/* SPDX-License-Identifier: GPL-2.0 */ /* * include/asm-parisc/processor.h * * Copyright (C) 1994 Linus Torvalds * Copyright (C) 2001 Grant Grundler */ #ifndef __ASM_PARISC_PROCESSOR_H #define __ASM_PARISC_PROCESSOR_H #ifndef __ASSEMBLY__ #include #include #include #include #include #include #include #include #include #endif /* __ASSEMBLY__ */ #define HAVE_ARCH_PICK_MMAP_LAYOUT #define TASK_SIZE_OF(tsk) ((tsk)->thread.task_size) #define TASK_SIZE TASK_SIZE_OF(current) #define TASK_UNMAPPED_BASE (current->thread.map_base) #define DEFAULT_TASK_SIZE32 (0xFFF00000UL) #define DEFAULT_MAP_BASE32 (0x40000000UL) #ifdef CONFIG_64BIT #define DEFAULT_TASK_SIZE (MAX_ADDRESS-0xf000000) #define DEFAULT_MAP_BASE (0x200000000UL) #else #define DEFAULT_TASK_SIZE DEFAULT_TASK_SIZE32 #define DEFAULT_MAP_BASE DEFAULT_MAP_BASE32 #endif /* XXX: STACK_TOP actually should be STACK_BOTTOM for parisc. * prumpf */ #define STACK_TOP TASK_SIZE #define STACK_TOP_MAX DEFAULT_TASK_SIZE #ifndef __ASSEMBLY__ struct rlimit; unsigned long mmap_upper_limit(struct rlimit *rlim_stack); unsigned long calc_max_stack_size(unsigned long stack_max); /* * Data detected about CPUs at boot time which is the same for all CPU's. * HP boxes are SMP - ie identical processors. * * FIXME: some CPU rev info may be processor specific... */ struct system_cpuinfo_parisc { unsigned int cpu_count; unsigned int cpu_hz; unsigned int hversion; unsigned int sversion; enum cpu_type cpu_type; struct { struct pdc_model model; unsigned long versions; unsigned long cpuid; unsigned long capabilities; char sys_model_name[81]; /* PDC-ROM returnes this model name */ } pdc; const char *cpu_name; /* e.g. "PA7300LC (PCX-L2)" */ const char *family_name; /* e.g. "1.1e" */ }; /* Per CPU data structure - ie varies per CPU. */ struct cpuinfo_parisc { unsigned long it_value; /* Interval Timer at last timer Intr */ unsigned long irq_count; /* number of IRQ's since boot */ unsigned long cpuid; /* aka slot_number or set to NO_PROC_ID */ unsigned long hpa; /* Host Physical address */ unsigned long txn_addr; /* MMIO addr of EIR or id_eid */ #ifdef CONFIG_SMP unsigned long pending_ipi; /* bitmap of type ipi_message_type */ #endif unsigned long bh_count; /* number of times bh was invoked */ unsigned long fp_rev; unsigned long fp_model; unsigned long cpu_num; /* CPU number from PAT firmware */ unsigned long cpu_loc; /* CPU location from PAT firmware */ unsigned int state; struct parisc_device *dev; }; extern struct system_cpuinfo_parisc boot_cpu_data; DECLARE_PER_CPU(struct cpuinfo_parisc, cpu_data); extern int time_keeper_id; /* CPU used for timekeeping */ #define CPU_HVERSION ((boot_cpu_data.hversion >> 4) & 0x0FFF) struct thread_struct { struct pt_regs regs; unsigned long task_size; unsigned long map_base; unsigned long flags; }; #define task_pt_regs(tsk) ((struct pt_regs *)&((tsk)->thread.regs)) /* Thread struct flags. */ #define PARISC_UAC_NOPRINT (1UL << 0) /* see prctl and unaligned.c */ #define PARISC_UAC_SIGBUS (1UL << 1) #define PARISC_KERNEL_DEATH (1UL << 31) /* see die_if_kernel()... */ #define PARISC_UAC_SHIFT 0 #define PARISC_UAC_MASK (PARISC_UAC_NOPRINT|PARISC_UAC_SIGBUS) #define SET_UNALIGN_CTL(task,value) \ ({ \ (task)->thread.flags = (((task)->thread.flags & ~PARISC_UAC_MASK) \ | (((value) << PARISC_UAC_SHIFT) & \ PARISC_UAC_MASK)); \ 0; \ }) #define GET_UNALIGN_CTL(task,addr) \ ({ \ put_user(((task)->thread.flags & PARISC_UAC_MASK) \ >> PARISC_UAC_SHIFT, (int __user *) (addr)); \ }) #define INIT_THREAD { \ .regs = { .gr = { 0, }, \ .fr = { 0, }, \ .sr = { 0, }, \ .iasq = { 0, }, \ .iaoq = { 0, }, \ .cr27 = 0, \ }, \ .task_size = DEFAULT_TASK_SIZE, \ .map_base = DEFAULT_MAP_BASE, \ .flags = 0 \ } struct task_struct; void show_trace(struct task_struct *task, unsigned long *stack); /* * Start user thread in another space. * * Note that we set both the iaoq and r31 to the new pc. When * the kernel initially calls execve it will return through an * rfi path that will use the values in the iaoq. The execve * syscall path will return through the gateway page, and * that uses r31 to branch to. * * For ELF we clear r23, because the dynamic linker uses it to pass * the address of the finalizer function. * * We also initialize sr3 to an illegal value (illegal for our * implementation, not for the architecture). */ typedef unsigned int elf_caddr_t; /* The ELF abi wants things done a "wee bit" differently than * som does. Supporting this behavior here avoids * having our own version of create_elf_tables. * * Oh, and yes, that is not a typo, we are really passing argc in r25 * and argv in r24 (rather than r26 and r25). This is because that's * where __libc_start_main wants them. * * Duplicated from dl-machine.h for the benefit of readers: * * Our initial stack layout is rather different from everyone else's * due to the unique PA-RISC ABI. As far as I know it looks like * this: ----------------------------------- (user startup code creates this frame) | 32 bytes of magic | |---------------------------------| | 32 bytes argument/sp save area | |---------------------------------| (bprm->p) | ELF auxiliary info | | (up to 28 words) | |---------------------------------| | NULL | |---------------------------------| | Environment pointers | |---------------------------------| | NULL | |---------------------------------| | Argument pointers | |---------------------------------| <- argv | argc (1 word) | |---------------------------------| <- bprm->exec (HACK!) | N bytes of slack | |---------------------------------| | filename passed to execve | |---------------------------------| (mm->env_end) | env strings | |---------------------------------| (mm->env_start, mm->arg_end) | arg strings | |---------------------------------| | additional faked arg strings if | | we're invoked via binfmt_script | |---------------------------------| (mm->arg_start) stack base is at TASK_SIZE - rlim_max. on downward growing arches, it looks like this: stack base at TASK_SIZE | filename passed to execve | env strings | arg strings | faked arg strings | slack | ELF | envps | argvs | argc * The pleasant part of this is that if we need to skip arguments we * can just decrement argc and move argv, because the stack pointer * is utterly unrelated to the location of the environment and * argument vectors. * * Note that the S/390 people took the easy way out and hacked their * GCC to make the stack grow downwards. * * Final Note: For entry from syscall, the W (wide) bit of the PSW * is stuffed into the lowest bit of the user sp (%r30), so we fill * it in here from the current->personality */ #define USER_WIDE_MODE (!is_32bit_task()) #define start_thread(regs, new_pc, new_sp) do { \ elf_addr_t *sp = (elf_addr_t *)new_sp; \ __u32 spaceid = (__u32)current->mm->context.space_id; \ elf_addr_t pc = (elf_addr_t)new_pc | 3; \ elf_caddr_t *argv = (elf_caddr_t *)bprm->exec + 1; \ \ regs->iasq[0] = spaceid; \ regs->iasq[1] = spaceid; \ regs->iaoq[0] = pc; \ regs->iaoq[1] = pc + 4; \ regs->sr[2] = LINUX_GATEWAY_SPACE; \ regs->sr[3] = 0xffff; \ regs->sr[4] = spaceid; \ regs->sr[5] = spaceid; \ regs->sr[6] = spaceid; \ regs->sr[7] = spaceid; \ regs->gr[ 0] = USER_PSW | (USER_WIDE_MODE ? PSW_W : 0); \ regs->fr[ 0] = 0LL; \ regs->fr[ 1] = 0LL; \ regs->fr[ 2] = 0LL; \ regs->fr[ 3] = 0LL; \ regs->gr[30] = (((unsigned long)sp + 63) &~ 63) | (USER_WIDE_MODE ? 1 : 0); \ regs->gr[31] = pc; \ \ get_user(regs->gr[25], (argv - 1)); \ regs->gr[24] = (long) argv; \ regs->gr[23] = 0; \ } while(0) struct mm_struct; extern unsigned long __get_wchan(struct task_struct *p); #define KSTK_EIP(tsk) ((tsk)->thread.regs.iaoq[0]) #define KSTK_ESP(tsk) ((tsk)->thread.regs.gr[30]) #define cpu_relax() barrier() /* * parisc_requires_coherency() is used to identify the combined VIPT/PIPT * cached CPUs which require a guarantee of coherency (no inequivalent aliases * with different data, whether clean or not) to operate */ #ifdef CONFIG_PA8X00 extern int _parisc_requires_coherency; #define parisc_requires_coherency() _parisc_requires_coherency #else #define parisc_requires_coherency() (0) #endif extern int running_on_qemu; extern int parisc_narrow_firmware; extern void __noreturn toc_intr(struct pt_regs *regs); extern void toc_handler(void); extern unsigned int toc_handler_size; extern unsigned int toc_handler_csum; extern void do_cpu_irq_mask(struct pt_regs *); extern irqreturn_t timer_interrupt(int, void *); extern irqreturn_t ipi_interrupt(int, void *); extern void start_cpu_itimer(void); extern void handle_interruption(int, struct pt_regs *); /* called from assembly code: */ extern void start_parisc(void); extern void smp_callin(unsigned long); extern void sys_rt_sigreturn(struct pt_regs *, int); extern void do_notify_resume(struct pt_regs *, long); extern long do_syscall_trace_enter(struct pt_regs *); extern void do_syscall_trace_exit(struct pt_regs *); /* CPU startup and info */ struct seq_file; extern void early_trap_init(void); extern void collect_boot_cpu_data(void); extern void btlb_init_per_cpu(void); extern int show_cpuinfo (struct seq_file *m, void *v); /* driver code in driver/parisc */ extern void processor_init(void); struct parisc_device; struct resource; extern void sba_distributed_lmmio(struct parisc_device *, struct resource *); extern void sba_directed_lmmio(struct parisc_device *, struct resource *); extern void lba_set_iregs(struct parisc_device *lba, u32 ibase, u32 imask); extern void ccio_cujo20_fixup(struct parisc_device *dev, u32 iovp); #endif /* __ASSEMBLY__ */ #endif /* __ASM_PARISC_PROCESSOR_H */