/* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright (C) 2012,2013 - ARM Ltd * Author: Marc Zyngier */ #ifndef __ARM64_KVM_MMU_H__ #define __ARM64_KVM_MMU_H__ #include #include #include #include /* * As ARMv8.0 only has the TTBR0_EL2 register, we cannot express * "negative" addresses. This makes it impossible to directly share * mappings with the kernel. * * Instead, give the HYP mode its own VA region at a fixed offset from * the kernel by just masking the top bits (which are all ones for a * kernel address). We need to find out how many bits to mask. * * We want to build a set of page tables that cover both parts of the * idmap (the trampoline page used to initialize EL2), and our normal * runtime VA space, at the same time. * * Given that the kernel uses VA_BITS for its entire address space, * and that half of that space (VA_BITS - 1) is used for the linear * mapping, we can also limit the EL2 space to (VA_BITS - 1). * * The main question is "Within the VA_BITS space, does EL2 use the * top or the bottom half of that space to shadow the kernel's linear * mapping?". As we need to idmap the trampoline page, this is * determined by the range in which this page lives. * * If the page is in the bottom half, we have to use the top half. If * the page is in the top half, we have to use the bottom half: * * T = __pa_symbol(__hyp_idmap_text_start) * if (T & BIT(VA_BITS - 1)) * HYP_VA_MIN = 0 //idmap in upper half * else * HYP_VA_MIN = 1 << (VA_BITS - 1) * HYP_VA_MAX = HYP_VA_MIN + (1 << (VA_BITS - 1)) - 1 * * When using VHE, there are no separate hyp mappings and all KVM * functionality is already mapped as part of the main kernel * mappings, and none of this applies in that case. */ #ifdef __ASSEMBLY__ #include /* * Convert a hypervisor VA to a PA * reg: hypervisor address to be converted in place * tmp: temporary register */ .macro hyp_pa reg, tmp ldr_l \tmp, hyp_physvirt_offset add \reg, \reg, \tmp .endm /* * Convert a hypervisor VA to a kernel image address * reg: hypervisor address to be converted in place * tmp: temporary register * * The actual code generation takes place in kvm_get_kimage_voffset, and * the instructions below are only there to reserve the space and * perform the register allocation (kvm_get_kimage_voffset uses the * specific registers encoded in the instructions). */ .macro hyp_kimg_va reg, tmp /* Convert hyp VA -> PA. */ hyp_pa \reg, \tmp /* Load kimage_voffset. */ alternative_cb ARM64_ALWAYS_SYSTEM, kvm_get_kimage_voffset movz \tmp, #0 movk \tmp, #0, lsl #16 movk \tmp, #0, lsl #32 movk \tmp, #0, lsl #48 alternative_cb_end /* Convert PA -> kimg VA. */ add \reg, \reg, \tmp .endm #else #include #include #include #include #include #include #include void kvm_update_va_mask(struct alt_instr *alt, __le32 *origptr, __le32 *updptr, int nr_inst); void kvm_compute_layout(void); void kvm_apply_hyp_relocations(void); #define __hyp_pa(x) (((phys_addr_t)(x)) + hyp_physvirt_offset) /* * Convert a kernel VA into a HYP VA. * * Can be called from hyp or non-hyp context. * * The actual code generation takes place in kvm_update_va_mask(), and * the instructions below are only there to reserve the space and * perform the register allocation (kvm_update_va_mask() uses the * specific registers encoded in the instructions). */ static __always_inline unsigned long __kern_hyp_va(unsigned long v) { /* * This #ifndef is an optimisation for when this is called from VHE hyp * context. When called from a VHE non-hyp context, kvm_update_va_mask() will * replace the instructions with `nop`s. */ #ifndef __KVM_VHE_HYPERVISOR__ asm volatile(ALTERNATIVE_CB("and %0, %0, #1\n" /* mask with va_mask */ "ror %0, %0, #1\n" /* rotate to the first tag bit */ "add %0, %0, #0\n" /* insert the low 12 bits of the tag */ "add %0, %0, #0, lsl 12\n" /* insert the top 12 bits of the tag */ "ror %0, %0, #63\n", /* rotate back */ ARM64_ALWAYS_SYSTEM, kvm_update_va_mask) : "+r" (v)); #endif return v; } #define kern_hyp_va(v) ((typeof(v))(__kern_hyp_va((unsigned long)(v)))) /* * We currently support using a VM-specified IPA size. For backward * compatibility, the default IPA size is fixed to 40bits. */ #define KVM_PHYS_SHIFT (40) #define kvm_phys_shift(mmu) VTCR_EL2_IPA((mmu)->vtcr) #define kvm_phys_size(mmu) (_AC(1, ULL) << kvm_phys_shift(mmu)) #define kvm_phys_mask(mmu) (kvm_phys_size(mmu) - _AC(1, ULL)) #include #include int kvm_share_hyp(void *from, void *to); void kvm_unshare_hyp(void *from, void *to); int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot); int __create_hyp_mappings(unsigned long start, unsigned long size, unsigned long phys, enum kvm_pgtable_prot prot); int hyp_alloc_private_va_range(size_t size, unsigned long *haddr); int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size, void __iomem **kaddr, void __iomem **haddr); int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size, void **haddr); int create_hyp_stack(phys_addr_t phys_addr, unsigned long *haddr); void __init free_hyp_pgds(void); void stage2_unmap_vm(struct kvm *kvm); int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu, unsigned long type); void kvm_uninit_stage2_mmu(struct kvm *kvm); void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu); int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa, phys_addr_t pa, unsigned long size, bool writable); int kvm_handle_guest_abort(struct kvm_vcpu *vcpu); phys_addr_t kvm_mmu_get_httbr(void); phys_addr_t kvm_get_idmap_vector(void); int __init kvm_mmu_init(u32 *hyp_va_bits); static inline void *__kvm_vector_slot2addr(void *base, enum arm64_hyp_spectre_vector slot) { int idx = slot - (slot != HYP_VECTOR_DIRECT); return base + (idx * SZ_2K); } struct kvm; #define kvm_flush_dcache_to_poc(a,l) \ dcache_clean_inval_poc((unsigned long)(a), (unsigned long)(a)+(l)) static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu) { u64 cache_bits = SCTLR_ELx_M | SCTLR_ELx_C; int reg; if (vcpu_is_el2(vcpu)) reg = SCTLR_EL2; else reg = SCTLR_EL1; return (vcpu_read_sys_reg(vcpu, reg) & cache_bits) == cache_bits; } static inline void __clean_dcache_guest_page(void *va, size_t size) { /* * With FWB, we ensure that the guest always accesses memory using * cacheable attributes, and we don't have to clean to PoC when * faulting in pages. Furthermore, FWB implies IDC, so cleaning to * PoU is not required either in this case. */ if (cpus_have_final_cap(ARM64_HAS_STAGE2_FWB)) return; kvm_flush_dcache_to_poc(va, size); } static inline size_t __invalidate_icache_max_range(void) { u8 iminline; u64 ctr; asm volatile(ALTERNATIVE_CB("movz %0, #0\n" "movk %0, #0, lsl #16\n" "movk %0, #0, lsl #32\n" "movk %0, #0, lsl #48\n", ARM64_ALWAYS_SYSTEM, kvm_compute_final_ctr_el0) : "=r" (ctr)); iminline = SYS_FIELD_GET(CTR_EL0, IminLine, ctr) + 2; return MAX_DVM_OPS << iminline; } static inline void __invalidate_icache_guest_page(void *va, size_t size) { /* * Blow the whole I-cache if it is aliasing (i.e. VIPT) or the * invalidation range exceeds our arbitrary limit on invadations by * cache line. */ if (icache_is_aliasing() || size > __invalidate_icache_max_range()) icache_inval_all_pou(); else icache_inval_pou((unsigned long)va, (unsigned long)va + size); } void kvm_set_way_flush(struct kvm_vcpu *vcpu); void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled); static inline unsigned int kvm_get_vmid_bits(void) { int reg = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1); return get_vmid_bits(reg); } /* * We are not in the kvm->srcu critical section most of the time, so we take * the SRCU read lock here. Since we copy the data from the user page, we * can immediately drop the lock again. */ static inline int kvm_read_guest_lock(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) { int srcu_idx = srcu_read_lock(&kvm->srcu); int ret = kvm_read_guest(kvm, gpa, data, len); srcu_read_unlock(&kvm->srcu, srcu_idx); return ret; } static inline int kvm_write_guest_lock(struct kvm *kvm, gpa_t gpa, const void *data, unsigned long len) { int srcu_idx = srcu_read_lock(&kvm->srcu); int ret = kvm_write_guest(kvm, gpa, data, len); srcu_read_unlock(&kvm->srcu, srcu_idx); return ret; } #define kvm_phys_to_vttbr(addr) phys_to_ttbr(addr) /* * When this is (directly or indirectly) used on the TLB invalidation * path, we rely on a previously issued DSB so that page table updates * and VMID reads are correctly ordered. */ static __always_inline u64 kvm_get_vttbr(struct kvm_s2_mmu *mmu) { struct kvm_vmid *vmid = &mmu->vmid; u64 vmid_field, baddr; u64 cnp = system_supports_cnp() ? VTTBR_CNP_BIT : 0; baddr = mmu->pgd_phys; vmid_field = atomic64_read(&vmid->id) << VTTBR_VMID_SHIFT; vmid_field &= VTTBR_VMID_MASK(kvm_arm_vmid_bits); return kvm_phys_to_vttbr(baddr) | vmid_field | cnp; } /* * Must be called from hyp code running at EL2 with an updated VTTBR * and interrupts disabled. */ static __always_inline void __load_stage2(struct kvm_s2_mmu *mmu, struct kvm_arch *arch) { write_sysreg(mmu->vtcr, vtcr_el2); write_sysreg(kvm_get_vttbr(mmu), vttbr_el2); /* * ARM errata 1165522 and 1530923 require the actual execution of the * above before we can switch to the EL1/EL0 translation regime used by * the guest. */ asm(ALTERNATIVE("nop", "isb", ARM64_WORKAROUND_SPECULATIVE_AT)); } static inline struct kvm *kvm_s2_mmu_to_kvm(struct kvm_s2_mmu *mmu) { return container_of(mmu->arch, struct kvm, arch); } #endif /* __ASSEMBLY__ */ #endif /* __ARM64_KVM_MMU_H__ */