/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 2003 Ralf Baechle * Copyright (C) 1999, 2000, 2001 Silicon Graphics, Inc. */ #ifndef _ASM_PGTABLE_32_H #define _ASM_PGTABLE_32_H #include #include #include #include #include #include #ifdef CONFIG_HIGHMEM #include #endif /* * Regarding 32-bit MIPS huge page support (and the tradeoff it entails): * * We use the same huge page sizes as 64-bit MIPS. Assuming a 4KB page size, * our 2-level table layout would normally have a PGD entry cover a contiguous * 4MB virtual address region (pointing to a 4KB PTE page of 1,024 32-bit pte_t * pointers, each pointing to a 4KB physical page). The problem is that 4MB, * spanning both halves of a TLB EntryLo0,1 pair, requires 2MB hardware page * support, not one of the standard supported sizes (1MB,4MB,16MB,...). * To correct for this, when huge pages are enabled, we halve the number of * pointers a PTE page holds, making its last half go to waste. Correspondingly, * we double the number of PGD pages. Overall, page table memory overhead * increases to match 64-bit MIPS, but PTE lookups remain CPU cache-friendly. * * NOTE: We don't yet support huge pages if extended-addressing is enabled * (i.e. EVA, XPA, 36-bit Alchemy/Netlogic). */ extern int temp_tlb_entry; /* * - add_temporary_entry() add a temporary TLB entry. We use TLB entries * starting at the top and working down. This is for populating the * TLB before trap_init() puts the TLB miss handler in place. It * should be used only for entries matching the actual page tables, * to prevent inconsistencies. */ extern int add_temporary_entry(unsigned long entrylo0, unsigned long entrylo1, unsigned long entryhi, unsigned long pagemask); /* * Basically we have the same two-level (which is the logical three level * Linux page table layout folded) page tables as the i386. Some day * when we have proper page coloring support we can have a 1% quicker * tlb refill handling mechanism, but for now it is a bit slower but * works even with the cache aliasing problem the R4k and above have. */ /* PGDIR_SHIFT determines what a third-level page table entry can map */ #if defined(CONFIG_MIPS_HUGE_TLB_SUPPORT) && !defined(CONFIG_PHYS_ADDR_T_64BIT) # define PGDIR_SHIFT (2 * PAGE_SHIFT - PTE_T_LOG2 - 1) #else # define PGDIR_SHIFT (2 * PAGE_SHIFT - PTE_T_LOG2) #endif #define PGDIR_SIZE (1UL << PGDIR_SHIFT) #define PGDIR_MASK (~(PGDIR_SIZE-1)) /* * Entries per page directory level: we use two-level, so * we don't really have any PUD/PMD directory physically. */ #if defined(CONFIG_MIPS_HUGE_TLB_SUPPORT) && !defined(CONFIG_PHYS_ADDR_T_64BIT) # define __PGD_TABLE_ORDER (32 - 3 * PAGE_SHIFT + PGD_T_LOG2 + PTE_T_LOG2 + 1) #else # define __PGD_TABLE_ORDER (32 - 3 * PAGE_SHIFT + PGD_T_LOG2 + PTE_T_LOG2) #endif #define PGD_TABLE_ORDER (__PGD_TABLE_ORDER >= 0 ? __PGD_TABLE_ORDER : 0) #define PUD_TABLE_ORDER aieeee_attempt_to_allocate_pud #define PMD_TABLE_ORDER aieeee_attempt_to_allocate_pmd #define PTRS_PER_PGD (USER_PTRS_PER_PGD * 2) #if defined(CONFIG_MIPS_HUGE_TLB_SUPPORT) && !defined(CONFIG_PHYS_ADDR_T_64BIT) # define PTRS_PER_PTE (PAGE_SIZE / sizeof(pte_t) / 2) #else # define PTRS_PER_PTE (PAGE_SIZE / sizeof(pte_t)) #endif #define USER_PTRS_PER_PGD (0x80000000UL/PGDIR_SIZE) #define VMALLOC_START MAP_BASE #define PKMAP_END ((FIXADDR_START) & ~((LAST_PKMAP << PAGE_SHIFT)-1)) #define PKMAP_BASE (PKMAP_END - PAGE_SIZE * LAST_PKMAP) #ifdef CONFIG_HIGHMEM # define VMALLOC_END (PKMAP_BASE-2*PAGE_SIZE) #else # define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE) #endif #ifdef CONFIG_PHYS_ADDR_T_64BIT #define pte_ERROR(e) \ printk("%s:%d: bad pte %016Lx.\n", __FILE__, __LINE__, pte_val(e)) #else #define pte_ERROR(e) \ printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e)) #endif #define pgd_ERROR(e) \ printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e)) extern void load_pgd(unsigned long pg_dir); extern pte_t invalid_pte_table[PTRS_PER_PTE]; /* * Empty pgd/pmd entries point to the invalid_pte_table. */ static inline int pmd_none(pmd_t pmd) { return pmd_val(pmd) == (unsigned long) invalid_pte_table; } static inline int pmd_bad(pmd_t pmd) { #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT /* pmd_huge(pmd) but inline */ if (unlikely(pmd_val(pmd) & _PAGE_HUGE)) return 0; #endif if (unlikely(pmd_val(pmd) & ~PAGE_MASK)) return 1; return 0; } static inline int pmd_present(pmd_t pmd) { return pmd_val(pmd) != (unsigned long) invalid_pte_table; } static inline void pmd_clear(pmd_t *pmdp) { pmd_val(*pmdp) = ((unsigned long) invalid_pte_table); } #if defined(CONFIG_XPA) #define MAX_POSSIBLE_PHYSMEM_BITS 40 #define pte_pfn(x) (((unsigned long)((x).pte_high >> PFN_PTE_SHIFT)) | (unsigned long)((x).pte_low << _PAGE_PRESENT_SHIFT)) static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot) { pte_t pte; pte.pte_low = (pfn >> _PAGE_PRESENT_SHIFT) | (pgprot_val(prot) & ~_PFNX_MASK); pte.pte_high = (pfn << PFN_PTE_SHIFT) | (pgprot_val(prot) & ~_PFN_MASK); return pte; } #elif defined(CONFIG_PHYS_ADDR_T_64BIT) && defined(CONFIG_CPU_MIPS32) #define MAX_POSSIBLE_PHYSMEM_BITS 36 #define pte_pfn(x) ((unsigned long)((x).pte_high >> 6)) static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot) { pte_t pte; pte.pte_high = (pfn << 6) | (pgprot_val(prot) & 0x3f); pte.pte_low = pgprot_val(prot); return pte; } #else #define MAX_POSSIBLE_PHYSMEM_BITS 32 #define pte_pfn(x) ((unsigned long)((x).pte >> PFN_PTE_SHIFT)) #define pfn_pte(pfn, prot) __pte(((unsigned long long)(pfn) << PFN_PTE_SHIFT) | pgprot_val(prot)) #define pfn_pmd(pfn, prot) __pmd(((unsigned long long)(pfn) << PFN_PTE_SHIFT) | pgprot_val(prot)) #endif /* defined(CONFIG_PHYS_ADDR_T_64BIT) && defined(CONFIG_CPU_MIPS32) */ #define pte_page(x) pfn_to_page(pte_pfn(x)) /* * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that * are !pte_none() && !pte_present(). */ #if defined(CONFIG_CPU_R3K_TLB) /* * Format of swap PTEs: * * 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 * <----------- offset ------------> < type -> V G E 0 0 0 0 0 0 P * * E is the exclusive marker that is not stored in swap entries. * _PAGE_PRESENT (P), _PAGE_VALID (V) and_PAGE_GLOBAL (G) have to remain * unused. */ #define __swp_type(x) (((x).val >> 10) & 0x1f) #define __swp_offset(x) ((x).val >> 15) #define __swp_entry(type, offset) ((swp_entry_t) { (((type) & 0x1f) << 10) | ((offset) << 15) }) #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) /* We borrow bit 7 to store the exclusive marker in swap PTEs. */ #define _PAGE_SWP_EXCLUSIVE (1 << 7) #else #if defined(CONFIG_XPA) /* * Format of swap PTEs: * * 6 6 6 6 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 * 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 * 0 0 0 0 0 0 E P <------------------ zeroes -------------------> * * 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 * <----------------- offset ------------------> < type -> V G 0 0 * * E is the exclusive marker that is not stored in swap entries. * _PAGE_PRESENT (P), _PAGE_VALID (V) and_PAGE_GLOBAL (G) have to remain * unused. */ #define __swp_type(x) (((x).val >> 4) & 0x1f) #define __swp_offset(x) ((x).val >> 9) #define __swp_entry(type, offset) ((swp_entry_t) { (((type) & 0x1f) << 4) | ((offset) << 9) }) #define __pte_to_swp_entry(pte) ((swp_entry_t) { (pte).pte_high }) #define __swp_entry_to_pte(x) ((pte_t) { 0, (x).val }) /* * We borrow bit 57 (bit 25 in the low PTE) to store the exclusive marker in * swap PTEs. */ #define _PAGE_SWP_EXCLUSIVE (1 << 25) #elif defined(CONFIG_PHYS_ADDR_T_64BIT) && defined(CONFIG_CPU_MIPS32) /* * Format of swap PTEs: * * 6 6 6 6 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 * 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 * <------------------ zeroes -------------------> E P 0 0 0 0 0 0 * * 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 * <------------------- offset --------------------> < type -> V G * * E is the exclusive marker that is not stored in swap entries. * _PAGE_PRESENT (P), _PAGE_VALID (V) and_PAGE_GLOBAL (G) have to remain * unused. */ #define __swp_type(x) (((x).val >> 2) & 0x1f) #define __swp_offset(x) ((x).val >> 7) #define __swp_entry(type, offset) ((swp_entry_t) { (((type) & 0x1f) << 2) | ((offset) << 7) }) #define __pte_to_swp_entry(pte) ((swp_entry_t) { (pte).pte_high }) #define __swp_entry_to_pte(x) ((pte_t) { 0, (x).val }) /* * We borrow bit 39 (bit 7 in the low PTE) to store the exclusive marker in swap * PTEs. */ #define _PAGE_SWP_EXCLUSIVE (1 << 7) #else /* * Format of swap PTEs: * * 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 * <------------- offset --------------> < type -> 0 0 0 0 0 0 E P * * E is the exclusive marker that is not stored in swap entries. * _PAGE_PRESENT (P), _PAGE_VALID (V) and_PAGE_GLOBAL (G) have to remain * unused. The location of V and G varies. */ #define __swp_type(x) (((x).val >> 8) & 0x1f) #define __swp_offset(x) ((x).val >> 13) #define __swp_entry(type, offset) ((swp_entry_t) { ((type) << 8) | ((offset) << 13) }) #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) /* We borrow bit 1 to store the exclusive marker in swap PTEs. */ #define _PAGE_SWP_EXCLUSIVE (1 << 1) #endif /* defined(CONFIG_PHYS_ADDR_T_64BIT) && defined(CONFIG_CPU_MIPS32) */ #endif /* defined(CONFIG_CPU_R3K_TLB) */ #endif /* _ASM_PGTABLE_32_H */