// SPDX-License-Identifier: GPL-2.0-only /* * Just-In-Time compiler for eBPF bytecode on MIPS. * Implementation of JIT functions for 32-bit CPUs. * * Copyright (c) 2021 Anyfi Networks AB. * Author: Johan Almbladh * * Based on code and ideas from * Copyright (c) 2017 Cavium, Inc. * Copyright (c) 2017 Shubham Bansal * Copyright (c) 2011 Mircea Gherzan */ #include #include #include #include #include #include #include #include "bpf_jit_comp.h" /* MIPS a4-a7 are not available in the o32 ABI */ #undef MIPS_R_A4 #undef MIPS_R_A5 #undef MIPS_R_A6 #undef MIPS_R_A7 /* Stack is 8-byte aligned in o32 ABI */ #define MIPS_STACK_ALIGNMENT 8 /* * The top 16 bytes of a stack frame is reserved for the callee in O32 ABI. * This corresponds to stack space for register arguments a0-a3. */ #define JIT_RESERVED_STACK 16 /* Temporary 64-bit register used by JIT */ #define JIT_REG_TMP MAX_BPF_JIT_REG /* * Number of prologue bytes to skip when doing a tail call. * Tail call count (TCC) initialization (8 bytes) always, plus * R0-to-v0 assignment (4 bytes) if big endian. */ #ifdef __BIG_ENDIAN #define JIT_TCALL_SKIP 12 #else #define JIT_TCALL_SKIP 8 #endif /* CPU registers holding the callee return value */ #define JIT_RETURN_REGS \ (BIT(MIPS_R_V0) | \ BIT(MIPS_R_V1)) /* CPU registers arguments passed to callee directly */ #define JIT_ARG_REGS \ (BIT(MIPS_R_A0) | \ BIT(MIPS_R_A1) | \ BIT(MIPS_R_A2) | \ BIT(MIPS_R_A3)) /* CPU register arguments passed to callee on stack */ #define JIT_STACK_REGS \ (BIT(MIPS_R_T0) | \ BIT(MIPS_R_T1) | \ BIT(MIPS_R_T2) | \ BIT(MIPS_R_T3) | \ BIT(MIPS_R_T4) | \ BIT(MIPS_R_T5)) /* Caller-saved CPU registers */ #define JIT_CALLER_REGS \ (JIT_RETURN_REGS | \ JIT_ARG_REGS | \ JIT_STACK_REGS) /* Callee-saved CPU registers */ #define JIT_CALLEE_REGS \ (BIT(MIPS_R_S0) | \ BIT(MIPS_R_S1) | \ BIT(MIPS_R_S2) | \ BIT(MIPS_R_S3) | \ BIT(MIPS_R_S4) | \ BIT(MIPS_R_S5) | \ BIT(MIPS_R_S6) | \ BIT(MIPS_R_S7) | \ BIT(MIPS_R_GP) | \ BIT(MIPS_R_FP) | \ BIT(MIPS_R_RA)) /* * Mapping of 64-bit eBPF registers to 32-bit native MIPS registers. * * 1) Native register pairs are ordered according to CPU endianness, following * the MIPS convention for passing 64-bit arguments and return values. * 2) The eBPF return value, arguments and callee-saved registers are mapped * to their native MIPS equivalents. * 3) Since the 32 highest bits in the eBPF FP register are always zero, * only one general-purpose register is actually needed for the mapping. * We use the fp register for this purpose, and map the highest bits to * the MIPS register r0 (zero). * 4) We use the MIPS gp and at registers as internal temporary registers * for constant blinding. The gp register is callee-saved. * 5) One 64-bit temporary register is mapped for use when sign-extending * immediate operands. MIPS registers t6-t9 are available to the JIT * for as temporaries when implementing complex 64-bit operations. * * With this scheme all eBPF registers are being mapped to native MIPS * registers without having to use any stack scratch space. The direct * register mapping (2) simplifies the handling of function calls. */ static const u8 bpf2mips32[][2] = { /* Return value from in-kernel function, and exit value from eBPF */ [BPF_REG_0] = {MIPS_R_V1, MIPS_R_V0}, /* Arguments from eBPF program to in-kernel function */ [BPF_REG_1] = {MIPS_R_A1, MIPS_R_A0}, [BPF_REG_2] = {MIPS_R_A3, MIPS_R_A2}, /* Remaining arguments, to be passed on the stack per O32 ABI */ [BPF_REG_3] = {MIPS_R_T1, MIPS_R_T0}, [BPF_REG_4] = {MIPS_R_T3, MIPS_R_T2}, [BPF_REG_5] = {MIPS_R_T5, MIPS_R_T4}, /* Callee-saved registers that in-kernel function will preserve */ [BPF_REG_6] = {MIPS_R_S1, MIPS_R_S0}, [BPF_REG_7] = {MIPS_R_S3, MIPS_R_S2}, [BPF_REG_8] = {MIPS_R_S5, MIPS_R_S4}, [BPF_REG_9] = {MIPS_R_S7, MIPS_R_S6}, /* Read-only frame pointer to access the eBPF stack */ #ifdef __BIG_ENDIAN [BPF_REG_FP] = {MIPS_R_FP, MIPS_R_ZERO}, #else [BPF_REG_FP] = {MIPS_R_ZERO, MIPS_R_FP}, #endif /* Temporary register for blinding constants */ [BPF_REG_AX] = {MIPS_R_GP, MIPS_R_AT}, /* Temporary register for internal JIT use */ [JIT_REG_TMP] = {MIPS_R_T7, MIPS_R_T6}, }; /* Get low CPU register for a 64-bit eBPF register mapping */ static inline u8 lo(const u8 reg[]) { #ifdef __BIG_ENDIAN return reg[0]; #else return reg[1]; #endif } /* Get high CPU register for a 64-bit eBPF register mapping */ static inline u8 hi(const u8 reg[]) { #ifdef __BIG_ENDIAN return reg[1]; #else return reg[0]; #endif } /* * Mark a 64-bit CPU register pair as clobbered, it needs to be * saved/restored by the program if callee-saved. */ static void clobber_reg64(struct jit_context *ctx, const u8 reg[]) { clobber_reg(ctx, reg[0]); clobber_reg(ctx, reg[1]); } /* dst = imm (sign-extended) */ static void emit_mov_se_i64(struct jit_context *ctx, const u8 dst[], s32 imm) { emit_mov_i(ctx, lo(dst), imm); if (imm < 0) emit(ctx, addiu, hi(dst), MIPS_R_ZERO, -1); else emit(ctx, move, hi(dst), MIPS_R_ZERO); clobber_reg64(ctx, dst); } /* Zero extension, if verifier does not do it for us */ static void emit_zext_ver(struct jit_context *ctx, const u8 dst[]) { if (!ctx->program->aux->verifier_zext) { emit(ctx, move, hi(dst), MIPS_R_ZERO); clobber_reg(ctx, hi(dst)); } } /* Load delay slot, if ISA mandates it */ static void emit_load_delay(struct jit_context *ctx) { if (!cpu_has_mips_2_3_4_5_r) emit(ctx, nop); } /* ALU immediate operation (64-bit) */ static void emit_alu_i64(struct jit_context *ctx, const u8 dst[], s32 imm, u8 op) { u8 src = MIPS_R_T6; /* * ADD/SUB with all but the max negative imm can be handled by * inverting the operation and the imm value, saving one insn. */ if (imm > S32_MIN && imm < 0) switch (op) { case BPF_ADD: op = BPF_SUB; imm = -imm; break; case BPF_SUB: op = BPF_ADD; imm = -imm; break; } /* Move immediate to temporary register */ emit_mov_i(ctx, src, imm); switch (op) { /* dst = dst + imm */ case BPF_ADD: emit(ctx, addu, lo(dst), lo(dst), src); emit(ctx, sltu, MIPS_R_T9, lo(dst), src); emit(ctx, addu, hi(dst), hi(dst), MIPS_R_T9); if (imm < 0) emit(ctx, addiu, hi(dst), hi(dst), -1); break; /* dst = dst - imm */ case BPF_SUB: emit(ctx, sltu, MIPS_R_T9, lo(dst), src); emit(ctx, subu, lo(dst), lo(dst), src); emit(ctx, subu, hi(dst), hi(dst), MIPS_R_T9); if (imm < 0) emit(ctx, addiu, hi(dst), hi(dst), 1); break; /* dst = dst | imm */ case BPF_OR: emit(ctx, or, lo(dst), lo(dst), src); if (imm < 0) emit(ctx, addiu, hi(dst), MIPS_R_ZERO, -1); break; /* dst = dst & imm */ case BPF_AND: emit(ctx, and, lo(dst), lo(dst), src); if (imm >= 0) emit(ctx, move, hi(dst), MIPS_R_ZERO); break; /* dst = dst ^ imm */ case BPF_XOR: emit(ctx, xor, lo(dst), lo(dst), src); if (imm < 0) { emit(ctx, subu, hi(dst), MIPS_R_ZERO, hi(dst)); emit(ctx, addiu, hi(dst), hi(dst), -1); } break; } clobber_reg64(ctx, dst); } /* ALU register operation (64-bit) */ static void emit_alu_r64(struct jit_context *ctx, const u8 dst[], const u8 src[], u8 op) { switch (BPF_OP(op)) { /* dst = dst + src */ case BPF_ADD: if (src == dst) { emit(ctx, srl, MIPS_R_T9, lo(dst), 31); emit(ctx, addu, lo(dst), lo(dst), lo(dst)); } else { emit(ctx, addu, lo(dst), lo(dst), lo(src)); emit(ctx, sltu, MIPS_R_T9, lo(dst), lo(src)); } emit(ctx, addu, hi(dst), hi(dst), hi(src)); emit(ctx, addu, hi(dst), hi(dst), MIPS_R_T9); break; /* dst = dst - src */ case BPF_SUB: emit(ctx, sltu, MIPS_R_T9, lo(dst), lo(src)); emit(ctx, subu, lo(dst), lo(dst), lo(src)); emit(ctx, subu, hi(dst), hi(dst), hi(src)); emit(ctx, subu, hi(dst), hi(dst), MIPS_R_T9); break; /* dst = dst | src */ case BPF_OR: emit(ctx, or, lo(dst), lo(dst), lo(src)); emit(ctx, or, hi(dst), hi(dst), hi(src)); break; /* dst = dst & src */ case BPF_AND: emit(ctx, and, lo(dst), lo(dst), lo(src)); emit(ctx, and, hi(dst), hi(dst), hi(src)); break; /* dst = dst ^ src */ case BPF_XOR: emit(ctx, xor, lo(dst), lo(dst), lo(src)); emit(ctx, xor, hi(dst), hi(dst), hi(src)); break; } clobber_reg64(ctx, dst); } /* ALU invert (64-bit) */ static void emit_neg_i64(struct jit_context *ctx, const u8 dst[]) { emit(ctx, sltu, MIPS_R_T9, MIPS_R_ZERO, lo(dst)); emit(ctx, subu, lo(dst), MIPS_R_ZERO, lo(dst)); emit(ctx, subu, hi(dst), MIPS_R_ZERO, hi(dst)); emit(ctx, subu, hi(dst), hi(dst), MIPS_R_T9); clobber_reg64(ctx, dst); } /* ALU shift immediate (64-bit) */ static void emit_shift_i64(struct jit_context *ctx, const u8 dst[], u32 imm, u8 op) { switch (BPF_OP(op)) { /* dst = dst << imm */ case BPF_LSH: if (imm < 32) { emit(ctx, srl, MIPS_R_T9, lo(dst), 32 - imm); emit(ctx, sll, lo(dst), lo(dst), imm); emit(ctx, sll, hi(dst), hi(dst), imm); emit(ctx, or, hi(dst), hi(dst), MIPS_R_T9); } else { emit(ctx, sll, hi(dst), lo(dst), imm - 32); emit(ctx, move, lo(dst), MIPS_R_ZERO); } break; /* dst = dst >> imm */ case BPF_RSH: if (imm < 32) { emit(ctx, sll, MIPS_R_T9, hi(dst), 32 - imm); emit(ctx, srl, lo(dst), lo(dst), imm); emit(ctx, srl, hi(dst), hi(dst), imm); emit(ctx, or, lo(dst), lo(dst), MIPS_R_T9); } else { emit(ctx, srl, lo(dst), hi(dst), imm - 32); emit(ctx, move, hi(dst), MIPS_R_ZERO); } break; /* dst = dst >> imm (arithmetic) */ case BPF_ARSH: if (imm < 32) { emit(ctx, sll, MIPS_R_T9, hi(dst), 32 - imm); emit(ctx, srl, lo(dst), lo(dst), imm); emit(ctx, sra, hi(dst), hi(dst), imm); emit(ctx, or, lo(dst), lo(dst), MIPS_R_T9); } else { emit(ctx, sra, lo(dst), hi(dst), imm - 32); emit(ctx, sra, hi(dst), hi(dst), 31); } break; } clobber_reg64(ctx, dst); } /* ALU shift register (64-bit) */ static void emit_shift_r64(struct jit_context *ctx, const u8 dst[], u8 src, u8 op) { u8 t1 = MIPS_R_T8; u8 t2 = MIPS_R_T9; emit(ctx, andi, t1, src, 32); /* t1 = src & 32 */ emit(ctx, beqz, t1, 16); /* PC += 16 if t1 == 0 */ emit(ctx, nor, t2, src, MIPS_R_ZERO); /* t2 = ~src (delay slot) */ switch (BPF_OP(op)) { /* dst = dst << src */ case BPF_LSH: /* Next: shift >= 32 */ emit(ctx, sllv, hi(dst), lo(dst), src); /* dh = dl << src */ emit(ctx, move, lo(dst), MIPS_R_ZERO); /* dl = 0 */ emit(ctx, b, 20); /* PC += 20 */ /* +16: shift < 32 */ emit(ctx, srl, t1, lo(dst), 1); /* t1 = dl >> 1 */ emit(ctx, srlv, t1, t1, t2); /* t1 = t1 >> t2 */ emit(ctx, sllv, lo(dst), lo(dst), src); /* dl = dl << src */ emit(ctx, sllv, hi(dst), hi(dst), src); /* dh = dh << src */ emit(ctx, or, hi(dst), hi(dst), t1); /* dh = dh | t1 */ break; /* dst = dst >> src */ case BPF_RSH: /* Next: shift >= 32 */ emit(ctx, srlv, lo(dst), hi(dst), src); /* dl = dh >> src */ emit(ctx, move, hi(dst), MIPS_R_ZERO); /* dh = 0 */ emit(ctx, b, 20); /* PC += 20 */ /* +16: shift < 32 */ emit(ctx, sll, t1, hi(dst), 1); /* t1 = dl << 1 */ emit(ctx, sllv, t1, t1, t2); /* t1 = t1 << t2 */ emit(ctx, srlv, lo(dst), lo(dst), src); /* dl = dl >> src */ emit(ctx, srlv, hi(dst), hi(dst), src); /* dh = dh >> src */ emit(ctx, or, lo(dst), lo(dst), t1); /* dl = dl | t1 */ break; /* dst = dst >> src (arithmetic) */ case BPF_ARSH: /* Next: shift >= 32 */ emit(ctx, srav, lo(dst), hi(dst), src); /* dl = dh >>a src */ emit(ctx, sra, hi(dst), hi(dst), 31); /* dh = dh >>a 31 */ emit(ctx, b, 20); /* PC += 20 */ /* +16: shift < 32 */ emit(ctx, sll, t1, hi(dst), 1); /* t1 = dl << 1 */ emit(ctx, sllv, t1, t1, t2); /* t1 = t1 << t2 */ emit(ctx, srlv, lo(dst), lo(dst), src); /* dl = dl >>a src */ emit(ctx, srav, hi(dst), hi(dst), src); /* dh = dh >> src */ emit(ctx, or, lo(dst), lo(dst), t1); /* dl = dl | t1 */ break; } /* +20: Done */ clobber_reg64(ctx, dst); } /* ALU mul immediate (64x32-bit) */ static void emit_mul_i64(struct jit_context *ctx, const u8 dst[], s32 imm) { u8 src = MIPS_R_T6; u8 tmp = MIPS_R_T9; switch (imm) { /* dst = dst * 1 is a no-op */ case 1: break; /* dst = dst * -1 */ case -1: emit_neg_i64(ctx, dst); break; case 0: emit_mov_r(ctx, lo(dst), MIPS_R_ZERO); emit_mov_r(ctx, hi(dst), MIPS_R_ZERO); break; /* Full 64x32 multiply */ default: /* hi(dst) = hi(dst) * src(imm) */ emit_mov_i(ctx, src, imm); if (cpu_has_mips32r1 || cpu_has_mips32r6) { emit(ctx, mul, hi(dst), hi(dst), src); } else { emit(ctx, multu, hi(dst), src); emit(ctx, mflo, hi(dst)); } /* hi(dst) = hi(dst) - lo(dst) */ if (imm < 0) emit(ctx, subu, hi(dst), hi(dst), lo(dst)); /* tmp = lo(dst) * src(imm) >> 32 */ /* lo(dst) = lo(dst) * src(imm) */ if (cpu_has_mips32r6) { emit(ctx, muhu, tmp, lo(dst), src); emit(ctx, mulu, lo(dst), lo(dst), src); } else { emit(ctx, multu, lo(dst), src); emit(ctx, mflo, lo(dst)); emit(ctx, mfhi, tmp); } /* hi(dst) += tmp */ emit(ctx, addu, hi(dst), hi(dst), tmp); clobber_reg64(ctx, dst); break; } } /* ALU mul register (64x64-bit) */ static void emit_mul_r64(struct jit_context *ctx, const u8 dst[], const u8 src[]) { u8 acc = MIPS_R_T8; u8 tmp = MIPS_R_T9; /* acc = hi(dst) * lo(src) */ if (cpu_has_mips32r1 || cpu_has_mips32r6) { emit(ctx, mul, acc, hi(dst), lo(src)); } else { emit(ctx, multu, hi(dst), lo(src)); emit(ctx, mflo, acc); } /* tmp = lo(dst) * hi(src) */ if (cpu_has_mips32r1 || cpu_has_mips32r6) { emit(ctx, mul, tmp, lo(dst), hi(src)); } else { emit(ctx, multu, lo(dst), hi(src)); emit(ctx, mflo, tmp); } /* acc += tmp */ emit(ctx, addu, acc, acc, tmp); /* tmp = lo(dst) * lo(src) >> 32 */ /* lo(dst) = lo(dst) * lo(src) */ if (cpu_has_mips32r6) { emit(ctx, muhu, tmp, lo(dst), lo(src)); emit(ctx, mulu, lo(dst), lo(dst), lo(src)); } else { emit(ctx, multu, lo(dst), lo(src)); emit(ctx, mflo, lo(dst)); emit(ctx, mfhi, tmp); } /* hi(dst) = acc + tmp */ emit(ctx, addu, hi(dst), acc, tmp); clobber_reg64(ctx, dst); } /* Helper function for 64-bit modulo */ static u64 jit_mod64(u64 a, u64 b) { u64 rem; div64_u64_rem(a, b, &rem); return rem; } /* ALU div/mod register (64-bit) */ static void emit_divmod_r64(struct jit_context *ctx, const u8 dst[], const u8 src[], u8 op) { const u8 *r0 = bpf2mips32[BPF_REG_0]; /* Mapped to v0-v1 */ const u8 *r1 = bpf2mips32[BPF_REG_1]; /* Mapped to a0-a1 */ const u8 *r2 = bpf2mips32[BPF_REG_2]; /* Mapped to a2-a3 */ int exclude, k; u32 addr = 0; /* Push caller-saved registers on stack */ push_regs(ctx, ctx->clobbered & JIT_CALLER_REGS, 0, JIT_RESERVED_STACK); /* Put 64-bit arguments 1 and 2 in registers a0-a3 */ for (k = 0; k < 2; k++) { emit(ctx, move, MIPS_R_T9, src[k]); emit(ctx, move, r1[k], dst[k]); emit(ctx, move, r2[k], MIPS_R_T9); } /* Emit function call */ switch (BPF_OP(op)) { /* dst = dst / src */ case BPF_DIV: addr = (u32)&div64_u64; break; /* dst = dst % src */ case BPF_MOD: addr = (u32)&jit_mod64; break; } emit_mov_i(ctx, MIPS_R_T9, addr); emit(ctx, jalr, MIPS_R_RA, MIPS_R_T9); emit(ctx, nop); /* Delay slot */ /* Store the 64-bit result in dst */ emit(ctx, move, dst[0], r0[0]); emit(ctx, move, dst[1], r0[1]); /* Restore caller-saved registers, excluding the computed result */ exclude = BIT(lo(dst)) | BIT(hi(dst)); pop_regs(ctx, ctx->clobbered & JIT_CALLER_REGS, exclude, JIT_RESERVED_STACK); emit_load_delay(ctx); clobber_reg64(ctx, dst); clobber_reg(ctx, MIPS_R_V0); clobber_reg(ctx, MIPS_R_V1); clobber_reg(ctx, MIPS_R_RA); } /* Swap bytes in a register word */ static void emit_swap8_r(struct jit_context *ctx, u8 dst, u8 src, u8 mask) { u8 tmp = MIPS_R_T9; emit(ctx, and, tmp, src, mask); /* tmp = src & 0x00ff00ff */ emit(ctx, sll, tmp, tmp, 8); /* tmp = tmp << 8 */ emit(ctx, srl, dst, src, 8); /* dst = src >> 8 */ emit(ctx, and, dst, dst, mask); /* dst = dst & 0x00ff00ff */ emit(ctx, or, dst, dst, tmp); /* dst = dst | tmp */ } /* Swap half words in a register word */ static void emit_swap16_r(struct jit_context *ctx, u8 dst, u8 src) { u8 tmp = MIPS_R_T9; emit(ctx, sll, tmp, src, 16); /* tmp = src << 16 */ emit(ctx, srl, dst, src, 16); /* dst = src >> 16 */ emit(ctx, or, dst, dst, tmp); /* dst = dst | tmp */ } /* Swap bytes and truncate a register double word, word or half word */ static void emit_bswap_r64(struct jit_context *ctx, const u8 dst[], u32 width) { u8 tmp = MIPS_R_T8; switch (width) { /* Swap bytes in a double word */ case 64: if (cpu_has_mips32r2 || cpu_has_mips32r6) { emit(ctx, rotr, tmp, hi(dst), 16); emit(ctx, rotr, hi(dst), lo(dst), 16); emit(ctx, wsbh, lo(dst), tmp); emit(ctx, wsbh, hi(dst), hi(dst)); } else { emit_swap16_r(ctx, tmp, lo(dst)); emit_swap16_r(ctx, lo(dst), hi(dst)); emit(ctx, move, hi(dst), tmp); emit(ctx, lui, tmp, 0xff); /* tmp = 0x00ff0000 */ emit(ctx, ori, tmp, tmp, 0xff); /* tmp = 0x00ff00ff */ emit_swap8_r(ctx, lo(dst), lo(dst), tmp); emit_swap8_r(ctx, hi(dst), hi(dst), tmp); } break; /* Swap bytes in a word */ /* Swap bytes in a half word */ case 32: case 16: emit_bswap_r(ctx, lo(dst), width); emit(ctx, move, hi(dst), MIPS_R_ZERO); break; } clobber_reg64(ctx, dst); } /* Truncate a register double word, word or half word */ static void emit_trunc_r64(struct jit_context *ctx, const u8 dst[], u32 width) { switch (width) { case 64: break; /* Zero-extend a word */ case 32: emit(ctx, move, hi(dst), MIPS_R_ZERO); clobber_reg(ctx, hi(dst)); break; /* Zero-extend a half word */ case 16: emit(ctx, move, hi(dst), MIPS_R_ZERO); emit(ctx, andi, lo(dst), lo(dst), 0xffff); clobber_reg64(ctx, dst); break; } } /* Load operation: dst = *(size*)(src + off) */ static void emit_ldx(struct jit_context *ctx, const u8 dst[], u8 src, s16 off, u8 size) { switch (size) { /* Load a byte */ case BPF_B: emit(ctx, lbu, lo(dst), off, src); emit(ctx, move, hi(dst), MIPS_R_ZERO); break; /* Load a half word */ case BPF_H: emit(ctx, lhu, lo(dst), off, src); emit(ctx, move, hi(dst), MIPS_R_ZERO); break; /* Load a word */ case BPF_W: emit(ctx, lw, lo(dst), off, src); emit(ctx, move, hi(dst), MIPS_R_ZERO); break; /* Load a double word */ case BPF_DW: if (dst[1] == src) { emit(ctx, lw, dst[0], off + 4, src); emit(ctx, lw, dst[1], off, src); } else { emit(ctx, lw, dst[1], off, src); emit(ctx, lw, dst[0], off + 4, src); } emit_load_delay(ctx); break; } clobber_reg64(ctx, dst); } /* Store operation: *(size *)(dst + off) = src */ static void emit_stx(struct jit_context *ctx, const u8 dst, const u8 src[], s16 off, u8 size) { switch (size) { /* Store a byte */ case BPF_B: emit(ctx, sb, lo(src), off, dst); break; /* Store a half word */ case BPF_H: emit(ctx, sh, lo(src), off, dst); break; /* Store a word */ case BPF_W: emit(ctx, sw, lo(src), off, dst); break; /* Store a double word */ case BPF_DW: emit(ctx, sw, src[1], off, dst); emit(ctx, sw, src[0], off + 4, dst); break; } } /* Atomic read-modify-write (32-bit, non-ll/sc fallback) */ static void emit_atomic_r32(struct jit_context *ctx, u8 dst, u8 src, s16 off, u8 code) { u32 exclude = 0; u32 addr = 0; /* Push caller-saved registers on stack */ push_regs(ctx, ctx->clobbered & JIT_CALLER_REGS, 0, JIT_RESERVED_STACK); /* * Argument 1: dst+off if xchg, otherwise src, passed in register a0 * Argument 2: src if xchg, otherwise dst+off, passed in register a1 */ emit(ctx, move, MIPS_R_T9, dst); if (code == BPF_XCHG) { emit(ctx, move, MIPS_R_A1, src); emit(ctx, addiu, MIPS_R_A0, MIPS_R_T9, off); } else { emit(ctx, move, MIPS_R_A0, src); emit(ctx, addiu, MIPS_R_A1, MIPS_R_T9, off); } /* Emit function call */ switch (code) { case BPF_ADD: addr = (u32)&atomic_add; break; case BPF_ADD | BPF_FETCH: addr = (u32)&atomic_fetch_add; break; case BPF_SUB: addr = (u32)&atomic_sub; break; case BPF_SUB | BPF_FETCH: addr = (u32)&atomic_fetch_sub; break; case BPF_OR: addr = (u32)&atomic_or; break; case BPF_OR | BPF_FETCH: addr = (u32)&atomic_fetch_or; break; case BPF_AND: addr = (u32)&atomic_and; break; case BPF_AND | BPF_FETCH: addr = (u32)&atomic_fetch_and; break; case BPF_XOR: addr = (u32)&atomic_xor; break; case BPF_XOR | BPF_FETCH: addr = (u32)&atomic_fetch_xor; break; case BPF_XCHG: addr = (u32)&atomic_xchg; break; } emit_mov_i(ctx, MIPS_R_T9, addr); emit(ctx, jalr, MIPS_R_RA, MIPS_R_T9); emit(ctx, nop); /* Delay slot */ /* Update src register with old value, if specified */ if (code & BPF_FETCH) { emit(ctx, move, src, MIPS_R_V0); exclude = BIT(src); clobber_reg(ctx, src); } /* Restore caller-saved registers, except any fetched value */ pop_regs(ctx, ctx->clobbered & JIT_CALLER_REGS, exclude, JIT_RESERVED_STACK); emit_load_delay(ctx); clobber_reg(ctx, MIPS_R_RA); } /* Helper function for 64-bit atomic exchange */ static s64 jit_xchg64(s64 a, atomic64_t *v) { return atomic64_xchg(v, a); } /* Atomic read-modify-write (64-bit) */ static void emit_atomic_r64(struct jit_context *ctx, u8 dst, const u8 src[], s16 off, u8 code) { const u8 *r0 = bpf2mips32[BPF_REG_0]; /* Mapped to v0-v1 */ const u8 *r1 = bpf2mips32[BPF_REG_1]; /* Mapped to a0-a1 */ u32 exclude = 0; u32 addr = 0; /* Push caller-saved registers on stack */ push_regs(ctx, ctx->clobbered & JIT_CALLER_REGS, 0, JIT_RESERVED_STACK); /* * Argument 1: 64-bit src, passed in registers a0-a1 * Argument 2: 32-bit dst+off, passed in register a2 */ emit(ctx, move, MIPS_R_T9, dst); emit(ctx, move, r1[0], src[0]); emit(ctx, move, r1[1], src[1]); emit(ctx, addiu, MIPS_R_A2, MIPS_R_T9, off); /* Emit function call */ switch (code) { case BPF_ADD: addr = (u32)&atomic64_add; break; case BPF_ADD | BPF_FETCH: addr = (u32)&atomic64_fetch_add; break; case BPF_SUB: addr = (u32)&atomic64_sub; break; case BPF_SUB | BPF_FETCH: addr = (u32)&atomic64_fetch_sub; break; case BPF_OR: addr = (u32)&atomic64_or; break; case BPF_OR | BPF_FETCH: addr = (u32)&atomic64_fetch_or; break; case BPF_AND: addr = (u32)&atomic64_and; break; case BPF_AND | BPF_FETCH: addr = (u32)&atomic64_fetch_and; break; case BPF_XOR: addr = (u32)&atomic64_xor; break; case BPF_XOR | BPF_FETCH: addr = (u32)&atomic64_fetch_xor; break; case BPF_XCHG: addr = (u32)&jit_xchg64; break; } emit_mov_i(ctx, MIPS_R_T9, addr); emit(ctx, jalr, MIPS_R_RA, MIPS_R_T9); emit(ctx, nop); /* Delay slot */ /* Update src register with old value, if specified */ if (code & BPF_FETCH) { emit(ctx, move, lo(src), lo(r0)); emit(ctx, move, hi(src), hi(r0)); exclude = BIT(src[0]) | BIT(src[1]); clobber_reg64(ctx, src); } /* Restore caller-saved registers, except any fetched value */ pop_regs(ctx, ctx->clobbered & JIT_CALLER_REGS, exclude, JIT_RESERVED_STACK); emit_load_delay(ctx); clobber_reg(ctx, MIPS_R_RA); } /* Atomic compare-and-exchange (32-bit, non-ll/sc fallback) */ static void emit_cmpxchg_r32(struct jit_context *ctx, u8 dst, u8 src, s16 off) { const u8 *r0 = bpf2mips32[BPF_REG_0]; /* Push caller-saved registers on stack */ push_regs(ctx, ctx->clobbered & JIT_CALLER_REGS, JIT_RETURN_REGS, JIT_RESERVED_STACK + 2 * sizeof(u32)); /* * Argument 1: 32-bit dst+off, passed in register a0 * Argument 2: 32-bit r0, passed in register a1 * Argument 3: 32-bit src, passed in register a2 */ emit(ctx, addiu, MIPS_R_T9, dst, off); emit(ctx, move, MIPS_R_T8, src); emit(ctx, move, MIPS_R_A1, lo(r0)); emit(ctx, move, MIPS_R_A0, MIPS_R_T9); emit(ctx, move, MIPS_R_A2, MIPS_R_T8); /* Emit function call */ emit_mov_i(ctx, MIPS_R_T9, (u32)&atomic_cmpxchg); emit(ctx, jalr, MIPS_R_RA, MIPS_R_T9); emit(ctx, nop); /* Delay slot */ #ifdef __BIG_ENDIAN emit(ctx, move, lo(r0), MIPS_R_V0); #endif /* Restore caller-saved registers, except the return value */ pop_regs(ctx, ctx->clobbered & JIT_CALLER_REGS, JIT_RETURN_REGS, JIT_RESERVED_STACK + 2 * sizeof(u32)); emit_load_delay(ctx); clobber_reg(ctx, MIPS_R_V0); clobber_reg(ctx, MIPS_R_V1); clobber_reg(ctx, MIPS_R_RA); } /* Atomic compare-and-exchange (64-bit) */ static void emit_cmpxchg_r64(struct jit_context *ctx, u8 dst, const u8 src[], s16 off) { const u8 *r0 = bpf2mips32[BPF_REG_0]; const u8 *r2 = bpf2mips32[BPF_REG_2]; /* Push caller-saved registers on stack */ push_regs(ctx, ctx->clobbered & JIT_CALLER_REGS, JIT_RETURN_REGS, JIT_RESERVED_STACK + 2 * sizeof(u32)); /* * Argument 1: 32-bit dst+off, passed in register a0 (a1 unused) * Argument 2: 64-bit r0, passed in registers a2-a3 * Argument 3: 64-bit src, passed on stack */ push_regs(ctx, BIT(src[0]) | BIT(src[1]), 0, JIT_RESERVED_STACK); emit(ctx, addiu, MIPS_R_T9, dst, off); emit(ctx, move, r2[0], r0[0]); emit(ctx, move, r2[1], r0[1]); emit(ctx, move, MIPS_R_A0, MIPS_R_T9); /* Emit function call */ emit_mov_i(ctx, MIPS_R_T9, (u32)&atomic64_cmpxchg); emit(ctx, jalr, MIPS_R_RA, MIPS_R_T9); emit(ctx, nop); /* Delay slot */ /* Restore caller-saved registers, except the return value */ pop_regs(ctx, ctx->clobbered & JIT_CALLER_REGS, JIT_RETURN_REGS, JIT_RESERVED_STACK + 2 * sizeof(u32)); emit_load_delay(ctx); clobber_reg(ctx, MIPS_R_V0); clobber_reg(ctx, MIPS_R_V1); clobber_reg(ctx, MIPS_R_RA); } /* * Conditional movz or an emulated equivalent. * Note that the rs register may be modified. */ static void emit_movz_r(struct jit_context *ctx, u8 rd, u8 rs, u8 rt) { if (cpu_has_mips_2) { emit(ctx, movz, rd, rs, rt); /* rd = rt ? rd : rs */ } else if (cpu_has_mips32r6) { if (rs != MIPS_R_ZERO) emit(ctx, seleqz, rs, rs, rt); /* rs = 0 if rt == 0 */ emit(ctx, selnez, rd, rd, rt); /* rd = 0 if rt != 0 */ if (rs != MIPS_R_ZERO) emit(ctx, or, rd, rd, rs); /* rd = rd | rs */ } else { emit(ctx, bnez, rt, 8); /* PC += 8 if rd != 0 */ emit(ctx, nop); /* +0: delay slot */ emit(ctx, or, rd, rs, MIPS_R_ZERO); /* +4: rd = rs */ } clobber_reg(ctx, rd); clobber_reg(ctx, rs); } /* * Conditional movn or an emulated equivalent. * Note that the rs register may be modified. */ static void emit_movn_r(struct jit_context *ctx, u8 rd, u8 rs, u8 rt) { if (cpu_has_mips_2) { emit(ctx, movn, rd, rs, rt); /* rd = rt ? rs : rd */ } else if (cpu_has_mips32r6) { if (rs != MIPS_R_ZERO) emit(ctx, selnez, rs, rs, rt); /* rs = 0 if rt == 0 */ emit(ctx, seleqz, rd, rd, rt); /* rd = 0 if rt != 0 */ if (rs != MIPS_R_ZERO) emit(ctx, or, rd, rd, rs); /* rd = rd | rs */ } else { emit(ctx, beqz, rt, 8); /* PC += 8 if rd == 0 */ emit(ctx, nop); /* +0: delay slot */ emit(ctx, or, rd, rs, MIPS_R_ZERO); /* +4: rd = rs */ } clobber_reg(ctx, rd); clobber_reg(ctx, rs); } /* Emulation of 64-bit sltiu rd, rs, imm, where imm may be S32_MAX + 1 */ static void emit_sltiu_r64(struct jit_context *ctx, u8 rd, const u8 rs[], s64 imm) { u8 tmp = MIPS_R_T9; if (imm < 0) { emit_mov_i(ctx, rd, imm); /* rd = imm */ emit(ctx, sltu, rd, lo(rs), rd); /* rd = rsl < rd */ emit(ctx, sltiu, tmp, hi(rs), -1); /* tmp = rsh < ~0U */ emit(ctx, or, rd, rd, tmp); /* rd = rd | tmp */ } else { /* imm >= 0 */ if (imm > 0x7fff) { emit_mov_i(ctx, rd, (s32)imm); /* rd = imm */ emit(ctx, sltu, rd, lo(rs), rd); /* rd = rsl < rd */ } else { emit(ctx, sltiu, rd, lo(rs), imm); /* rd = rsl < imm */ } emit_movn_r(ctx, rd, MIPS_R_ZERO, hi(rs)); /* rd = 0 if rsh */ } } /* Emulation of 64-bit sltu rd, rs, rt */ static void emit_sltu_r64(struct jit_context *ctx, u8 rd, const u8 rs[], const u8 rt[]) { u8 tmp = MIPS_R_T9; emit(ctx, sltu, rd, lo(rs), lo(rt)); /* rd = rsl < rtl */ emit(ctx, subu, tmp, hi(rs), hi(rt)); /* tmp = rsh - rth */ emit_movn_r(ctx, rd, MIPS_R_ZERO, tmp); /* rd = 0 if tmp != 0 */ emit(ctx, sltu, tmp, hi(rs), hi(rt)); /* tmp = rsh < rth */ emit(ctx, or, rd, rd, tmp); /* rd = rd | tmp */ } /* Emulation of 64-bit slti rd, rs, imm, where imm may be S32_MAX + 1 */ static void emit_slti_r64(struct jit_context *ctx, u8 rd, const u8 rs[], s64 imm) { u8 t1 = MIPS_R_T8; u8 t2 = MIPS_R_T9; u8 cmp; /* * if ((rs < 0) ^ (imm < 0)) t1 = imm >u rsl * else t1 = rsl > 31 */ if (imm < 0) emit_movz_r(ctx, t1, t2, rd); /* t1 = rd ? t1 : t2 */ else emit_movn_r(ctx, t1, t2, rd); /* t1 = rd ? t2 : t1 */ /* * if ((imm < 0 && rsh != 0xffffffff) || * (imm >= 0 && rsh != 0)) * t1 = 0 */ if (imm < 0) { emit(ctx, addiu, rd, hi(rs), 1); /* rd = rsh + 1 */ cmp = rd; } else { /* imm >= 0 */ cmp = hi(rs); } emit_movn_r(ctx, t1, MIPS_R_ZERO, cmp); /* t1 = 0 if cmp != 0 */ /* * if (imm < 0) rd = rsh < -1 * else rd = rsh != 0 * rd = rd | t1 */ emit(ctx, slti, rd, hi(rs), imm < 0 ? -1 : 0); /* rd = rsh < hi(imm) */ emit(ctx, or, rd, rd, t1); /* rd = rd | t1 */ } /* Emulation of 64-bit(slt rd, rs, rt) */ static void emit_slt_r64(struct jit_context *ctx, u8 rd, const u8 rs[], const u8 rt[]) { u8 t1 = MIPS_R_T7; u8 t2 = MIPS_R_T8; u8 t3 = MIPS_R_T9; /* * if ((rs < 0) ^ (rt < 0)) t1 = rtl > 31 */ emit_movn_r(ctx, t1, t2, rd); /* t1 = rd ? t2 : t1 */ emit_movn_r(ctx, t1, MIPS_R_ZERO, t3); /* t1 = 0 if t3 != 0 */ /* rd = (rsh < rth) | t1 */ emit(ctx, slt, rd, hi(rs), hi(rt)); /* rd = rsh = -0x7fff && imm <= 0x8000) { emit(ctx, addiu, tmp, lo(dst), -imm); } else if ((u32)imm <= 0xffff) { emit(ctx, xori, tmp, lo(dst), imm); } else { /* Register fallback */ emit_mov_i(ctx, tmp, imm); emit(ctx, xor, tmp, lo(dst), tmp); } if (imm < 0) { /* Compare sign extension */ emit(ctx, addu, MIPS_R_T9, hi(dst), 1); emit(ctx, or, tmp, tmp, MIPS_R_T9); } else { /* Compare zero extension */ emit(ctx, or, tmp, tmp, hi(dst)); } if (op == BPF_JEQ) emit(ctx, beqz, tmp, off); else /* BPF_JNE */ emit(ctx, bnez, tmp, off); break; /* PC += off if dst & imm */ /* PC += off if (dst & imm) == 0 (not in BPF, used for long jumps) */ case BPF_JSET: case JIT_JNSET: if ((u32)imm <= 0xffff) { emit(ctx, andi, tmp, lo(dst), imm); } else { /* Register fallback */ emit_mov_i(ctx, tmp, imm); emit(ctx, and, tmp, lo(dst), tmp); } if (imm < 0) /* Sign-extension pulls in high word */ emit(ctx, or, tmp, tmp, hi(dst)); if (op == BPF_JSET) emit(ctx, bnez, tmp, off); else /* JIT_JNSET */ emit(ctx, beqz, tmp, off); break; /* PC += off if dst > imm */ case BPF_JGT: emit_sltiu_r64(ctx, tmp, dst, (s64)imm + 1); emit(ctx, beqz, tmp, off); break; /* PC += off if dst >= imm */ case BPF_JGE: emit_sltiu_r64(ctx, tmp, dst, imm); emit(ctx, beqz, tmp, off); break; /* PC += off if dst < imm */ case BPF_JLT: emit_sltiu_r64(ctx, tmp, dst, imm); emit(ctx, bnez, tmp, off); break; /* PC += off if dst <= imm */ case BPF_JLE: emit_sltiu_r64(ctx, tmp, dst, (s64)imm + 1); emit(ctx, bnez, tmp, off); break; /* PC += off if dst > imm (signed) */ case BPF_JSGT: emit_slti_r64(ctx, tmp, dst, (s64)imm + 1); emit(ctx, beqz, tmp, off); break; /* PC += off if dst >= imm (signed) */ case BPF_JSGE: emit_slti_r64(ctx, tmp, dst, imm); emit(ctx, beqz, tmp, off); break; /* PC += off if dst < imm (signed) */ case BPF_JSLT: emit_slti_r64(ctx, tmp, dst, imm); emit(ctx, bnez, tmp, off); break; /* PC += off if dst <= imm (signed) */ case BPF_JSLE: emit_slti_r64(ctx, tmp, dst, (s64)imm + 1); emit(ctx, bnez, tmp, off); break; } } /* Jump register (64-bit) */ static void emit_jmp_r64(struct jit_context *ctx, const u8 dst[], const u8 src[], s32 off, u8 op) { u8 t1 = MIPS_R_T6; u8 t2 = MIPS_R_T7; switch (op) { /* No-op, used internally for branch optimization */ case JIT_JNOP: break; /* PC += off if dst == src */ /* PC += off if dst != src */ case BPF_JEQ: case BPF_JNE: emit(ctx, subu, t1, lo(dst), lo(src)); emit(ctx, subu, t2, hi(dst), hi(src)); emit(ctx, or, t1, t1, t2); if (op == BPF_JEQ) emit(ctx, beqz, t1, off); else /* BPF_JNE */ emit(ctx, bnez, t1, off); break; /* PC += off if dst & src */ /* PC += off if (dst & imm) == 0 (not in BPF, used for long jumps) */ case BPF_JSET: case JIT_JNSET: emit(ctx, and, t1, lo(dst), lo(src)); emit(ctx, and, t2, hi(dst), hi(src)); emit(ctx, or, t1, t1, t2); if (op == BPF_JSET) emit(ctx, bnez, t1, off); else /* JIT_JNSET */ emit(ctx, beqz, t1, off); break; /* PC += off if dst > src */ case BPF_JGT: emit_sltu_r64(ctx, t1, src, dst); emit(ctx, bnez, t1, off); break; /* PC += off if dst >= src */ case BPF_JGE: emit_sltu_r64(ctx, t1, dst, src); emit(ctx, beqz, t1, off); break; /* PC += off if dst < src */ case BPF_JLT: emit_sltu_r64(ctx, t1, dst, src); emit(ctx, bnez, t1, off); break; /* PC += off if dst <= src */ case BPF_JLE: emit_sltu_r64(ctx, t1, src, dst); emit(ctx, beqz, t1, off); break; /* PC += off if dst > src (signed) */ case BPF_JSGT: emit_slt_r64(ctx, t1, src, dst); emit(ctx, bnez, t1, off); break; /* PC += off if dst >= src (signed) */ case BPF_JSGE: emit_slt_r64(ctx, t1, dst, src); emit(ctx, beqz, t1, off); break; /* PC += off if dst < src (signed) */ case BPF_JSLT: emit_slt_r64(ctx, t1, dst, src); emit(ctx, bnez, t1, off); break; /* PC += off if dst <= src (signed) */ case BPF_JSLE: emit_slt_r64(ctx, t1, src, dst); emit(ctx, beqz, t1, off); break; } } /* Function call */ static int emit_call(struct jit_context *ctx, const struct bpf_insn *insn) { bool fixed; u64 addr; /* Decode the call address */ if (bpf_jit_get_func_addr(ctx->program, insn, false, &addr, &fixed) < 0) return -1; if (!fixed) return -1; /* Push stack arguments */ push_regs(ctx, JIT_STACK_REGS, 0, JIT_RESERVED_STACK); /* Emit function call */ emit_mov_i(ctx, MIPS_R_T9, addr); emit(ctx, jalr, MIPS_R_RA, MIPS_R_T9); emit(ctx, nop); /* Delay slot */ clobber_reg(ctx, MIPS_R_RA); clobber_reg(ctx, MIPS_R_V0); clobber_reg(ctx, MIPS_R_V1); return 0; } /* Function tail call */ static int emit_tail_call(struct jit_context *ctx) { u8 ary = lo(bpf2mips32[BPF_REG_2]); u8 ind = lo(bpf2mips32[BPF_REG_3]); u8 t1 = MIPS_R_T8; u8 t2 = MIPS_R_T9; int off; /* * Tail call: * eBPF R1 - function argument (context ptr), passed in a0-a1 * eBPF R2 - ptr to object with array of function entry points * eBPF R3 - array index of function to be called * stack[sz] - remaining tail call count, initialized in prologue */ /* if (ind >= ary->map.max_entries) goto out */ off = offsetof(struct bpf_array, map.max_entries); if (off > 0x7fff) return -1; emit(ctx, lw, t1, off, ary); /* t1 = ary->map.max_entries*/ emit_load_delay(ctx); /* Load delay slot */ emit(ctx, sltu, t1, ind, t1); /* t1 = ind < t1 */ emit(ctx, beqz, t1, get_offset(ctx, 1)); /* PC += off(1) if t1 == 0 */ /* (next insn delay slot) */ /* if (TCC-- <= 0) goto out */ emit(ctx, lw, t2, ctx->stack_size, MIPS_R_SP); /* t2 = *(SP + size) */ emit_load_delay(ctx); /* Load delay slot */ emit(ctx, blez, t2, get_offset(ctx, 1)); /* PC += off(1) if t2 <= 0 */ emit(ctx, addiu, t2, t2, -1); /* t2-- (delay slot) */ emit(ctx, sw, t2, ctx->stack_size, MIPS_R_SP); /* *(SP + size) = t2 */ /* prog = ary->ptrs[ind] */ off = offsetof(struct bpf_array, ptrs); if (off > 0x7fff) return -1; emit(ctx, sll, t1, ind, 2); /* t1 = ind << 2 */ emit(ctx, addu, t1, t1, ary); /* t1 += ary */ emit(ctx, lw, t2, off, t1); /* t2 = *(t1 + off) */ emit_load_delay(ctx); /* Load delay slot */ /* if (prog == 0) goto out */ emit(ctx, beqz, t2, get_offset(ctx, 1)); /* PC += off(1) if t2 == 0 */ emit(ctx, nop); /* Delay slot */ /* func = prog->bpf_func + 8 (prologue skip offset) */ off = offsetof(struct bpf_prog, bpf_func); if (off > 0x7fff) return -1; emit(ctx, lw, t1, off, t2); /* t1 = *(t2 + off) */ emit_load_delay(ctx); /* Load delay slot */ emit(ctx, addiu, t1, t1, JIT_TCALL_SKIP); /* t1 += skip (8 or 12) */ /* goto func */ build_epilogue(ctx, t1); return 0; } /* * Stack frame layout for a JITed program (stack grows down). * * Higher address : Caller's stack frame : * :----------------------------: * : 64-bit eBPF args r3-r5 : * :----------------------------: * : Reserved / tail call count : * +============================+ <--- MIPS sp before call * | Callee-saved registers, | * | including RA and FP | * +----------------------------+ <--- eBPF FP (MIPS zero,fp) * | Local eBPF variables | * | allocated by program | * +----------------------------+ * | Reserved for caller-saved | * | registers | * +----------------------------+ * | Reserved for 64-bit eBPF | * | args r3-r5 & args passed | * | on stack in kernel calls | * Lower address +============================+ <--- MIPS sp */ /* Build program prologue to set up the stack and registers */ void build_prologue(struct jit_context *ctx) { const u8 *r1 = bpf2mips32[BPF_REG_1]; const u8 *fp = bpf2mips32[BPF_REG_FP]; int stack, saved, locals, reserved; /* * In the unlikely event that the TCC limit is raised to more * than 16 bits, it is clamped to the maximum value allowed for * the generated code (0xffff). It is better fail to compile * instead of degrading gracefully. */ BUILD_BUG_ON(MAX_TAIL_CALL_CNT > 0xffff); /* * The first two instructions initialize TCC in the reserved (for us) * 16-byte area in the parent's stack frame. On a tail call, the * calling function jumps into the prologue after these instructions. */ emit(ctx, ori, MIPS_R_T9, MIPS_R_ZERO, MAX_TAIL_CALL_CNT); emit(ctx, sw, MIPS_R_T9, 0, MIPS_R_SP); /* * Register eBPF R1 contains the 32-bit context pointer argument. * A 32-bit argument is always passed in MIPS register a0, regardless * of CPU endianness. Initialize R1 accordingly and zero-extend. */ #ifdef __BIG_ENDIAN emit(ctx, move, lo(r1), MIPS_R_A0); #endif /* === Entry-point for tail calls === */ /* Zero-extend the 32-bit argument */ emit(ctx, move, hi(r1), MIPS_R_ZERO); /* If the eBPF frame pointer was accessed it must be saved */ if (ctx->accessed & BIT(BPF_REG_FP)) clobber_reg64(ctx, fp); /* Compute the stack space needed for callee-saved registers */ saved = hweight32(ctx->clobbered & JIT_CALLEE_REGS) * sizeof(u32); saved = ALIGN(saved, MIPS_STACK_ALIGNMENT); /* Stack space used by eBPF program local data */ locals = ALIGN(ctx->program->aux->stack_depth, MIPS_STACK_ALIGNMENT); /* * If we are emitting function calls, reserve extra stack space for * caller-saved registers and function arguments passed on the stack. * The required space is computed automatically during resource * usage discovery (pass 1). */ reserved = ctx->stack_used; /* Allocate the stack frame */ stack = ALIGN(saved + locals + reserved, MIPS_STACK_ALIGNMENT); emit(ctx, addiu, MIPS_R_SP, MIPS_R_SP, -stack); /* Store callee-saved registers on stack */ push_regs(ctx, ctx->clobbered & JIT_CALLEE_REGS, 0, stack - saved); /* Initialize the eBPF frame pointer if accessed */ if (ctx->accessed & BIT(BPF_REG_FP)) emit(ctx, addiu, lo(fp), MIPS_R_SP, stack - saved); ctx->saved_size = saved; ctx->stack_size = stack; } /* Build the program epilogue to restore the stack and registers */ void build_epilogue(struct jit_context *ctx, int dest_reg) { /* Restore callee-saved registers from stack */ pop_regs(ctx, ctx->clobbered & JIT_CALLEE_REGS, 0, ctx->stack_size - ctx->saved_size); /* * A 32-bit return value is always passed in MIPS register v0, * but on big-endian targets the low part of R0 is mapped to v1. */ #ifdef __BIG_ENDIAN emit(ctx, move, MIPS_R_V0, MIPS_R_V1); #endif /* Jump to the return address and adjust the stack pointer */ emit(ctx, jr, dest_reg); emit(ctx, addiu, MIPS_R_SP, MIPS_R_SP, ctx->stack_size); } /* Build one eBPF instruction */ int build_insn(const struct bpf_insn *insn, struct jit_context *ctx) { const u8 *dst = bpf2mips32[insn->dst_reg]; const u8 *src = bpf2mips32[insn->src_reg]; const u8 *res = bpf2mips32[BPF_REG_0]; const u8 *tmp = bpf2mips32[JIT_REG_TMP]; u8 code = insn->code; s16 off = insn->off; s32 imm = insn->imm; s32 val, rel; u8 alu, jmp; switch (code) { /* ALU operations */ /* dst = imm */ case BPF_ALU | BPF_MOV | BPF_K: emit_mov_i(ctx, lo(dst), imm); emit_zext_ver(ctx, dst); break; /* dst = src */ case BPF_ALU | BPF_MOV | BPF_X: if (imm == 1) { /* Special mov32 for zext */ emit_mov_i(ctx, hi(dst), 0); } else { emit_mov_r(ctx, lo(dst), lo(src)); emit_zext_ver(ctx, dst); } break; /* dst = -dst */ case BPF_ALU | BPF_NEG: emit_alu_i(ctx, lo(dst), 0, BPF_NEG); emit_zext_ver(ctx, dst); break; /* dst = dst & imm */ /* dst = dst | imm */ /* dst = dst ^ imm */ /* dst = dst << imm */ /* dst = dst >> imm */ /* dst = dst >> imm (arithmetic) */ /* dst = dst + imm */ /* dst = dst - imm */ /* dst = dst * imm */ /* dst = dst / imm */ /* dst = dst % imm */ case BPF_ALU | BPF_OR | BPF_K: case BPF_ALU | BPF_AND | BPF_K: case BPF_ALU | BPF_XOR | BPF_K: case BPF_ALU | BPF_LSH | BPF_K: case BPF_ALU | BPF_RSH | BPF_K: case BPF_ALU | BPF_ARSH | BPF_K: case BPF_ALU | BPF_ADD | BPF_K: case BPF_ALU | BPF_SUB | BPF_K: case BPF_ALU | BPF_MUL | BPF_K: case BPF_ALU | BPF_DIV | BPF_K: case BPF_ALU | BPF_MOD | BPF_K: if (!valid_alu_i(BPF_OP(code), imm)) { emit_mov_i(ctx, MIPS_R_T6, imm); emit_alu_r(ctx, lo(dst), MIPS_R_T6, BPF_OP(code)); } else if (rewrite_alu_i(BPF_OP(code), imm, &alu, &val)) { emit_alu_i(ctx, lo(dst), val, alu); } emit_zext_ver(ctx, dst); break; /* dst = dst & src */ /* dst = dst | src */ /* dst = dst ^ src */ /* dst = dst << src */ /* dst = dst >> src */ /* dst = dst >> src (arithmetic) */ /* dst = dst + src */ /* dst = dst - src */ /* dst = dst * src */ /* dst = dst / src */ /* dst = dst % src */ case BPF_ALU | BPF_AND | BPF_X: case BPF_ALU | BPF_OR | BPF_X: case BPF_ALU | BPF_XOR | BPF_X: case BPF_ALU | BPF_LSH | BPF_X: case BPF_ALU | BPF_RSH | BPF_X: case BPF_ALU | BPF_ARSH | BPF_X: case BPF_ALU | BPF_ADD | BPF_X: case BPF_ALU | BPF_SUB | BPF_X: case BPF_ALU | BPF_MUL | BPF_X: case BPF_ALU | BPF_DIV | BPF_X: case BPF_ALU | BPF_MOD | BPF_X: emit_alu_r(ctx, lo(dst), lo(src), BPF_OP(code)); emit_zext_ver(ctx, dst); break; /* dst = imm (64-bit) */ case BPF_ALU64 | BPF_MOV | BPF_K: emit_mov_se_i64(ctx, dst, imm); break; /* dst = src (64-bit) */ case BPF_ALU64 | BPF_MOV | BPF_X: emit_mov_r(ctx, lo(dst), lo(src)); emit_mov_r(ctx, hi(dst), hi(src)); break; /* dst = -dst (64-bit) */ case BPF_ALU64 | BPF_NEG: emit_neg_i64(ctx, dst); break; /* dst = dst & imm (64-bit) */ case BPF_ALU64 | BPF_AND | BPF_K: emit_alu_i64(ctx, dst, imm, BPF_OP(code)); break; /* dst = dst | imm (64-bit) */ /* dst = dst ^ imm (64-bit) */ /* dst = dst + imm (64-bit) */ /* dst = dst - imm (64-bit) */ case BPF_ALU64 | BPF_OR | BPF_K: case BPF_ALU64 | BPF_XOR | BPF_K: case BPF_ALU64 | BPF_ADD | BPF_K: case BPF_ALU64 | BPF_SUB | BPF_K: if (imm) emit_alu_i64(ctx, dst, imm, BPF_OP(code)); break; /* dst = dst << imm (64-bit) */ /* dst = dst >> imm (64-bit) */ /* dst = dst >> imm (64-bit, arithmetic) */ case BPF_ALU64 | BPF_LSH | BPF_K: case BPF_ALU64 | BPF_RSH | BPF_K: case BPF_ALU64 | BPF_ARSH | BPF_K: if (imm) emit_shift_i64(ctx, dst, imm, BPF_OP(code)); break; /* dst = dst * imm (64-bit) */ case BPF_ALU64 | BPF_MUL | BPF_K: emit_mul_i64(ctx, dst, imm); break; /* dst = dst / imm (64-bit) */ /* dst = dst % imm (64-bit) */ case BPF_ALU64 | BPF_DIV | BPF_K: case BPF_ALU64 | BPF_MOD | BPF_K: /* * Sign-extend the immediate value into a temporary register, * and then do the operation on this register. */ emit_mov_se_i64(ctx, tmp, imm); emit_divmod_r64(ctx, dst, tmp, BPF_OP(code)); break; /* dst = dst & src (64-bit) */ /* dst = dst | src (64-bit) */ /* dst = dst ^ src (64-bit) */ /* dst = dst + src (64-bit) */ /* dst = dst - src (64-bit) */ case BPF_ALU64 | BPF_AND | BPF_X: case BPF_ALU64 | BPF_OR | BPF_X: case BPF_ALU64 | BPF_XOR | BPF_X: case BPF_ALU64 | BPF_ADD | BPF_X: case BPF_ALU64 | BPF_SUB | BPF_X: emit_alu_r64(ctx, dst, src, BPF_OP(code)); break; /* dst = dst << src (64-bit) */ /* dst = dst >> src (64-bit) */ /* dst = dst >> src (64-bit, arithmetic) */ case BPF_ALU64 | BPF_LSH | BPF_X: case BPF_ALU64 | BPF_RSH | BPF_X: case BPF_ALU64 | BPF_ARSH | BPF_X: emit_shift_r64(ctx, dst, lo(src), BPF_OP(code)); break; /* dst = dst * src (64-bit) */ case BPF_ALU64 | BPF_MUL | BPF_X: emit_mul_r64(ctx, dst, src); break; /* dst = dst / src (64-bit) */ /* dst = dst % src (64-bit) */ case BPF_ALU64 | BPF_DIV | BPF_X: case BPF_ALU64 | BPF_MOD | BPF_X: emit_divmod_r64(ctx, dst, src, BPF_OP(code)); break; /* dst = htole(dst) */ /* dst = htobe(dst) */ case BPF_ALU | BPF_END | BPF_FROM_LE: case BPF_ALU | BPF_END | BPF_FROM_BE: if (BPF_SRC(code) == #ifdef __BIG_ENDIAN BPF_FROM_LE #else BPF_FROM_BE #endif ) emit_bswap_r64(ctx, dst, imm); else emit_trunc_r64(ctx, dst, imm); break; /* dst = imm64 */ case BPF_LD | BPF_IMM | BPF_DW: emit_mov_i(ctx, lo(dst), imm); emit_mov_i(ctx, hi(dst), insn[1].imm); return 1; /* LDX: dst = *(size *)(src + off) */ case BPF_LDX | BPF_MEM | BPF_W: case BPF_LDX | BPF_MEM | BPF_H: case BPF_LDX | BPF_MEM | BPF_B: case BPF_LDX | BPF_MEM | BPF_DW: emit_ldx(ctx, dst, lo(src), off, BPF_SIZE(code)); break; /* ST: *(size *)(dst + off) = imm */ case BPF_ST | BPF_MEM | BPF_W: case BPF_ST | BPF_MEM | BPF_H: case BPF_ST | BPF_MEM | BPF_B: case BPF_ST | BPF_MEM | BPF_DW: switch (BPF_SIZE(code)) { case BPF_DW: /* Sign-extend immediate value into temporary reg */ emit_mov_se_i64(ctx, tmp, imm); break; case BPF_W: case BPF_H: case BPF_B: emit_mov_i(ctx, lo(tmp), imm); break; } emit_stx(ctx, lo(dst), tmp, off, BPF_SIZE(code)); break; /* STX: *(size *)(dst + off) = src */ case BPF_STX | BPF_MEM | BPF_W: case BPF_STX | BPF_MEM | BPF_H: case BPF_STX | BPF_MEM | BPF_B: case BPF_STX | BPF_MEM | BPF_DW: emit_stx(ctx, lo(dst), src, off, BPF_SIZE(code)); break; /* Speculation barrier */ case BPF_ST | BPF_NOSPEC: break; /* Atomics */ case BPF_STX | BPF_ATOMIC | BPF_W: switch (imm) { case BPF_ADD: case BPF_ADD | BPF_FETCH: case BPF_AND: case BPF_AND | BPF_FETCH: case BPF_OR: case BPF_OR | BPF_FETCH: case BPF_XOR: case BPF_XOR | BPF_FETCH: case BPF_XCHG: if (cpu_has_llsc) emit_atomic_r(ctx, lo(dst), lo(src), off, imm); else /* Non-ll/sc fallback */ emit_atomic_r32(ctx, lo(dst), lo(src), off, imm); if (imm & BPF_FETCH) emit_zext_ver(ctx, src); break; case BPF_CMPXCHG: if (cpu_has_llsc) emit_cmpxchg_r(ctx, lo(dst), lo(src), lo(res), off); else /* Non-ll/sc fallback */ emit_cmpxchg_r32(ctx, lo(dst), lo(src), off); /* Result zero-extension inserted by verifier */ break; default: goto notyet; } break; /* Atomics (64-bit) */ case BPF_STX | BPF_ATOMIC | BPF_DW: switch (imm) { case BPF_ADD: case BPF_ADD | BPF_FETCH: case BPF_AND: case BPF_AND | BPF_FETCH: case BPF_OR: case BPF_OR | BPF_FETCH: case BPF_XOR: case BPF_XOR | BPF_FETCH: case BPF_XCHG: emit_atomic_r64(ctx, lo(dst), src, off, imm); break; case BPF_CMPXCHG: emit_cmpxchg_r64(ctx, lo(dst), src, off); break; default: goto notyet; } break; /* PC += off if dst == src */ /* PC += off if dst != src */ /* PC += off if dst & src */ /* PC += off if dst > src */ /* PC += off if dst >= src */ /* PC += off if dst < src */ /* PC += off if dst <= src */ /* PC += off if dst > src (signed) */ /* PC += off if dst >= src (signed) */ /* PC += off if dst < src (signed) */ /* PC += off if dst <= src (signed) */ case BPF_JMP32 | BPF_JEQ | BPF_X: case BPF_JMP32 | BPF_JNE | BPF_X: case BPF_JMP32 | BPF_JSET | BPF_X: case BPF_JMP32 | BPF_JGT | BPF_X: case BPF_JMP32 | BPF_JGE | BPF_X: case BPF_JMP32 | BPF_JLT | BPF_X: case BPF_JMP32 | BPF_JLE | BPF_X: case BPF_JMP32 | BPF_JSGT | BPF_X: case BPF_JMP32 | BPF_JSGE | BPF_X: case BPF_JMP32 | BPF_JSLT | BPF_X: case BPF_JMP32 | BPF_JSLE | BPF_X: if (off == 0) break; setup_jmp_r(ctx, dst == src, BPF_OP(code), off, &jmp, &rel); emit_jmp_r(ctx, lo(dst), lo(src), rel, jmp); if (finish_jmp(ctx, jmp, off) < 0) goto toofar; break; /* PC += off if dst == imm */ /* PC += off if dst != imm */ /* PC += off if dst & imm */ /* PC += off if dst > imm */ /* PC += off if dst >= imm */ /* PC += off if dst < imm */ /* PC += off if dst <= imm */ /* PC += off if dst > imm (signed) */ /* PC += off if dst >= imm (signed) */ /* PC += off if dst < imm (signed) */ /* PC += off if dst <= imm (signed) */ case BPF_JMP32 | BPF_JEQ | BPF_K: case BPF_JMP32 | BPF_JNE | BPF_K: case BPF_JMP32 | BPF_JSET | BPF_K: case BPF_JMP32 | BPF_JGT | BPF_K: case BPF_JMP32 | BPF_JGE | BPF_K: case BPF_JMP32 | BPF_JLT | BPF_K: case BPF_JMP32 | BPF_JLE | BPF_K: case BPF_JMP32 | BPF_JSGT | BPF_K: case BPF_JMP32 | BPF_JSGE | BPF_K: case BPF_JMP32 | BPF_JSLT | BPF_K: case BPF_JMP32 | BPF_JSLE | BPF_K: if (off == 0) break; setup_jmp_i(ctx, imm, 32, BPF_OP(code), off, &jmp, &rel); if (valid_jmp_i(jmp, imm)) { emit_jmp_i(ctx, lo(dst), imm, rel, jmp); } else { /* Move large immediate to register */ emit_mov_i(ctx, MIPS_R_T6, imm); emit_jmp_r(ctx, lo(dst), MIPS_R_T6, rel, jmp); } if (finish_jmp(ctx, jmp, off) < 0) goto toofar; break; /* PC += off if dst == src */ /* PC += off if dst != src */ /* PC += off if dst & src */ /* PC += off if dst > src */ /* PC += off if dst >= src */ /* PC += off if dst < src */ /* PC += off if dst <= src */ /* PC += off if dst > src (signed) */ /* PC += off if dst >= src (signed) */ /* PC += off if dst < src (signed) */ /* PC += off if dst <= src (signed) */ case BPF_JMP | BPF_JEQ | BPF_X: case BPF_JMP | BPF_JNE | BPF_X: case BPF_JMP | BPF_JSET | BPF_X: case BPF_JMP | BPF_JGT | BPF_X: case BPF_JMP | BPF_JGE | BPF_X: case BPF_JMP | BPF_JLT | BPF_X: case BPF_JMP | BPF_JLE | BPF_X: case BPF_JMP | BPF_JSGT | BPF_X: case BPF_JMP | BPF_JSGE | BPF_X: case BPF_JMP | BPF_JSLT | BPF_X: case BPF_JMP | BPF_JSLE | BPF_X: if (off == 0) break; setup_jmp_r(ctx, dst == src, BPF_OP(code), off, &jmp, &rel); emit_jmp_r64(ctx, dst, src, rel, jmp); if (finish_jmp(ctx, jmp, off) < 0) goto toofar; break; /* PC += off if dst == imm */ /* PC += off if dst != imm */ /* PC += off if dst & imm */ /* PC += off if dst > imm */ /* PC += off if dst >= imm */ /* PC += off if dst < imm */ /* PC += off if dst <= imm */ /* PC += off if dst > imm (signed) */ /* PC += off if dst >= imm (signed) */ /* PC += off if dst < imm (signed) */ /* PC += off if dst <= imm (signed) */ case BPF_JMP | BPF_JEQ | BPF_K: case BPF_JMP | BPF_JNE | BPF_K: case BPF_JMP | BPF_JSET | BPF_K: case BPF_JMP | BPF_JGT | BPF_K: case BPF_JMP | BPF_JGE | BPF_K: case BPF_JMP | BPF_JLT | BPF_K: case BPF_JMP | BPF_JLE | BPF_K: case BPF_JMP | BPF_JSGT | BPF_K: case BPF_JMP | BPF_JSGE | BPF_K: case BPF_JMP | BPF_JSLT | BPF_K: case BPF_JMP | BPF_JSLE | BPF_K: if (off == 0) break; setup_jmp_i(ctx, imm, 64, BPF_OP(code), off, &jmp, &rel); emit_jmp_i64(ctx, dst, imm, rel, jmp); if (finish_jmp(ctx, jmp, off) < 0) goto toofar; break; /* PC += off */ case BPF_JMP | BPF_JA: if (off == 0) break; if (emit_ja(ctx, off) < 0) goto toofar; break; /* Tail call */ case BPF_JMP | BPF_TAIL_CALL: if (emit_tail_call(ctx) < 0) goto invalid; break; /* Function call */ case BPF_JMP | BPF_CALL: if (emit_call(ctx, insn) < 0) goto invalid; break; /* Function return */ case BPF_JMP | BPF_EXIT: /* * Optimization: when last instruction is EXIT * simply continue to epilogue. */ if (ctx->bpf_index == ctx->program->len - 1) break; if (emit_exit(ctx) < 0) goto toofar; break; default: invalid: pr_err_once("unknown opcode %02x\n", code); return -EINVAL; notyet: pr_info_once("*** NOT YET: opcode %02x ***\n", code); return -EFAULT; toofar: pr_info_once("*** TOO FAR: jump at %u opcode %02x ***\n", ctx->bpf_index, code); return -E2BIG; } return 0; }