// SPDX-License-Identifier: GPL-2.0 /* * Copyright IBM Corp. 2012 * * Author(s): * Jan Glauber * * The System z PCI code is a rewrite from a prototype by * the following people (Kudoz!): * Alexander Schmidt * Christoph Raisch * Hannes Hering * Hoang-Nam Nguyen * Jan-Bernd Themann * Stefan Roscher * Thomas Klein */ #define KMSG_COMPONENT "zpci" #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "pci_bus.h" #include "pci_iov.h" /* list of all detected zpci devices */ static LIST_HEAD(zpci_list); static DEFINE_SPINLOCK(zpci_list_lock); static DECLARE_BITMAP(zpci_domain, ZPCI_DOMAIN_BITMAP_SIZE); static DEFINE_SPINLOCK(zpci_domain_lock); #define ZPCI_IOMAP_ENTRIES \ min(((unsigned long) ZPCI_NR_DEVICES * PCI_STD_NUM_BARS / 2), \ ZPCI_IOMAP_MAX_ENTRIES) unsigned int s390_pci_no_rid; static DEFINE_SPINLOCK(zpci_iomap_lock); static unsigned long *zpci_iomap_bitmap; struct zpci_iomap_entry *zpci_iomap_start; EXPORT_SYMBOL_GPL(zpci_iomap_start); DEFINE_STATIC_KEY_FALSE(have_mio); static struct kmem_cache *zdev_fmb_cache; /* AEN structures that must be preserved over KVM module re-insertion */ union zpci_sic_iib *zpci_aipb; EXPORT_SYMBOL_GPL(zpci_aipb); struct airq_iv *zpci_aif_sbv; EXPORT_SYMBOL_GPL(zpci_aif_sbv); struct zpci_dev *get_zdev_by_fid(u32 fid) { struct zpci_dev *tmp, *zdev = NULL; spin_lock(&zpci_list_lock); list_for_each_entry(tmp, &zpci_list, entry) { if (tmp->fid == fid) { zdev = tmp; zpci_zdev_get(zdev); break; } } spin_unlock(&zpci_list_lock); return zdev; } void zpci_remove_reserved_devices(void) { struct zpci_dev *tmp, *zdev; enum zpci_state state; LIST_HEAD(remove); spin_lock(&zpci_list_lock); list_for_each_entry_safe(zdev, tmp, &zpci_list, entry) { if (zdev->state == ZPCI_FN_STATE_STANDBY && !clp_get_state(zdev->fid, &state) && state == ZPCI_FN_STATE_RESERVED) list_move_tail(&zdev->entry, &remove); } spin_unlock(&zpci_list_lock); list_for_each_entry_safe(zdev, tmp, &remove, entry) zpci_device_reserved(zdev); } int pci_domain_nr(struct pci_bus *bus) { return ((struct zpci_bus *) bus->sysdata)->domain_nr; } EXPORT_SYMBOL_GPL(pci_domain_nr); int pci_proc_domain(struct pci_bus *bus) { return pci_domain_nr(bus); } EXPORT_SYMBOL_GPL(pci_proc_domain); /* Modify PCI: Register I/O address translation parameters */ int zpci_register_ioat(struct zpci_dev *zdev, u8 dmaas, u64 base, u64 limit, u64 iota, u8 *status) { u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_REG_IOAT); struct zpci_fib fib = {0}; u8 cc; WARN_ON_ONCE(iota & 0x3fff); fib.pba = base; /* Work around off by one in ISM virt device */ if (zdev->pft == PCI_FUNC_TYPE_ISM && limit > base) fib.pal = limit + (1 << 12); else fib.pal = limit; fib.iota = iota | ZPCI_IOTA_RTTO_FLAG; fib.gd = zdev->gisa; cc = zpci_mod_fc(req, &fib, status); if (cc) zpci_dbg(3, "reg ioat fid:%x, cc:%d, status:%d\n", zdev->fid, cc, *status); return cc; } EXPORT_SYMBOL_GPL(zpci_register_ioat); /* Modify PCI: Unregister I/O address translation parameters */ int zpci_unregister_ioat(struct zpci_dev *zdev, u8 dmaas) { u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_DEREG_IOAT); struct zpci_fib fib = {0}; u8 cc, status; fib.gd = zdev->gisa; cc = zpci_mod_fc(req, &fib, &status); if (cc) zpci_dbg(3, "unreg ioat fid:%x, cc:%d, status:%d\n", zdev->fid, cc, status); return cc; } /* Modify PCI: Set PCI function measurement parameters */ int zpci_fmb_enable_device(struct zpci_dev *zdev) { u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE); struct zpci_iommu_ctrs *ctrs; struct zpci_fib fib = {0}; u8 cc, status; if (zdev->fmb || sizeof(*zdev->fmb) < zdev->fmb_length) return -EINVAL; zdev->fmb = kmem_cache_zalloc(zdev_fmb_cache, GFP_KERNEL); if (!zdev->fmb) return -ENOMEM; WARN_ON((u64) zdev->fmb & 0xf); /* reset software counters */ ctrs = zpci_get_iommu_ctrs(zdev); if (ctrs) { atomic64_set(&ctrs->mapped_pages, 0); atomic64_set(&ctrs->unmapped_pages, 0); atomic64_set(&ctrs->global_rpcits, 0); atomic64_set(&ctrs->sync_map_rpcits, 0); atomic64_set(&ctrs->sync_rpcits, 0); } fib.fmb_addr = virt_to_phys(zdev->fmb); fib.gd = zdev->gisa; cc = zpci_mod_fc(req, &fib, &status); if (cc) { kmem_cache_free(zdev_fmb_cache, zdev->fmb); zdev->fmb = NULL; } return cc ? -EIO : 0; } /* Modify PCI: Disable PCI function measurement */ int zpci_fmb_disable_device(struct zpci_dev *zdev) { u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE); struct zpci_fib fib = {0}; u8 cc, status; if (!zdev->fmb) return -EINVAL; fib.gd = zdev->gisa; /* Function measurement is disabled if fmb address is zero */ cc = zpci_mod_fc(req, &fib, &status); if (cc == 3) /* Function already gone. */ cc = 0; if (!cc) { kmem_cache_free(zdev_fmb_cache, zdev->fmb); zdev->fmb = NULL; } return cc ? -EIO : 0; } static int zpci_cfg_load(struct zpci_dev *zdev, int offset, u32 *val, u8 len) { u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len); u64 data; int rc; rc = __zpci_load(&data, req, offset); if (!rc) { data = le64_to_cpu((__force __le64) data); data >>= (8 - len) * 8; *val = (u32) data; } else *val = 0xffffffff; return rc; } static int zpci_cfg_store(struct zpci_dev *zdev, int offset, u32 val, u8 len) { u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len); u64 data = val; int rc; data <<= (8 - len) * 8; data = (__force u64) cpu_to_le64(data); rc = __zpci_store(data, req, offset); return rc; } resource_size_t pcibios_align_resource(void *data, const struct resource *res, resource_size_t size, resource_size_t align) { return 0; } /* combine single writes by using store-block insn */ void __iowrite64_copy(void __iomem *to, const void *from, size_t count) { zpci_memcpy_toio(to, from, count * 8); } void __iomem *ioremap_prot(phys_addr_t phys_addr, size_t size, unsigned long prot) { /* * When PCI MIO instructions are unavailable the "physical" address * encodes a hint for accessing the PCI memory space it represents. * Just pass it unchanged such that ioread/iowrite can decode it. */ if (!static_branch_unlikely(&have_mio)) return (void __iomem *)phys_addr; return generic_ioremap_prot(phys_addr, size, __pgprot(prot)); } EXPORT_SYMBOL(ioremap_prot); void iounmap(volatile void __iomem *addr) { if (static_branch_likely(&have_mio)) generic_iounmap(addr); } EXPORT_SYMBOL(iounmap); /* Create a virtual mapping cookie for a PCI BAR */ static void __iomem *pci_iomap_range_fh(struct pci_dev *pdev, int bar, unsigned long offset, unsigned long max) { struct zpci_dev *zdev = to_zpci(pdev); int idx; idx = zdev->bars[bar].map_idx; spin_lock(&zpci_iomap_lock); /* Detect overrun */ WARN_ON(!++zpci_iomap_start[idx].count); zpci_iomap_start[idx].fh = zdev->fh; zpci_iomap_start[idx].bar = bar; spin_unlock(&zpci_iomap_lock); return (void __iomem *) ZPCI_ADDR(idx) + offset; } static void __iomem *pci_iomap_range_mio(struct pci_dev *pdev, int bar, unsigned long offset, unsigned long max) { unsigned long barsize = pci_resource_len(pdev, bar); struct zpci_dev *zdev = to_zpci(pdev); void __iomem *iova; iova = ioremap((unsigned long) zdev->bars[bar].mio_wt, barsize); return iova ? iova + offset : iova; } void __iomem *pci_iomap_range(struct pci_dev *pdev, int bar, unsigned long offset, unsigned long max) { if (bar >= PCI_STD_NUM_BARS || !pci_resource_len(pdev, bar)) return NULL; if (static_branch_likely(&have_mio)) return pci_iomap_range_mio(pdev, bar, offset, max); else return pci_iomap_range_fh(pdev, bar, offset, max); } EXPORT_SYMBOL(pci_iomap_range); void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long maxlen) { return pci_iomap_range(dev, bar, 0, maxlen); } EXPORT_SYMBOL(pci_iomap); static void __iomem *pci_iomap_wc_range_mio(struct pci_dev *pdev, int bar, unsigned long offset, unsigned long max) { unsigned long barsize = pci_resource_len(pdev, bar); struct zpci_dev *zdev = to_zpci(pdev); void __iomem *iova; iova = ioremap((unsigned long) zdev->bars[bar].mio_wb, barsize); return iova ? iova + offset : iova; } void __iomem *pci_iomap_wc_range(struct pci_dev *pdev, int bar, unsigned long offset, unsigned long max) { if (bar >= PCI_STD_NUM_BARS || !pci_resource_len(pdev, bar)) return NULL; if (static_branch_likely(&have_mio)) return pci_iomap_wc_range_mio(pdev, bar, offset, max); else return pci_iomap_range_fh(pdev, bar, offset, max); } EXPORT_SYMBOL(pci_iomap_wc_range); void __iomem *pci_iomap_wc(struct pci_dev *dev, int bar, unsigned long maxlen) { return pci_iomap_wc_range(dev, bar, 0, maxlen); } EXPORT_SYMBOL(pci_iomap_wc); static void pci_iounmap_fh(struct pci_dev *pdev, void __iomem *addr) { unsigned int idx = ZPCI_IDX(addr); spin_lock(&zpci_iomap_lock); /* Detect underrun */ WARN_ON(!zpci_iomap_start[idx].count); if (!--zpci_iomap_start[idx].count) { zpci_iomap_start[idx].fh = 0; zpci_iomap_start[idx].bar = 0; } spin_unlock(&zpci_iomap_lock); } static void pci_iounmap_mio(struct pci_dev *pdev, void __iomem *addr) { iounmap(addr); } void pci_iounmap(struct pci_dev *pdev, void __iomem *addr) { if (static_branch_likely(&have_mio)) pci_iounmap_mio(pdev, addr); else pci_iounmap_fh(pdev, addr); } EXPORT_SYMBOL(pci_iounmap); static int pci_read(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *val) { struct zpci_dev *zdev = zdev_from_bus(bus, devfn); return (zdev) ? zpci_cfg_load(zdev, where, val, size) : -ENODEV; } static int pci_write(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 val) { struct zpci_dev *zdev = zdev_from_bus(bus, devfn); return (zdev) ? zpci_cfg_store(zdev, where, val, size) : -ENODEV; } static struct pci_ops pci_root_ops = { .read = pci_read, .write = pci_write, }; static void zpci_map_resources(struct pci_dev *pdev) { struct zpci_dev *zdev = to_zpci(pdev); resource_size_t len; int i; for (i = 0; i < PCI_STD_NUM_BARS; i++) { len = pci_resource_len(pdev, i); if (!len) continue; if (zpci_use_mio(zdev)) pdev->resource[i].start = (resource_size_t __force) zdev->bars[i].mio_wt; else pdev->resource[i].start = (resource_size_t __force) pci_iomap_range_fh(pdev, i, 0, 0); pdev->resource[i].end = pdev->resource[i].start + len - 1; } zpci_iov_map_resources(pdev); } static void zpci_unmap_resources(struct pci_dev *pdev) { struct zpci_dev *zdev = to_zpci(pdev); resource_size_t len; int i; if (zpci_use_mio(zdev)) return; for (i = 0; i < PCI_STD_NUM_BARS; i++) { len = pci_resource_len(pdev, i); if (!len) continue; pci_iounmap_fh(pdev, (void __iomem __force *) pdev->resource[i].start); } } static int zpci_alloc_iomap(struct zpci_dev *zdev) { unsigned long entry; spin_lock(&zpci_iomap_lock); entry = find_first_zero_bit(zpci_iomap_bitmap, ZPCI_IOMAP_ENTRIES); if (entry == ZPCI_IOMAP_ENTRIES) { spin_unlock(&zpci_iomap_lock); return -ENOSPC; } set_bit(entry, zpci_iomap_bitmap); spin_unlock(&zpci_iomap_lock); return entry; } static void zpci_free_iomap(struct zpci_dev *zdev, int entry) { spin_lock(&zpci_iomap_lock); memset(&zpci_iomap_start[entry], 0, sizeof(struct zpci_iomap_entry)); clear_bit(entry, zpci_iomap_bitmap); spin_unlock(&zpci_iomap_lock); } static void zpci_do_update_iomap_fh(struct zpci_dev *zdev, u32 fh) { int bar, idx; spin_lock(&zpci_iomap_lock); for (bar = 0; bar < PCI_STD_NUM_BARS; bar++) { if (!zdev->bars[bar].size) continue; idx = zdev->bars[bar].map_idx; if (!zpci_iomap_start[idx].count) continue; WRITE_ONCE(zpci_iomap_start[idx].fh, zdev->fh); } spin_unlock(&zpci_iomap_lock); } void zpci_update_fh(struct zpci_dev *zdev, u32 fh) { if (!fh || zdev->fh == fh) return; zdev->fh = fh; if (zpci_use_mio(zdev)) return; if (zdev->has_resources && zdev_enabled(zdev)) zpci_do_update_iomap_fh(zdev, fh); } static struct resource *__alloc_res(struct zpci_dev *zdev, unsigned long start, unsigned long size, unsigned long flags) { struct resource *r; r = kzalloc(sizeof(*r), GFP_KERNEL); if (!r) return NULL; r->start = start; r->end = r->start + size - 1; r->flags = flags; r->name = zdev->res_name; if (request_resource(&iomem_resource, r)) { kfree(r); return NULL; } return r; } int zpci_setup_bus_resources(struct zpci_dev *zdev) { unsigned long addr, size, flags; struct resource *res; int i, entry; snprintf(zdev->res_name, sizeof(zdev->res_name), "PCI Bus %04x:%02x", zdev->uid, ZPCI_BUS_NR); for (i = 0; i < PCI_STD_NUM_BARS; i++) { if (!zdev->bars[i].size) continue; entry = zpci_alloc_iomap(zdev); if (entry < 0) return entry; zdev->bars[i].map_idx = entry; /* only MMIO is supported */ flags = IORESOURCE_MEM; if (zdev->bars[i].val & 8) flags |= IORESOURCE_PREFETCH; if (zdev->bars[i].val & 4) flags |= IORESOURCE_MEM_64; if (zpci_use_mio(zdev)) addr = (unsigned long) zdev->bars[i].mio_wt; else addr = ZPCI_ADDR(entry); size = 1UL << zdev->bars[i].size; res = __alloc_res(zdev, addr, size, flags); if (!res) { zpci_free_iomap(zdev, entry); return -ENOMEM; } zdev->bars[i].res = res; } zdev->has_resources = 1; return 0; } static void zpci_cleanup_bus_resources(struct zpci_dev *zdev) { struct resource *res; int i; pci_lock_rescan_remove(); for (i = 0; i < PCI_STD_NUM_BARS; i++) { res = zdev->bars[i].res; if (!res) continue; release_resource(res); pci_bus_remove_resource(zdev->zbus->bus, res); zpci_free_iomap(zdev, zdev->bars[i].map_idx); zdev->bars[i].res = NULL; kfree(res); } zdev->has_resources = 0; pci_unlock_rescan_remove(); } int pcibios_device_add(struct pci_dev *pdev) { struct zpci_dev *zdev = to_zpci(pdev); struct resource *res; int i; /* The pdev has a reference to the zdev via its bus */ zpci_zdev_get(zdev); if (pdev->is_physfn) pdev->no_vf_scan = 1; pdev->dev.groups = zpci_attr_groups; zpci_map_resources(pdev); for (i = 0; i < PCI_STD_NUM_BARS; i++) { res = &pdev->resource[i]; if (res->parent || !res->flags) continue; pci_claim_resource(pdev, i); } return 0; } void pcibios_release_device(struct pci_dev *pdev) { struct zpci_dev *zdev = to_zpci(pdev); zpci_unmap_resources(pdev); zpci_zdev_put(zdev); } int pcibios_enable_device(struct pci_dev *pdev, int mask) { struct zpci_dev *zdev = to_zpci(pdev); zpci_debug_init_device(zdev, dev_name(&pdev->dev)); zpci_fmb_enable_device(zdev); return pci_enable_resources(pdev, mask); } void pcibios_disable_device(struct pci_dev *pdev) { struct zpci_dev *zdev = to_zpci(pdev); zpci_fmb_disable_device(zdev); zpci_debug_exit_device(zdev); } static int __zpci_register_domain(int domain) { spin_lock(&zpci_domain_lock); if (test_bit(domain, zpci_domain)) { spin_unlock(&zpci_domain_lock); pr_err("Domain %04x is already assigned\n", domain); return -EEXIST; } set_bit(domain, zpci_domain); spin_unlock(&zpci_domain_lock); return domain; } static int __zpci_alloc_domain(void) { int domain; spin_lock(&zpci_domain_lock); /* * We can always auto allocate domains below ZPCI_NR_DEVICES. * There is either a free domain or we have reached the maximum in * which case we would have bailed earlier. */ domain = find_first_zero_bit(zpci_domain, ZPCI_NR_DEVICES); set_bit(domain, zpci_domain); spin_unlock(&zpci_domain_lock); return domain; } int zpci_alloc_domain(int domain) { if (zpci_unique_uid) { if (domain) return __zpci_register_domain(domain); pr_warn("UID checking was active but no UID is provided: switching to automatic domain allocation\n"); update_uid_checking(false); } return __zpci_alloc_domain(); } void zpci_free_domain(int domain) { spin_lock(&zpci_domain_lock); clear_bit(domain, zpci_domain); spin_unlock(&zpci_domain_lock); } int zpci_enable_device(struct zpci_dev *zdev) { u32 fh = zdev->fh; int rc = 0; if (clp_enable_fh(zdev, &fh, ZPCI_NR_DMA_SPACES)) rc = -EIO; else zpci_update_fh(zdev, fh); return rc; } EXPORT_SYMBOL_GPL(zpci_enable_device); int zpci_disable_device(struct zpci_dev *zdev) { u32 fh = zdev->fh; int cc, rc = 0; cc = clp_disable_fh(zdev, &fh); if (!cc) { zpci_update_fh(zdev, fh); } else if (cc == CLP_RC_SETPCIFN_ALRDY) { pr_info("Disabling PCI function %08x had no effect as it was already disabled\n", zdev->fid); /* Function is already disabled - update handle */ rc = clp_refresh_fh(zdev->fid, &fh); if (!rc) { zpci_update_fh(zdev, fh); rc = -EINVAL; } } else { rc = -EIO; } return rc; } EXPORT_SYMBOL_GPL(zpci_disable_device); /** * zpci_hot_reset_device - perform a reset of the given zPCI function * @zdev: the slot which should be reset * * Performs a low level reset of the zPCI function. The reset is low level in * the sense that the zPCI function can be reset without detaching it from the * common PCI subsystem. The reset may be performed while under control of * either DMA or IOMMU APIs in which case the existing DMA/IOMMU translation * table is reinstated at the end of the reset. * * After the reset the functions internal state is reset to an initial state * equivalent to its state during boot when first probing a driver. * Consequently after reset the PCI function requires re-initialization via the * common PCI code including re-enabling IRQs via pci_alloc_irq_vectors() * and enabling the function via e.g. pci_enable_device_flags(). The caller * must guard against concurrent reset attempts. * * In most cases this function should not be called directly but through * pci_reset_function() or pci_reset_bus() which handle the save/restore and * locking - asserted by lockdep. * * Return: 0 on success and an error value otherwise */ int zpci_hot_reset_device(struct zpci_dev *zdev) { u8 status; int rc; lockdep_assert_held(&zdev->state_lock); zpci_dbg(3, "rst fid:%x, fh:%x\n", zdev->fid, zdev->fh); if (zdev_enabled(zdev)) { /* Disables device access, DMAs and IRQs (reset state) */ rc = zpci_disable_device(zdev); /* * Due to a z/VM vs LPAR inconsistency in the error state the * FH may indicate an enabled device but disable says the * device is already disabled don't treat it as an error here. */ if (rc == -EINVAL) rc = 0; if (rc) return rc; } rc = zpci_enable_device(zdev); if (rc) return rc; if (zdev->dma_table) rc = zpci_register_ioat(zdev, 0, zdev->start_dma, zdev->end_dma, virt_to_phys(zdev->dma_table), &status); if (rc) { zpci_disable_device(zdev); return rc; } return 0; } /** * zpci_create_device() - Create a new zpci_dev and add it to the zbus * @fid: Function ID of the device to be created * @fh: Current Function Handle of the device to be created * @state: Initial state after creation either Standby or Configured * * Creates a new zpci device and adds it to its, possibly newly created, zbus * as well as zpci_list. * * Returns: the zdev on success or an error pointer otherwise */ struct zpci_dev *zpci_create_device(u32 fid, u32 fh, enum zpci_state state) { struct zpci_dev *zdev; int rc; zpci_dbg(1, "add fid:%x, fh:%x, c:%d\n", fid, fh, state); zdev = kzalloc(sizeof(*zdev), GFP_KERNEL); if (!zdev) return ERR_PTR(-ENOMEM); /* FID and Function Handle are the static/dynamic identifiers */ zdev->fid = fid; zdev->fh = fh; /* Query function properties and update zdev */ rc = clp_query_pci_fn(zdev); if (rc) goto error; zdev->state = state; kref_init(&zdev->kref); mutex_init(&zdev->state_lock); mutex_init(&zdev->fmb_lock); mutex_init(&zdev->kzdev_lock); rc = zpci_init_iommu(zdev); if (rc) goto error; rc = zpci_bus_device_register(zdev, &pci_root_ops); if (rc) goto error_destroy_iommu; spin_lock(&zpci_list_lock); list_add_tail(&zdev->entry, &zpci_list); spin_unlock(&zpci_list_lock); return zdev; error_destroy_iommu: zpci_destroy_iommu(zdev); error: zpci_dbg(0, "add fid:%x, rc:%d\n", fid, rc); kfree(zdev); return ERR_PTR(rc); } bool zpci_is_device_configured(struct zpci_dev *zdev) { enum zpci_state state = zdev->state; return state != ZPCI_FN_STATE_RESERVED && state != ZPCI_FN_STATE_STANDBY; } /** * zpci_scan_configured_device() - Scan a freshly configured zpci_dev * @zdev: The zpci_dev to be configured * @fh: The general function handle supplied by the platform * * Given a device in the configuration state Configured, enables, scans and * adds it to the common code PCI subsystem if possible. If any failure occurs, * the zpci_dev is left disabled. * * Return: 0 on success, or an error code otherwise */ int zpci_scan_configured_device(struct zpci_dev *zdev, u32 fh) { zpci_update_fh(zdev, fh); return zpci_bus_scan_device(zdev); } /** * zpci_deconfigure_device() - Deconfigure a zpci_dev * @zdev: The zpci_dev to configure * * Deconfigure a zPCI function that is currently configured and possibly known * to the common code PCI subsystem. * If any failure occurs the device is left as is. * * Return: 0 on success, or an error code otherwise */ int zpci_deconfigure_device(struct zpci_dev *zdev) { int rc; lockdep_assert_held(&zdev->state_lock); if (zdev->state != ZPCI_FN_STATE_CONFIGURED) return 0; if (zdev->zbus->bus) zpci_bus_remove_device(zdev, false); if (zdev_enabled(zdev)) { rc = zpci_disable_device(zdev); if (rc) return rc; } rc = sclp_pci_deconfigure(zdev->fid); zpci_dbg(3, "deconf fid:%x, rc:%d\n", zdev->fid, rc); if (rc) return rc; zdev->state = ZPCI_FN_STATE_STANDBY; return 0; } /** * zpci_device_reserved() - Mark device as reserved * @zdev: the zpci_dev that was reserved * * Handle the case that a given zPCI function was reserved by another system. * After a call to this function the zpci_dev can not be found via * get_zdev_by_fid() anymore but may still be accessible via existing * references though it will not be functional anymore. */ void zpci_device_reserved(struct zpci_dev *zdev) { /* * Remove device from zpci_list as it is going away. This also * makes sure we ignore subsequent zPCI events for this device. */ spin_lock(&zpci_list_lock); list_del(&zdev->entry); spin_unlock(&zpci_list_lock); zdev->state = ZPCI_FN_STATE_RESERVED; zpci_dbg(3, "rsv fid:%x\n", zdev->fid); zpci_zdev_put(zdev); } void zpci_release_device(struct kref *kref) { struct zpci_dev *zdev = container_of(kref, struct zpci_dev, kref); int ret; if (zdev->has_hp_slot) zpci_exit_slot(zdev); if (zdev->zbus->bus) zpci_bus_remove_device(zdev, false); if (zdev_enabled(zdev)) zpci_disable_device(zdev); switch (zdev->state) { case ZPCI_FN_STATE_CONFIGURED: ret = sclp_pci_deconfigure(zdev->fid); zpci_dbg(3, "deconf fid:%x, rc:%d\n", zdev->fid, ret); fallthrough; case ZPCI_FN_STATE_STANDBY: if (zdev->has_hp_slot) zpci_exit_slot(zdev); spin_lock(&zpci_list_lock); list_del(&zdev->entry); spin_unlock(&zpci_list_lock); zpci_dbg(3, "rsv fid:%x\n", zdev->fid); fallthrough; case ZPCI_FN_STATE_RESERVED: if (zdev->has_resources) zpci_cleanup_bus_resources(zdev); zpci_bus_device_unregister(zdev); zpci_destroy_iommu(zdev); fallthrough; default: break; } zpci_dbg(3, "rem fid:%x\n", zdev->fid); kfree_rcu(zdev, rcu); } int zpci_report_error(struct pci_dev *pdev, struct zpci_report_error_header *report) { struct zpci_dev *zdev = to_zpci(pdev); return sclp_pci_report(report, zdev->fh, zdev->fid); } EXPORT_SYMBOL(zpci_report_error); /** * zpci_clear_error_state() - Clears the zPCI error state of the device * @zdev: The zdev for which the zPCI error state should be reset * * Clear the zPCI error state of the device. If clearing the zPCI error state * fails the device is left in the error state. In this case it may make sense * to call zpci_io_perm_failure() on the associated pdev if it exists. * * Returns: 0 on success, -EIO otherwise */ int zpci_clear_error_state(struct zpci_dev *zdev) { u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_RESET_ERROR); struct zpci_fib fib = {0}; u8 status; int cc; cc = zpci_mod_fc(req, &fib, &status); if (cc) { zpci_dbg(3, "ces fid:%x, cc:%d, status:%x\n", zdev->fid, cc, status); return -EIO; } return 0; } /** * zpci_reset_load_store_blocked() - Re-enables L/S from error state * @zdev: The zdev for which to unblock load/store access * * Re-enables load/store access for a PCI function in the error state while * keeping DMA blocked. In this state drivers can poke MMIO space to determine * if error recovery is possible while catching any rogue DMA access from the * device. * * Returns: 0 on success, -EIO otherwise */ int zpci_reset_load_store_blocked(struct zpci_dev *zdev) { u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_RESET_BLOCK); struct zpci_fib fib = {0}; u8 status; int cc; cc = zpci_mod_fc(req, &fib, &status); if (cc) { zpci_dbg(3, "rls fid:%x, cc:%d, status:%x\n", zdev->fid, cc, status); return -EIO; } return 0; } static int zpci_mem_init(void) { BUILD_BUG_ON(!is_power_of_2(__alignof__(struct zpci_fmb)) || __alignof__(struct zpci_fmb) < sizeof(struct zpci_fmb)); zdev_fmb_cache = kmem_cache_create("PCI_FMB_cache", sizeof(struct zpci_fmb), __alignof__(struct zpci_fmb), 0, NULL); if (!zdev_fmb_cache) goto error_fmb; zpci_iomap_start = kcalloc(ZPCI_IOMAP_ENTRIES, sizeof(*zpci_iomap_start), GFP_KERNEL); if (!zpci_iomap_start) goto error_iomap; zpci_iomap_bitmap = kcalloc(BITS_TO_LONGS(ZPCI_IOMAP_ENTRIES), sizeof(*zpci_iomap_bitmap), GFP_KERNEL); if (!zpci_iomap_bitmap) goto error_iomap_bitmap; if (static_branch_likely(&have_mio)) clp_setup_writeback_mio(); return 0; error_iomap_bitmap: kfree(zpci_iomap_start); error_iomap: kmem_cache_destroy(zdev_fmb_cache); error_fmb: return -ENOMEM; } static void zpci_mem_exit(void) { kfree(zpci_iomap_bitmap); kfree(zpci_iomap_start); kmem_cache_destroy(zdev_fmb_cache); } static unsigned int s390_pci_probe __initdata = 1; unsigned int s390_pci_force_floating __initdata; static unsigned int s390_pci_initialized; char * __init pcibios_setup(char *str) { if (!strcmp(str, "off")) { s390_pci_probe = 0; return NULL; } if (!strcmp(str, "nomio")) { S390_lowcore.machine_flags &= ~MACHINE_FLAG_PCI_MIO; return NULL; } if (!strcmp(str, "force_floating")) { s390_pci_force_floating = 1; return NULL; } if (!strcmp(str, "norid")) { s390_pci_no_rid = 1; return NULL; } return str; } bool zpci_is_enabled(void) { return s390_pci_initialized; } static int __init pci_base_init(void) { int rc; if (!s390_pci_probe) return 0; if (!test_facility(69) || !test_facility(71)) { pr_info("PCI is not supported because CPU facilities 69 or 71 are not available\n"); return 0; } if (MACHINE_HAS_PCI_MIO) { static_branch_enable(&have_mio); system_ctl_set_bit(2, CR2_MIO_ADDRESSING_BIT); } rc = zpci_debug_init(); if (rc) goto out; rc = zpci_mem_init(); if (rc) goto out_mem; rc = zpci_irq_init(); if (rc) goto out_irq; rc = clp_scan_pci_devices(); if (rc) goto out_find; zpci_bus_scan_busses(); s390_pci_initialized = 1; return 0; out_find: zpci_irq_exit(); out_irq: zpci_mem_exit(); out_mem: zpci_debug_exit(); out: return rc; } subsys_initcall_sync(pci_base_init);