// SPDX-License-Identifier: GPL-2.0-only /* * This file contains kasan initialization code for ARM64. * * Copyright (c) 2015 Samsung Electronics Co., Ltd. * Author: Andrey Ryabinin */ #define pr_fmt(fmt) "kasan: " fmt #include #include #include #include #include #include #include #include #include #include #include #include #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS) static pgd_t tmp_pg_dir[PTRS_PER_PTE] __initdata __aligned(PAGE_SIZE); /* * The p*d_populate functions call virt_to_phys implicitly so they can't be used * directly on kernel symbols (bm_p*d). All the early functions are called too * early to use lm_alias so __p*d_populate functions must be used to populate * with the physical address from __pa_symbol. */ static phys_addr_t __init kasan_alloc_zeroed_page(int node) { void *p = memblock_alloc_try_nid(PAGE_SIZE, PAGE_SIZE, __pa(MAX_DMA_ADDRESS), MEMBLOCK_ALLOC_NOLEAKTRACE, node); if (!p) panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%llx\n", __func__, PAGE_SIZE, PAGE_SIZE, node, __pa(MAX_DMA_ADDRESS)); return __pa(p); } static phys_addr_t __init kasan_alloc_raw_page(int node) { void *p = memblock_alloc_try_nid_raw(PAGE_SIZE, PAGE_SIZE, __pa(MAX_DMA_ADDRESS), MEMBLOCK_ALLOC_NOLEAKTRACE, node); if (!p) panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%llx\n", __func__, PAGE_SIZE, PAGE_SIZE, node, __pa(MAX_DMA_ADDRESS)); return __pa(p); } static pte_t *__init kasan_pte_offset(pmd_t *pmdp, unsigned long addr, int node, bool early) { if (pmd_none(READ_ONCE(*pmdp))) { phys_addr_t pte_phys = early ? __pa_symbol(kasan_early_shadow_pte) : kasan_alloc_zeroed_page(node); __pmd_populate(pmdp, pte_phys, PMD_TYPE_TABLE); } return early ? pte_offset_kimg(pmdp, addr) : pte_offset_kernel(pmdp, addr); } static pmd_t *__init kasan_pmd_offset(pud_t *pudp, unsigned long addr, int node, bool early) { if (pud_none(READ_ONCE(*pudp))) { phys_addr_t pmd_phys = early ? __pa_symbol(kasan_early_shadow_pmd) : kasan_alloc_zeroed_page(node); __pud_populate(pudp, pmd_phys, PUD_TYPE_TABLE); } return early ? pmd_offset_kimg(pudp, addr) : pmd_offset(pudp, addr); } static pud_t *__init kasan_pud_offset(p4d_t *p4dp, unsigned long addr, int node, bool early) { if (p4d_none(READ_ONCE(*p4dp))) { phys_addr_t pud_phys = early ? __pa_symbol(kasan_early_shadow_pud) : kasan_alloc_zeroed_page(node); __p4d_populate(p4dp, pud_phys, P4D_TYPE_TABLE); } return early ? pud_offset_kimg(p4dp, addr) : pud_offset(p4dp, addr); } static p4d_t *__init kasan_p4d_offset(pgd_t *pgdp, unsigned long addr, int node, bool early) { if (pgd_none(READ_ONCE(*pgdp))) { phys_addr_t p4d_phys = early ? __pa_symbol(kasan_early_shadow_p4d) : kasan_alloc_zeroed_page(node); __pgd_populate(pgdp, p4d_phys, PGD_TYPE_TABLE); } return early ? p4d_offset_kimg(pgdp, addr) : p4d_offset(pgdp, addr); } static void __init kasan_pte_populate(pmd_t *pmdp, unsigned long addr, unsigned long end, int node, bool early) { unsigned long next; pte_t *ptep = kasan_pte_offset(pmdp, addr, node, early); do { phys_addr_t page_phys = early ? __pa_symbol(kasan_early_shadow_page) : kasan_alloc_raw_page(node); if (!early) memset(__va(page_phys), KASAN_SHADOW_INIT, PAGE_SIZE); next = addr + PAGE_SIZE; __set_pte(ptep, pfn_pte(__phys_to_pfn(page_phys), PAGE_KERNEL)); } while (ptep++, addr = next, addr != end && pte_none(__ptep_get(ptep))); } static void __init kasan_pmd_populate(pud_t *pudp, unsigned long addr, unsigned long end, int node, bool early) { unsigned long next; pmd_t *pmdp = kasan_pmd_offset(pudp, addr, node, early); do { next = pmd_addr_end(addr, end); kasan_pte_populate(pmdp, addr, next, node, early); } while (pmdp++, addr = next, addr != end && pmd_none(READ_ONCE(*pmdp))); } static void __init kasan_pud_populate(p4d_t *p4dp, unsigned long addr, unsigned long end, int node, bool early) { unsigned long next; pud_t *pudp = kasan_pud_offset(p4dp, addr, node, early); do { next = pud_addr_end(addr, end); kasan_pmd_populate(pudp, addr, next, node, early); } while (pudp++, addr = next, addr != end && pud_none(READ_ONCE(*pudp))); } static void __init kasan_p4d_populate(pgd_t *pgdp, unsigned long addr, unsigned long end, int node, bool early) { unsigned long next; p4d_t *p4dp = kasan_p4d_offset(pgdp, addr, node, early); do { next = p4d_addr_end(addr, end); kasan_pud_populate(p4dp, addr, next, node, early); } while (p4dp++, addr = next, addr != end && p4d_none(READ_ONCE(*p4dp))); } static void __init kasan_pgd_populate(unsigned long addr, unsigned long end, int node, bool early) { unsigned long next; pgd_t *pgdp; pgdp = pgd_offset_k(addr); do { next = pgd_addr_end(addr, end); kasan_p4d_populate(pgdp, addr, next, node, early); } while (pgdp++, addr = next, addr != end); } #if defined(CONFIG_ARM64_64K_PAGES) || CONFIG_PGTABLE_LEVELS > 4 #define SHADOW_ALIGN P4D_SIZE #else #define SHADOW_ALIGN PUD_SIZE #endif /* * Return whether 'addr' is aligned to the size covered by a root level * descriptor. */ static bool __init root_level_aligned(u64 addr) { int shift = (ARM64_HW_PGTABLE_LEVELS(vabits_actual) - 1) * (PAGE_SHIFT - 3); return (addr % (PAGE_SIZE << shift)) == 0; } /* The early shadow maps everything to a single page of zeroes */ asmlinkage void __init kasan_early_init(void) { BUILD_BUG_ON(KASAN_SHADOW_OFFSET != KASAN_SHADOW_END - (1UL << (64 - KASAN_SHADOW_SCALE_SHIFT))); BUILD_BUG_ON(!IS_ALIGNED(_KASAN_SHADOW_START(VA_BITS), SHADOW_ALIGN)); BUILD_BUG_ON(!IS_ALIGNED(_KASAN_SHADOW_START(VA_BITS_MIN), SHADOW_ALIGN)); BUILD_BUG_ON(!IS_ALIGNED(KASAN_SHADOW_END, SHADOW_ALIGN)); if (!root_level_aligned(KASAN_SHADOW_START)) { /* * The start address is misaligned, and so the next level table * will be shared with the linear region. This can happen with * 4 or 5 level paging, so install a generic pte_t[] as the * next level. This prevents the kasan_pgd_populate call below * from inserting an entry that refers to the shared KASAN zero * shadow pud_t[]/p4d_t[], which could end up getting corrupted * when the linear region is mapped. */ static pte_t tbl[PTRS_PER_PTE] __page_aligned_bss; pgd_t *pgdp = pgd_offset_k(KASAN_SHADOW_START); set_pgd(pgdp, __pgd(__pa_symbol(tbl) | PGD_TYPE_TABLE)); } kasan_pgd_populate(KASAN_SHADOW_START, KASAN_SHADOW_END, NUMA_NO_NODE, true); } /* Set up full kasan mappings, ensuring that the mapped pages are zeroed */ static void __init kasan_map_populate(unsigned long start, unsigned long end, int node) { kasan_pgd_populate(start & PAGE_MASK, PAGE_ALIGN(end), node, false); } /* * Return the descriptor index of 'addr' in the root level table */ static int __init root_level_idx(u64 addr) { /* * On 64k pages, the TTBR1 range root tables are extended for 52-bit * virtual addressing, and TTBR1 will simply point to the pgd_t entry * that covers the start of the 48-bit addressable VA space if LVA is * not implemented. This means we need to index the table as usual, * instead of masking off bits based on vabits_actual. */ u64 vabits = IS_ENABLED(CONFIG_ARM64_64K_PAGES) ? VA_BITS : vabits_actual; int shift = (ARM64_HW_PGTABLE_LEVELS(vabits) - 1) * (PAGE_SHIFT - 3); return (addr & ~_PAGE_OFFSET(vabits)) >> (shift + PAGE_SHIFT); } /* * Clone a next level table from swapper_pg_dir into tmp_pg_dir */ static void __init clone_next_level(u64 addr, pgd_t *tmp_pg_dir, pud_t *pud) { int idx = root_level_idx(addr); pgd_t pgd = READ_ONCE(swapper_pg_dir[idx]); pud_t *pudp = (pud_t *)__phys_to_kimg(__pgd_to_phys(pgd)); memcpy(pud, pudp, PAGE_SIZE); tmp_pg_dir[idx] = __pgd(__phys_to_pgd_val(__pa_symbol(pud)) | PUD_TYPE_TABLE); } /* * Return the descriptor index of 'addr' in the next level table */ static int __init next_level_idx(u64 addr) { int shift = (ARM64_HW_PGTABLE_LEVELS(vabits_actual) - 2) * (PAGE_SHIFT - 3); return (addr >> (shift + PAGE_SHIFT)) % PTRS_PER_PTE; } /* * Dereference the table descriptor at 'pgd_idx' and clear the entries from * 'start' to 'end' (exclusive) from the table. */ static void __init clear_next_level(int pgd_idx, int start, int end) { pgd_t pgd = READ_ONCE(swapper_pg_dir[pgd_idx]); pud_t *pudp = (pud_t *)__phys_to_kimg(__pgd_to_phys(pgd)); memset(&pudp[start], 0, (end - start) * sizeof(pud_t)); } static void __init clear_shadow(u64 start, u64 end) { int l = root_level_idx(start), m = root_level_idx(end); if (!root_level_aligned(start)) clear_next_level(l++, next_level_idx(start), PTRS_PER_PTE); if (!root_level_aligned(end)) clear_next_level(m, 0, next_level_idx(end)); memset(&swapper_pg_dir[l], 0, (m - l) * sizeof(pgd_t)); } static void __init kasan_init_shadow(void) { static pud_t pud[2][PTRS_PER_PUD] __initdata __aligned(PAGE_SIZE); u64 kimg_shadow_start, kimg_shadow_end; u64 mod_shadow_start; u64 vmalloc_shadow_end; phys_addr_t pa_start, pa_end; u64 i; kimg_shadow_start = (u64)kasan_mem_to_shadow(KERNEL_START) & PAGE_MASK; kimg_shadow_end = PAGE_ALIGN((u64)kasan_mem_to_shadow(KERNEL_END)); mod_shadow_start = (u64)kasan_mem_to_shadow((void *)MODULES_VADDR); vmalloc_shadow_end = (u64)kasan_mem_to_shadow((void *)VMALLOC_END); /* * We are going to perform proper setup of shadow memory. * At first we should unmap early shadow (clear_pgds() call below). * However, instrumented code couldn't execute without shadow memory. * tmp_pg_dir used to keep early shadow mapped until full shadow * setup will be finished. */ memcpy(tmp_pg_dir, swapper_pg_dir, sizeof(tmp_pg_dir)); /* * If the start or end address of the shadow region is not aligned to * the root level size, we have to allocate a temporary next-level table * in each case, clone the next level of descriptors, and install the * table into tmp_pg_dir. Note that with 5 levels of paging, the next * level will in fact be p4d_t, but that makes no difference in this * case. */ if (!root_level_aligned(KASAN_SHADOW_START)) clone_next_level(KASAN_SHADOW_START, tmp_pg_dir, pud[0]); if (!root_level_aligned(KASAN_SHADOW_END)) clone_next_level(KASAN_SHADOW_END, tmp_pg_dir, pud[1]); dsb(ishst); cpu_replace_ttbr1(lm_alias(tmp_pg_dir)); clear_shadow(KASAN_SHADOW_START, KASAN_SHADOW_END); kasan_map_populate(kimg_shadow_start, kimg_shadow_end, early_pfn_to_nid(virt_to_pfn(lm_alias(KERNEL_START)))); kasan_populate_early_shadow(kasan_mem_to_shadow((void *)PAGE_END), (void *)mod_shadow_start); BUILD_BUG_ON(VMALLOC_START != MODULES_END); kasan_populate_early_shadow((void *)vmalloc_shadow_end, (void *)KASAN_SHADOW_END); for_each_mem_range(i, &pa_start, &pa_end) { void *start = (void *)__phys_to_virt(pa_start); void *end = (void *)__phys_to_virt(pa_end); if (start >= end) break; kasan_map_populate((unsigned long)kasan_mem_to_shadow(start), (unsigned long)kasan_mem_to_shadow(end), early_pfn_to_nid(virt_to_pfn(start))); } /* * KAsan may reuse the contents of kasan_early_shadow_pte directly, * so we should make sure that it maps the zero page read-only. */ for (i = 0; i < PTRS_PER_PTE; i++) __set_pte(&kasan_early_shadow_pte[i], pfn_pte(sym_to_pfn(kasan_early_shadow_page), PAGE_KERNEL_RO)); memset(kasan_early_shadow_page, KASAN_SHADOW_INIT, PAGE_SIZE); cpu_replace_ttbr1(lm_alias(swapper_pg_dir)); } static void __init kasan_init_depth(void) { init_task.kasan_depth = 0; } #ifdef CONFIG_KASAN_VMALLOC void __init kasan_populate_early_vm_area_shadow(void *start, unsigned long size) { unsigned long shadow_start, shadow_end; if (!is_vmalloc_or_module_addr(start)) return; shadow_start = (unsigned long)kasan_mem_to_shadow(start); shadow_start = ALIGN_DOWN(shadow_start, PAGE_SIZE); shadow_end = (unsigned long)kasan_mem_to_shadow(start + size); shadow_end = ALIGN(shadow_end, PAGE_SIZE); kasan_map_populate(shadow_start, shadow_end, NUMA_NO_NODE); } #endif void __init kasan_init(void) { kasan_init_shadow(); kasan_init_depth(); #if defined(CONFIG_KASAN_GENERIC) /* * Generic KASAN is now fully initialized. * Software and Hardware Tag-Based modes still require * kasan_init_sw_tags() and kasan_init_hw_tags() correspondingly. */ pr_info("KernelAddressSanitizer initialized (generic)\n"); #endif } #endif /* CONFIG_KASAN_GENERIC || CONFIG_KASAN_SW_TAGS */