NX huge page (nx_huge_page_disallowed is set) * and there are no other conditions that prevent a huge page, e.g. * the backing host page is huge, dirtly logging is not enabled for its * memslot, etc... Note, zapping shadow pages on this list doesn't * guarantee an NX huge page will be created in its stead, e.g. if the * guest attempts to execute from the region then KVM obviously can't * create an NX huge page (without hanging the guest). */ struct list_head possible_nx_huge_pages; #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING struct kvm_page_track_notifier_head track_notifier_head; #endif /* * Protects marking pages unsync during page faults, as TDP MMU page * faults only take mmu_lock for read. For simplicity, the unsync * pages lock is always taken when marking pages unsync regardless of * whether mmu_lock is held for read or write. */ spinlock_t mmu_unsync_pages_lock; struct iommu_domain *iommu_domain; bool iommu_noncoherent; #define __KVM_HAVE_ARCH_NONCOHERENT_DMA atomic_t noncoherent_dma_count; #define __KVM_HAVE_ARCH_ASSIGNED_DEVICE atomic_t assigned_device_count; struct kvm_pic *vpic; struct kvm_ioapic *vioapic; struct kvm_pit *vpit; atomic_t vapics_in_nmi_mode; struct mutex apic_map_lock; struct kvm_apic_map __rcu *apic_map; atomic_t apic_map_dirty; bool apic_access_memslot_enabled; bool apic_access_memslot_inhibited; /* Protects apicv_inhibit_reasons */ struct rw_semaphore apicv_update_lock; unsigned long apicv_inhibit_reasons; gpa_t wall_clock; bool mwait_in_guest; bool hlt_in_guest; bool pause_in_guest; bool cstate_in_guest; unsigned long irq_sources_bitmap; s64 kvmclock_offset; /* * This also protects nr_vcpus_matched_tsc which is read from a * preemption-disabled region, so it must be a raw spinlock. */ raw_spinlock_t tsc_write_lock; u64 last_tsc_nsec; u64 last_tsc_write; u32 last_tsc_khz; u64 last_tsc_offset; u64 cur_tsc_nsec; u64 cur_tsc_write; u64 cur_tsc_offset; u64 cur_tsc_generation; int nr_vcpus_matched_tsc; u32 default_tsc_khz; bool user_set_tsc; seqcount_raw_spinlock_t pvclock_sc; bool use_master_clock; u64 master_kernel_ns; u64 master_cycle_now; struct delayed_work kvmclock_update_work; struct delayed_work kvmclock_sync_work; struct kvm_xen_hvm_config xen_hvm_config; /* reads protected by irq_srcu, writes by irq_lock */ struct hlist_head mask_notifier_list; #ifdef CONFIG_KVM_HYPERV struct kvm_hv hyperv; #endif #ifdef CONFIG_KVM_XEN struct kvm_xen xen; #endif bool backwards_tsc_observed; bool boot_vcpu_runs_old_kvmclock; u32 bsp_vcpu_id; u64 disabled_quirks; enum kvm_irqchip_mode irqchip_mode; u8 nr_reserved_ioapic_pins; bool disabled_lapic_found; bool x2apic_format; bool x2apic_broadcast_quirk_disabled; bool guest_can_read_msr_platform_info; bool exception_payload_enabled; bool triple_fault_event; bool bus_lock_detection_enabled; bool enable_pmu; u32 notify_window; u32 notify_vmexit_flags; /* * If exit_on_emulation_error is set, and the in-kernel instruction * emulator fails to emulate an instruction, allow userspace * the opportunity to look at it. */ bool exit_on_emulation_error; /* Deflect RDMSR and WRMSR to user space when they trigger a #GP */ u32 user_space_msr_mask; struct kvm_x86_msr_filter __rcu *msr_filter; u32 hypercall_exit_enabled; /* Guest can access the SGX PROVISIONKEY. */ bool sgx_provisioning_allowed; struct kvm_x86_pmu_event_filter __rcu *pmu_event_filter; struct task_struct *nx_huge_page_recovery_thread; #ifdef CONFIG_X86_64 /* The number of TDP MMU pages across all roots. */ atomic64_t tdp_mmu_pages; /* * List of struct kvm_mmu_pages being used as roots. * All struct kvm_mmu_pages in the list should have * tdp_mmu_page set. * * For reads, this list is protected by: * the MMU lock in read mode + RCU or * the MMU lock in write mode * * For writes, this list is protected by tdp_mmu_pages_lock; see * below for the details. * * Roots will remain in the list until their tdp_mmu_root_count * drops to zero, at which point the thread that decremented the * count to zero should removed the root from the list and clean * it up, freeing the root after an RCU grace period. */ struct list_head tdp_mmu_roots; /* * Protects accesses to the following fields when the MMU lock * is held in read mode: * - tdp_mmu_roots (above) * - the link field of kvm_mmu_page structs used by the TDP MMU * - possible_nx_huge_pages; * - the possible_nx_huge_page_link field of kvm_mmu_page structs used * by the TDP MMU * Because the lock is only taken within the MMU lock, strictly * speaking it is redundant to acquire this lock when the thread * holds the MMU lock in write mode. However it often simplifies * the code to do so. */ spinlock_t tdp_mmu_pages_lock; #endif /* CONFIG_X86_64 */ /* * If set, at least one shadow root has been allocated. This flag * is used as one input when determining whether certain memslot * related allocations are necessary. */ bool shadow_root_allocated; #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING /* * If set, the VM has (or had) an external write tracking user, and * thus all write tracking metadata has been allocated, even if KVM * itself isn't using write tracking. */ bool external_write_tracking_enabled; #endif #if IS_ENABLED(CONFIG_HYPERV) hpa_t hv_root_tdp; spinlock_t hv_root_tdp_lock; struct hv_partition_assist_pg *hv_pa_pg; #endif /* * VM-scope maximum vCPU ID. Used to determine the size of structures * that increase along with the maximum vCPU ID, in which case, using * the global KVM_MAX_VCPU_IDS may lead to significant memory waste. */ u32 max_vcpu_ids; bool disable_nx_huge_pages; /* * Memory caches used to allocate shadow pages when performing eager * page splitting. No need for a shadowed_info_cache since eager page * splitting only allocates direct shadow pages. * * Protected by kvm->slots_lock. */ struct kvm_mmu_memory_cache split_shadow_page_cache; struct kvm_mmu_memory_cache split_page_header_cache; /* * Memory cache used to allocate pte_list_desc structs while splitting * huge pages. In the worst case, to split one huge page, 512 * pte_list_desc structs are needed to add each lower level leaf sptep * to the rmap plus 1 to extend the parent_ptes rmap of the lower level * page table. * * Protected by kvm->slots_lock. */ #define SPLIT_DESC_CACHE_MIN_NR_OBJECTS (SPTE_ENT_PER_PAGE + 1) struct kvm_mmu_memory_cache split_desc_cache; }; struct kvm_vm_stat { struct kvm_vm_stat_generic generic; u64 mmu_shadow_zapped; u64 mmu_pte_write; u64 mmu_pde_zapped; u64 mmu_flooded; u64 mmu_recycled; u64 mmu_cache_miss; u64 mmu_unsync; union { struct { atomic64_t pages_4k; atomic64_t pages_2m; atomic64_t pages_1g; }; atomic64_t pages[KVM_NR_PAGE_SIZES]; }; u64 nx_lpage_splits; u64 max_mmu_page_hash_collisions; u64 max_mmu_rmap_size; }; struct kvm_vcpu_stat { struct kvm_vcpu_stat_generic generic; u64 pf_taken; u64 pf_fixed; u64 pf_emulate; u64 pf_spurious; u64 pf_fast; u64 pf_mmio_spte_created; u64 pf_guest; u64 tlb_flush; u64 invlpg; u64 exits; u64 io_exits; u64 mmio_exits; u64 signal_exits; u64 irq_window_exits; u64 nmi_window_exits; u64 l1d_flush; u64 halt_exits; u64 request_irq_exits; u64 irq_exits; u64 host_state_reload; u64 fpu_reload; u64 insn_emulation; u64 insn_emulation_fail; u64 hypercalls; u64 irq_injections; u64 nmi_injections; u64 req_event; u64 nested_run; u64 directed_yield_attempted; u64 directed_yield_successful; u64 preemption_reported; u64 preemption_other; u64 guest_mode; u64 notify_window_exits; }; struct x86_instruction_info; struct msr_data { bool host_initiated; u32 index; u64 data; }; struct kvm_lapic_irq { u32 vector; u16 delivery_mode; u16 dest_mode; bool level; u16 trig_mode; u32 shorthand; u32 dest_id; bool msi_redir_hint; }; static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical) { return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL; } struct kvm_x86_ops { const char *name; int (*check_processor_compatibility)(void); int (*hardware_enable)(void); void (*hardware_disable)(void); void (*hardware_unsetup)(void); bool (*has_emulated_msr)(struct kvm *kvm, u32 index); void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu); unsigned int vm_size; int (*vm_init)(struct kvm *kvm); void (*vm_destroy)(struct kvm *kvm); /* Create, but do not attach this VCPU */ int (*vcpu_precreate)(struct kvm *kvm); int (*vcpu_create)(struct kvm_vcpu *vcpu); void (*vcpu_free)(struct kvm_vcpu *vcpu); void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event); void (*prepare_switch_to_guest)(struct kvm_vcpu *vcpu); void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu); void (*vcpu_put)(struct kvm_vcpu *vcpu); void (*update_exception_bitmap)(struct kvm_vcpu *vcpu); int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr); int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr); u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg); void (*get_segment)(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); int (*get_cpl)(struct kvm_vcpu *vcpu); void (*set_segment)(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l); bool (*is_valid_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0); void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0); void (*post_set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3); bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4); void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4); int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer); void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu); void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value); void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg); unsigned long (*get_rflags)(struct kvm_vcpu *vcpu); void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags); bool (*get_if_flag)(struct kvm_vcpu *vcpu); void (*flush_tlb_all)(struct kvm_vcpu *vcpu); void (*flush_tlb_current)(struct kvm_vcpu *vcpu); #if IS_ENABLED(CONFIG_HYPERV) int (*flush_remote_tlbs)(struct kvm *kvm); int (*flush_remote_tlbs_range)(struct kvm *kvm, gfn_t gfn, gfn_t nr_pages); #endif /* * Flush any TLB entries associated with the given GVA. * Does not need to flush GPA->HPA mappings. * Can potentially get non-canonical addresses through INVLPGs, which * the implementation may choose to ignore if appropriate. */ void (*flush_tlb_gva)(struct kvm_vcpu *vcpu, gva_t addr); /* * Flush any TLB entries created by the guest. Like tlb_flush_gva(), * does not need to flush GPA->HPA mappings. */ void (*flush_tlb_guest)(struct kvm_vcpu *vcpu); int (*vcpu_pre_run)(struct kvm_vcpu *vcpu); enum exit_fastpath_completion (*vcpu_run)(struct kvm_vcpu *vcpu, bool force_immediate_exit); int (*handle_exit)(struct kvm_vcpu *vcpu, enum exit_fastpath_completion exit_fastpath); int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu); void (*update_emulated_instruction)(struct kvm_vcpu *vcpu); void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask); u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu); void (*patch_hypercall)(struct kvm_vcpu *vcpu, unsigned char *hypercall_addr); void (*inject_irq)(struct kvm_vcpu *vcpu, bool reinjected); void (*inject_nmi)(struct kvm_vcpu *vcpu); void (*inject_exception)(struct kvm_vcpu *vcpu); void (*cancel_injection)(struct kvm_vcpu *vcpu); int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection); int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection); bool (*get_nmi_mask)(struct kvm_vcpu *vcpu); void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked); /* Whether or not a virtual NMI is pending in hardware. */ bool (*is_vnmi_pending)(struct kvm_vcpu *vcpu); /* * Attempt to pend a virtual NMI in hardware. Returns %true on success * to allow using static_call_ret0 as the fallback. */ bool (*set_vnmi_pending)(struct kvm_vcpu *vcpu); void (*enable_nmi_window)(struct kvm_vcpu *vcpu); void (*enable_irq_window)(struct kvm_vcpu *vcpu); void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr); bool (*check_apicv_inhibit_reasons)(enum kvm_apicv_inhibit reason); const unsigned long required_apicv_inhibits; bool allow_apicv_in_x2apic_without_x2apic_virtualization; void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu); void (*hwapic_irr_update)(struct kvm_vcpu *vcpu, int max_irr); void (*hwapic_isr_update)(int isr); bool (*guest_apic_has_interrupt)(struct kvm_vcpu *vcpu); void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap); void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu); void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu); void (*deliver_interrupt)(struct kvm_lapic *apic, int delivery_mode, int trig_mode, int vector); int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu); int (*set_tss_addr)(struct kvm *kvm, unsigned int addr); int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr); u8 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio); void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level); bool (*has_wbinvd_exit)(void); u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu); u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu); void (*write_tsc_offset)(struct kvm_vcpu *vcpu); void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu); /* * Retrieve somewhat arbitrary exit information. Intended to * be used only from within tracepoints or error paths. */ void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason, u64 *info1, u64 *info2, u32 *exit_int_info, u32 *exit_int_info_err_code); int (*check_intercept)(struct kvm_vcpu *vcpu, struct x86_instruction_info *info, enum x86_intercept_stage stage, struct x86_exception *exception); void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu); void (*sched_in)(struct kvm_vcpu *vcpu, int cpu); /* * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer. A zero * value indicates CPU dirty logging is unsupported or disabled. */ int cpu_dirty_log_size; void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu); const struct kvm_x86_nested_ops *nested_ops; void (*vcpu_blocking)(struct kvm_vcpu *vcpu); void (*vcpu_unblocking)(struct kvm_vcpu *vcpu); int (*pi_update_irte)(struct kvm *kvm, unsigned int host_irq, uint32_t guest_irq, bool set); void (*pi_start_assignment)(struct kvm *kvm); void (*apicv_pre_state_restore)(struct kvm_vcpu *vcpu); void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu); bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu); int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, bool *expired); void (*cancel_hv_timer)(struct kvm_vcpu *vcpu); void (*setup_mce)(struct kvm_vcpu *vcpu); #ifdef CONFIG_KVM_SMM int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection); int (*enter_smm)(struct kvm_vcpu *vcpu, union kvm_smram *smram); int (*leave_smm)(struct kvm_vcpu *vcpu, const union kvm_smram *smram); void (*enable_smi_window)(struct kvm_vcpu *vcpu); #endif int (*mem_enc_ioctl)(struct kvm *kvm, void __user *argp); int (*mem_enc_register_region)(struct kvm *kvm, struct kvm_enc_region *argp); int (*mem_enc_unregister_region)(struct kvm *kvm, struct kvm_enc_region *argp); int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd); int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd); void (*guest_memory_reclaimed)(struct kvm *kvm); int (*get_msr_feature)(struct kvm_msr_entry *entry); int (*check_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type, void *insn, int insn_len); bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu); int (*enable_l2_tlb_flush)(struct kvm_vcpu *vcpu); void (*migrate_timers)(struct kvm_vcpu *vcpu); void (*msr_filter_changed)(struct kvm_vcpu *vcpu); int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err); void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector); /* * Returns vCPU specific APICv inhibit reasons */ unsigned long (*vcpu_get_apicv_inhibit_reasons)(struct kvm_vcpu *vcpu); gva_t (*get_untagged_addr)(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags); void *(*alloc_apic_backing_page)(struct kvm_vcpu *vcpu); }; struct kvm_x86_nested_ops { void (*leave_nested)(struct kvm_vcpu *vcpu); bool (*is_exception_vmexit)(struct kvm_vcpu *vcpu, u8 vector, u32 error_code); int (*check_events)(struct kvm_vcpu *vcpu); bool (*has_events)(struct kvm_vcpu *vcpu); void (*triple_fault)(struct kvm_vcpu *vcpu); int (*get_state)(struct kvm_vcpu *vcpu, struct kvm_nested_state __user *user_kvm_nested_state, unsigned user_data_size); int (*set_state)(struct kvm_vcpu *vcpu, struct kvm_nested_state __user *user_kvm_nested_state, struct kvm_nested_state *kvm_state); bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu); int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa); int (*enable_evmcs)(struct kvm_vcpu *vcpu, uint16_t *vmcs_version); uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu); void (*hv_inject_synthetic_vmexit_post_tlb_flush)(struct kvm_vcpu *vcpu); }; struct kvm_x86_init_ops { int (*hardware_setup)(void); unsigned int (*handle_intel_pt_intr)(void); struct kvm_x86_ops *runtime_ops; struct kvm_pmu_ops *pmu_ops; }; struct kvm_arch_async_pf { u32 token; gfn_t gfn; unsigned long cr3; bool direct_map; }; extern u32 __read_mostly kvm_nr_uret_msrs; extern u64 __read_mostly host_efer; extern bool __read_mostly allow_smaller_maxphyaddr; extern bool __read_mostly enable_apicv; extern struct kvm_x86_ops kvm_x86_ops; #define KVM_X86_OP(func) \ DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func)); #define KVM_X86_OP_OPTIONAL KVM_X86_OP #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP #include int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops); void kvm_x86_vendor_exit(void); #define __KVM_HAVE_ARCH_VM_ALLOC static inline struct kvm *kvm_arch_alloc_vm(void) { return __vmalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO); } #define __KVM_HAVE_ARCH_VM_FREE void kvm_arch_free_vm(struct kvm *kvm); #if IS_ENABLED(CONFIG_HYPERV) #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm) { if (kvm_x86_ops.flush_remote_tlbs && !static_call(kvm_x86_flush_remote_tlbs)(kvm)) return 0; else return -ENOTSUPP; } #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages) { if (!kvm_x86_ops.flush_remote_tlbs_range) return -EOPNOTSUPP; return static_call(kvm_x86_flush_remote_tlbs_range)(kvm, gfn, nr_pages); } #endif /* CONFIG_HYPERV */ enum kvm_intr_type { /* Values are arbitrary, but must be non-zero. */ KVM_HANDLING_IRQ = 1, KVM_HANDLING_NMI, }; /* Enable perf NMI and timer modes to work, and minimise false positives. */ #define kvm_arch_pmi_in_guest(vcpu) \ ((vcpu) && (vcpu)->arch.handling_intr_from_guest && \ (!!in_nmi() == ((vcpu)->arch.handling_intr_from_guest == KVM_HANDLING_NMI))) void __init kvm_mmu_x86_module_init(void); int kvm_mmu_vendor_module_init(void); void kvm_mmu_vendor_module_exit(void); void kvm_mmu_destroy(struct kvm_vcpu *vcpu); int kvm_mmu_create(struct kvm_vcpu *vcpu); void kvm_mmu_init_vm(struct kvm *kvm); void kvm_mmu_uninit_vm(struct kvm *kvm); void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm, struct kvm_memory_slot *slot); void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu); void kvm_mmu_reset_context(struct kvm_vcpu *vcpu); void kvm_mmu_slot_remove_write_access(struct kvm *kvm, const struct kvm_memory_slot *memslot, int start_level); void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm, const struct kvm_memory_slot *memslot, int target_level); void kvm_mmu_try_split_huge_pages(struct kvm *kvm, const struct kvm_memory_slot *memslot, u64 start, u64 end, int target_level); void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, const struct kvm_memory_slot *memslot); void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, const struct kvm_memory_slot *memslot); void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen); void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages); int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3); int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, const void *val, int bytes); struct kvm_irq_mask_notifier { void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked); int irq; struct hlist_node link; }; void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq, struct kvm_irq_mask_notifier *kimn); void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq, struct kvm_irq_mask_notifier *kimn); void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin, bool mask); extern bool tdp_enabled; u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu); /* * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing * userspace I/O) to indicate that the emulation context * should be reused as is, i.e. skip initialization of * emulation context, instruction fetch and decode. * * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware. * Indicates that only select instructions (tagged with * EmulateOnUD) should be emulated (to minimize the emulator * attack surface). See also EMULTYPE_TRAP_UD_FORCED. * * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to * decode the instruction length. For use *only* by * kvm_x86_ops.skip_emulated_instruction() implementations if * EMULTYPE_COMPLETE_USER_EXIT is not set. * * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to * retry native execution under certain conditions, * Can only be set in conjunction with EMULTYPE_PF. * * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was * triggered by KVM's magic "force emulation" prefix, * which is opt in via module param (off by default). * Bypasses EmulateOnUD restriction despite emulating * due to an intercepted #UD (see EMULTYPE_TRAP_UD). * Used to test the full emulator from userspace. * * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware * backdoor emulation, which is opt in via module param. * VMware backdoor emulation handles select instructions * and reinjects the #GP for all other cases. * * EMULTYPE_PF - Set when emulating MMIO by way of an intercepted #PF, in which * case the CR2/GPA value pass on the stack is valid. * * EMULTYPE_COMPLETE_USER_EXIT - Set when the emulator should update interruptibility * state and inject single-step #DBs after skipping * an instruction (after completing userspace I/O). * * EMULTYPE_WRITE_PF_TO_SP - Set when emulating an intercepted page fault that * is attempting to write a gfn that contains one or * more of the PTEs used to translate the write itself, * and the owning page table is being shadowed by KVM. * If emulation of the faulting instruction fails and * this flag is set, KVM will exit to userspace instead * of retrying emulation as KVM cannot make forward * progress. * * If emulation fails for a write to guest page tables, * KVM unprotects (zaps) the shadow page for the target * gfn and resumes the guest to retry the non-emulatable * instruction (on hardware). Unprotecting the gfn * doesn't allow forward progress for a self-changing * access because doing so also zaps the translation for * the gfn, i.e. retrying the instruction will hit a * !PRESENT fault, which results in a new shadow page * and sends KVM back to square one. */ #define EMULTYPE_NO_DECODE (1 << 0) #define EMULTYPE_TRAP_UD (1 << 1) #define EMULTYPE_SKIP (1 << 2) #define EMULTYPE_ALLOW_RETRY_PF (1 << 3) #define EMULTYPE_TRAP_UD_FORCED (1 << 4) #define EMULTYPE_VMWARE_GP (1 << 5) #define EMULTYPE_PF (1 << 6) #define EMULTYPE_COMPLETE_USER_EXIT (1 << 7) #define EMULTYPE_WRITE_PF_TO_SP (1 << 8) int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type); int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, void *insn, int insn_len); void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, u8 ndata); void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu); void kvm_enable_efer_bits(u64); bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer); int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated); int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data); int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data); int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu); int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu); int kvm_emulate_as_nop(struct kvm_vcpu *vcpu); int kvm_emulate_invd(struct kvm_vcpu *vcpu); int kvm_emulate_mwait(struct kvm_vcpu *vcpu); int kvm_handle_invalid_op(struct kvm_vcpu *vcpu); int kvm_emulate_monitor(struct kvm_vcpu *vcpu); int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in); int kvm_emulate_cpuid(struct kvm_vcpu *vcpu); int kvm_emulate_halt(struct kvm_vcpu *vcpu); int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu); int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu); int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu); void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); void kvm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg); void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector); int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, int reason, bool has_error_code, u32 error_code); void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0); void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4); int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0); int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3); int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4); int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8); int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val); unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr); unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu); void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw); int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu); int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr); int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr); unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu); void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu); void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr); void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code); void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload); void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr); void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code); void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault); void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault); bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl); bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr); static inline int __kvm_irq_line_state(unsigned long *irq_state, int irq_source_id, int level) { /* Logical OR for level trig interrupt */ if (level) __set_bit(irq_source_id, irq_state); else __clear_bit(irq_source_id, irq_state); return !!(*irq_state); } int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level); void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id); void kvm_inject_nmi(struct kvm_vcpu *vcpu); int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu); void kvm_update_dr7(struct kvm_vcpu *vcpu); int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn); void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu, ulong roots_to_free); void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu); gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, struct x86_exception *exception); gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, struct x86_exception *exception); gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, struct x86_exception *exception); bool kvm_apicv_activated(struct kvm *kvm); bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu); void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu); void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, enum kvm_apicv_inhibit reason, bool set); void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, enum kvm_apicv_inhibit reason, bool set); static inline void kvm_set_apicv_inhibit(struct kvm *kvm, enum kvm_apicv_inhibit reason) { kvm_set_or_clear_apicv_inhibit(kvm, reason, true); } static inline void kvm_clear_apicv_inhibit(struct kvm *kvm, enum kvm_apicv_inhibit reason) { kvm_set_or_clear_apicv_inhibit(kvm, reason, false); } int kvm_emulate_hypercall(struct kvm_vcpu *vcpu); int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, void *insn, int insn_len); void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva); void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, u64 addr, unsigned long roots); void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid); void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd); void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level, int tdp_max_root_level, int tdp_huge_page_level); #ifdef CONFIG_KVM_PRIVATE_MEM #define kvm_arch_has_private_mem(kvm) ((kvm)->arch.vm_type != KVM_X86_DEFAULT_VM) #else #define kvm_arch_has_private_mem(kvm) false #endif static inline u16 kvm_read_ldt(void) { u16 ldt; asm("sldt %0" : "=g"(ldt)); return ldt; } static inline void kvm_load_ldt(u16 sel) { asm("lldt %0" : : "rm"(sel)); } #ifdef CONFIG_X86_64 static inline unsigned long read_msr(unsigned long msr) { u64 value; rdmsrl(msr, value); return value; } #endif static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code) { kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); } #define TSS_IOPB_BASE_OFFSET 0x66 #define TSS_BASE_SIZE 0x68 #define TSS_IOPB_SIZE (65536 / 8) #define TSS_REDIRECTION_SIZE (256 / 8) #define RMODE_TSS_SIZE \ (TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1) enum { TASK_SWITCH_CALL = 0, TASK_SWITCH_IRET = 1, TASK_SWITCH_JMP = 2, TASK_SWITCH_GATE = 3, }; #define HF_GUEST_MASK (1 << 0) /* VCPU is in guest-mode */ #ifdef CONFIG_KVM_SMM #define HF_SMM_MASK (1 << 1) #define HF_SMM_INSIDE_NMI_MASK (1 << 2) # define KVM_MAX_NR_ADDRESS_SPACES 2 /* SMM is currently unsupported for guests with private memory. */ # define kvm_arch_nr_memslot_as_ids(kvm) (kvm_arch_has_private_mem(kvm) ? 1 : 2) # define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0) # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm) #else # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, 0) #endif int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v); int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu); int kvm_cpu_has_extint(struct kvm_vcpu *v); int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu); int kvm_cpu_get_interrupt(struct kvm_vcpu *v); void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event); int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low, unsigned long ipi_bitmap_high, u32 min, unsigned long icr, int op_64_bit); int kvm_add_user_return_msr(u32 msr); int kvm_find_user_return_msr(u32 msr); int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask); static inline bool kvm_is_supported_user_return_msr(u32 msr) { return kvm_find_user_return_msr(msr) >= 0; } u64 kvm_scale_tsc(u64 tsc, u64 ratio); u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc); u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier); u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier); unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu); bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip); void kvm_make_scan_ioapic_request(struct kvm *kvm); void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, unsigned long *vcpu_bitmap); bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, struct kvm_async_pf *work); void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, struct kvm_async_pf *work); void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work); void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu); bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu); extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu); int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err); void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size); bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu); bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu); bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq, struct kvm_vcpu **dest_vcpu); void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e, struct kvm_lapic_irq *irq); static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq) { /* We can only post Fixed and LowPrio IRQs */ return (irq->delivery_mode == APIC_DM_FIXED || irq->delivery_mode == APIC_DM_LOWEST); } static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) { static_call_cond(kvm_x86_vcpu_blocking)(vcpu); } static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) { static_call_cond(kvm_x86_vcpu_unblocking)(vcpu); } static inline int kvm_cpu_get_apicid(int mps_cpu) { #ifdef CONFIG_X86_LOCAL_APIC return default_cpu_present_to_apicid(mps_cpu); #else WARN_ON_ONCE(1); return BAD_APICID; #endif } int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages); #define KVM_CLOCK_VALID_FLAGS \ (KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC) #define KVM_X86_VALID_QUIRKS \ (KVM_X86_QUIRK_LINT0_REENABLED | \ KVM_X86_QUIRK_CD_NW_CLEARED | \ KVM_X86_QUIRK_LAPIC_MMIO_HOLE | \ KVM_X86_QUIRK_OUT_7E_INC_RIP | \ KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT | \ KVM_X86_QUIRK_FIX_HYPERCALL_INSN | \ KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) /* * KVM previously used a u32 field in kvm_run to indicate the hypercall was * initiated from long mode. KVM now sets bit 0 to indicate long mode, but the * remaining 31 lower bits must be 0 to preserve ABI. */ #define KVM_EXIT_HYPERCALL_MBZ GENMASK_ULL(31, 1) #endif /* _ASM_X86_KVM_HOST_H */