/* SPDX-License-Identifier: GPL-2.0-or-later */ /* * SM4 Cipher Algorithm, using ARMv8 Crypto Extensions * as specified in * https://tools.ietf.org/id/draft-ribose-cfrg-sm4-10.html * * Copyright (C) 2022, Alibaba Group. * Copyright (C) 2022 Tianjia Zhang */ #include #include #include #include #include #include #include #include #include #include #include #include #include #define BYTES2BLKS(nbytes) ((nbytes) >> 4) asmlinkage void sm4_ce_expand_key(const u8 *key, u32 *rkey_enc, u32 *rkey_dec, const u32 *fk, const u32 *ck); asmlinkage void sm4_ce_crypt_block(const u32 *rkey, u8 *dst, const u8 *src); asmlinkage void sm4_ce_crypt(const u32 *rkey, u8 *dst, const u8 *src, unsigned int nblks); asmlinkage void sm4_ce_cbc_enc(const u32 *rkey, u8 *dst, const u8 *src, u8 *iv, unsigned int nblocks); asmlinkage void sm4_ce_cbc_dec(const u32 *rkey, u8 *dst, const u8 *src, u8 *iv, unsigned int nblocks); asmlinkage void sm4_ce_cbc_cts_enc(const u32 *rkey, u8 *dst, const u8 *src, u8 *iv, unsigned int nbytes); asmlinkage void sm4_ce_cbc_cts_dec(const u32 *rkey, u8 *dst, const u8 *src, u8 *iv, unsigned int nbytes); asmlinkage void sm4_ce_ctr_enc(const u32 *rkey, u8 *dst, const u8 *src, u8 *iv, unsigned int nblks); asmlinkage void sm4_ce_xts_enc(const u32 *rkey1, u8 *dst, const u8 *src, u8 *tweak, unsigned int nbytes, const u32 *rkey2_enc); asmlinkage void sm4_ce_xts_dec(const u32 *rkey1, u8 *dst, const u8 *src, u8 *tweak, unsigned int nbytes, const u32 *rkey2_enc); asmlinkage void sm4_ce_mac_update(const u32 *rkey_enc, u8 *digest, const u8 *src, unsigned int nblocks, bool enc_before, bool enc_after); EXPORT_SYMBOL(sm4_ce_expand_key); EXPORT_SYMBOL(sm4_ce_crypt_block); EXPORT_SYMBOL(sm4_ce_cbc_enc); struct sm4_xts_ctx { struct sm4_ctx key1; struct sm4_ctx key2; }; struct sm4_mac_tfm_ctx { struct sm4_ctx key; u8 __aligned(8) consts[]; }; struct sm4_mac_desc_ctx { unsigned int len; u8 digest[SM4_BLOCK_SIZE]; }; static int sm4_setkey(struct crypto_skcipher *tfm, const u8 *key, unsigned int key_len) { struct sm4_ctx *ctx = crypto_skcipher_ctx(tfm); if (key_len != SM4_KEY_SIZE) return -EINVAL; kernel_neon_begin(); sm4_ce_expand_key(key, ctx->rkey_enc, ctx->rkey_dec, crypto_sm4_fk, crypto_sm4_ck); kernel_neon_end(); return 0; } static int sm4_xts_setkey(struct crypto_skcipher *tfm, const u8 *key, unsigned int key_len) { struct sm4_xts_ctx *ctx = crypto_skcipher_ctx(tfm); int ret; if (key_len != SM4_KEY_SIZE * 2) return -EINVAL; ret = xts_verify_key(tfm, key, key_len); if (ret) return ret; kernel_neon_begin(); sm4_ce_expand_key(key, ctx->key1.rkey_enc, ctx->key1.rkey_dec, crypto_sm4_fk, crypto_sm4_ck); sm4_ce_expand_key(&key[SM4_KEY_SIZE], ctx->key2.rkey_enc, ctx->key2.rkey_dec, crypto_sm4_fk, crypto_sm4_ck); kernel_neon_end(); return 0; } static int sm4_ecb_do_crypt(struct skcipher_request *req, const u32 *rkey) { struct skcipher_walk walk; unsigned int nbytes; int err; err = skcipher_walk_virt(&walk, req, false); while ((nbytes = walk.nbytes) > 0) { const u8 *src = walk.src.virt.addr; u8 *dst = walk.dst.virt.addr; unsigned int nblks; kernel_neon_begin(); nblks = BYTES2BLKS(nbytes); if (nblks) { sm4_ce_crypt(rkey, dst, src, nblks); nbytes -= nblks * SM4_BLOCK_SIZE; } kernel_neon_end(); err = skcipher_walk_done(&walk, nbytes); } return err; } static int sm4_ecb_encrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct sm4_ctx *ctx = crypto_skcipher_ctx(tfm); return sm4_ecb_do_crypt(req, ctx->rkey_enc); } static int sm4_ecb_decrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct sm4_ctx *ctx = crypto_skcipher_ctx(tfm); return sm4_ecb_do_crypt(req, ctx->rkey_dec); } static int sm4_cbc_crypt(struct skcipher_request *req, struct sm4_ctx *ctx, bool encrypt) { struct skcipher_walk walk; unsigned int nbytes; int err; err = skcipher_walk_virt(&walk, req, false); if (err) return err; while ((nbytes = walk.nbytes) > 0) { const u8 *src = walk.src.virt.addr; u8 *dst = walk.dst.virt.addr; unsigned int nblocks; nblocks = nbytes / SM4_BLOCK_SIZE; if (nblocks) { kernel_neon_begin(); if (encrypt) sm4_ce_cbc_enc(ctx->rkey_enc, dst, src, walk.iv, nblocks); else sm4_ce_cbc_dec(ctx->rkey_dec, dst, src, walk.iv, nblocks); kernel_neon_end(); } err = skcipher_walk_done(&walk, nbytes % SM4_BLOCK_SIZE); } return err; } static int sm4_cbc_encrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct sm4_ctx *ctx = crypto_skcipher_ctx(tfm); return sm4_cbc_crypt(req, ctx, true); } static int sm4_cbc_decrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct sm4_ctx *ctx = crypto_skcipher_ctx(tfm); return sm4_cbc_crypt(req, ctx, false); } static int sm4_cbc_cts_crypt(struct skcipher_request *req, bool encrypt) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct sm4_ctx *ctx = crypto_skcipher_ctx(tfm); struct scatterlist *src = req->src; struct scatterlist *dst = req->dst; struct scatterlist sg_src[2], sg_dst[2]; struct skcipher_request subreq; struct skcipher_walk walk; int cbc_blocks; int err; if (req->cryptlen < SM4_BLOCK_SIZE) return -EINVAL; if (req->cryptlen == SM4_BLOCK_SIZE) return sm4_cbc_crypt(req, ctx, encrypt); skcipher_request_set_tfm(&subreq, tfm); skcipher_request_set_callback(&subreq, skcipher_request_flags(req), NULL, NULL); /* handle the CBC cryption part */ cbc_blocks = DIV_ROUND_UP(req->cryptlen, SM4_BLOCK_SIZE) - 2; if (cbc_blocks) { skcipher_request_set_crypt(&subreq, src, dst, cbc_blocks * SM4_BLOCK_SIZE, req->iv); err = sm4_cbc_crypt(&subreq, ctx, encrypt); if (err) return err; dst = src = scatterwalk_ffwd(sg_src, src, subreq.cryptlen); if (req->dst != req->src) dst = scatterwalk_ffwd(sg_dst, req->dst, subreq.cryptlen); } /* handle ciphertext stealing */ skcipher_request_set_crypt(&subreq, src, dst, req->cryptlen - cbc_blocks * SM4_BLOCK_SIZE, req->iv); err = skcipher_walk_virt(&walk, &subreq, false); if (err) return err; kernel_neon_begin(); if (encrypt) sm4_ce_cbc_cts_enc(ctx->rkey_enc, walk.dst.virt.addr, walk.src.virt.addr, walk.iv, walk.nbytes); else sm4_ce_cbc_cts_dec(ctx->rkey_dec, walk.dst.virt.addr, walk.src.virt.addr, walk.iv, walk.nbytes); kernel_neon_end(); return skcipher_walk_done(&walk, 0); } static int sm4_cbc_cts_encrypt(struct skcipher_request *req) { return sm4_cbc_cts_crypt(req, true); } static int sm4_cbc_cts_decrypt(struct skcipher_request *req) { return sm4_cbc_cts_crypt(req, false); } static int sm4_ctr_crypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct sm4_ctx *ctx = crypto_skcipher_ctx(tfm); struct skcipher_walk walk; unsigned int nbytes; int err; err = skcipher_walk_virt(&walk, req, false); while ((nbytes = walk.nbytes) > 0) { const u8 *src = walk.src.virt.addr; u8 *dst = walk.dst.virt.addr; unsigned int nblks; kernel_neon_begin(); nblks = BYTES2BLKS(nbytes); if (nblks) { sm4_ce_ctr_enc(ctx->rkey_enc, dst, src, walk.iv, nblks); dst += nblks * SM4_BLOCK_SIZE; src += nblks * SM4_BLOCK_SIZE; nbytes -= nblks * SM4_BLOCK_SIZE; } /* tail */ if (walk.nbytes == walk.total && nbytes > 0) { u8 keystream[SM4_BLOCK_SIZE]; sm4_ce_crypt_block(ctx->rkey_enc, keystream, walk.iv); crypto_inc(walk.iv, SM4_BLOCK_SIZE); crypto_xor_cpy(dst, src, keystream, nbytes); nbytes = 0; } kernel_neon_end(); err = skcipher_walk_done(&walk, nbytes); } return err; } static int sm4_xts_crypt(struct skcipher_request *req, bool encrypt) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct sm4_xts_ctx *ctx = crypto_skcipher_ctx(tfm); int tail = req->cryptlen % SM4_BLOCK_SIZE; const u32 *rkey2_enc = ctx->key2.rkey_enc; struct scatterlist sg_src[2], sg_dst[2]; struct skcipher_request subreq; struct scatterlist *src, *dst; struct skcipher_walk walk; unsigned int nbytes; int err; if (req->cryptlen < SM4_BLOCK_SIZE) return -EINVAL; err = skcipher_walk_virt(&walk, req, false); if (err) return err; if (unlikely(tail > 0 && walk.nbytes < walk.total)) { int nblocks = DIV_ROUND_UP(req->cryptlen, SM4_BLOCK_SIZE) - 2; skcipher_walk_abort(&walk); skcipher_request_set_tfm(&subreq, tfm); skcipher_request_set_callback(&subreq, skcipher_request_flags(req), NULL, NULL); skcipher_request_set_crypt(&subreq, req->src, req->dst, nblocks * SM4_BLOCK_SIZE, req->iv); err = skcipher_walk_virt(&walk, &subreq, false); if (err) return err; } else { tail = 0; } while ((nbytes = walk.nbytes) >= SM4_BLOCK_SIZE) { if (nbytes < walk.total) nbytes &= ~(SM4_BLOCK_SIZE - 1); kernel_neon_begin(); if (encrypt) sm4_ce_xts_enc(ctx->key1.rkey_enc, walk.dst.virt.addr, walk.src.virt.addr, walk.iv, nbytes, rkey2_enc); else sm4_ce_xts_dec(ctx->key1.rkey_dec, walk.dst.virt.addr, walk.src.virt.addr, walk.iv, nbytes, rkey2_enc); kernel_neon_end(); rkey2_enc = NULL; err = skcipher_walk_done(&walk, walk.nbytes - nbytes); if (err) return err; } if (likely(tail == 0)) return 0; /* handle ciphertext stealing */ dst = src = scatterwalk_ffwd(sg_src, req->src, subreq.cryptlen); if (req->dst != req->src) dst = scatterwalk_ffwd(sg_dst, req->dst, subreq.cryptlen); skcipher_request_set_crypt(&subreq, src, dst, SM4_BLOCK_SIZE + tail, req->iv); err = skcipher_walk_virt(&walk, &subreq, false); if (err) return err; kernel_neon_begin(); if (encrypt) sm4_ce_xts_enc(ctx->key1.rkey_enc, walk.dst.virt.addr, walk.src.virt.addr, walk.iv, walk.nbytes, rkey2_enc); else sm4_ce_xts_dec(ctx->key1.rkey_dec, walk.dst.virt.addr, walk.src.virt.addr, walk.iv, walk.nbytes, rkey2_enc); kernel_neon_end(); return skcipher_walk_done(&walk, 0); } static int sm4_xts_encrypt(struct skcipher_request *req) { return sm4_xts_crypt(req, true); } static int sm4_xts_decrypt(struct skcipher_request *req) { return sm4_xts_crypt(req, false); } static struct skcipher_alg sm4_algs[] = { { .base = { .cra_name = "ecb(sm4)", .cra_driver_name = "ecb-sm4-ce", .cra_priority = 400, .cra_blocksize = SM4_BLOCK_SIZE, .cra_ctxsize = sizeof(struct sm4_ctx), .cra_module = THIS_MODULE, }, .min_keysize = SM4_KEY_SIZE, .max_keysize = SM4_KEY_SIZE, .setkey = sm4_setkey, .encrypt = sm4_ecb_encrypt, .decrypt = sm4_ecb_decrypt, }, { .base = { .cra_name = "cbc(sm4)", .cra_driver_name = "cbc-sm4-ce", .cra_priority = 400, .cra_blocksize = SM4_BLOCK_SIZE, .cra_ctxsize = sizeof(struct sm4_ctx), .cra_module = THIS_MODULE, }, .min_keysize = SM4_KEY_SIZE, .max_keysize = SM4_KEY_SIZE, .ivsize = SM4_BLOCK_SIZE, .setkey = sm4_setkey, .encrypt = sm4_cbc_encrypt, .decrypt = sm4_cbc_decrypt, }, { .base = { .cra_name = "ctr(sm4)", .cra_driver_name = "ctr-sm4-ce", .cra_priority = 400, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct sm4_ctx), .cra_module = THIS_MODULE, }, .min_keysize = SM4_KEY_SIZE, .max_keysize = SM4_KEY_SIZE, .ivsize = SM4_BLOCK_SIZE, .chunksize = SM4_BLOCK_SIZE, .setkey = sm4_setkey, .encrypt = sm4_ctr_crypt, .decrypt = sm4_ctr_crypt, }, { .base = { .cra_name = "cts(cbc(sm4))", .cra_driver_name = "cts-cbc-sm4-ce", .cra_priority = 400, .cra_blocksize = SM4_BLOCK_SIZE, .cra_ctxsize = sizeof(struct sm4_ctx), .cra_module = THIS_MODULE, }, .min_keysize = SM4_KEY_SIZE, .max_keysize = SM4_KEY_SIZE, .ivsize = SM4_BLOCK_SIZE, .walksize = SM4_BLOCK_SIZE * 2, .setkey = sm4_setkey, .encrypt = sm4_cbc_cts_encrypt, .decrypt = sm4_cbc_cts_decrypt, }, { .base = { .cra_name = "xts(sm4)", .cra_driver_name = "xts-sm4-ce", .cra_priority = 400, .cra_blocksize = SM4_BLOCK_SIZE, .cra_ctxsize = sizeof(struct sm4_xts_ctx), .cra_module = THIS_MODULE, }, .min_keysize = SM4_KEY_SIZE * 2, .max_keysize = SM4_KEY_SIZE * 2, .ivsize = SM4_BLOCK_SIZE, .walksize = SM4_BLOCK_SIZE * 2, .setkey = sm4_xts_setkey, .encrypt = sm4_xts_encrypt, .decrypt = sm4_xts_decrypt, } }; static int sm4_cbcmac_setkey(struct crypto_shash *tfm, const u8 *key, unsigned int key_len) { struct sm4_mac_tfm_ctx *ctx = crypto_shash_ctx(tfm); if (key_len != SM4_KEY_SIZE) return -EINVAL; kernel_neon_begin(); sm4_ce_expand_key(key, ctx->key.rkey_enc, ctx->key.rkey_dec, crypto_sm4_fk, crypto_sm4_ck); kernel_neon_end(); return 0; } static int sm4_cmac_setkey(struct crypto_shash *tfm, const u8 *key, unsigned int key_len) { struct sm4_mac_tfm_ctx *ctx = crypto_shash_ctx(tfm); be128 *consts = (be128 *)ctx->consts; u64 a, b; if (key_len != SM4_KEY_SIZE) return -EINVAL; memset(consts, 0, SM4_BLOCK_SIZE); kernel_neon_begin(); sm4_ce_expand_key(key, ctx->key.rkey_enc, ctx->key.rkey_dec, crypto_sm4_fk, crypto_sm4_ck); /* encrypt the zero block */ sm4_ce_crypt_block(ctx->key.rkey_enc, (u8 *)consts, (const u8 *)consts); kernel_neon_end(); /* gf(2^128) multiply zero-ciphertext with u and u^2 */ a = be64_to_cpu(consts[0].a); b = be64_to_cpu(consts[0].b); consts[0].a = cpu_to_be64((a << 1) | (b >> 63)); consts[0].b = cpu_to_be64((b << 1) ^ ((a >> 63) ? 0x87 : 0)); a = be64_to_cpu(consts[0].a); b = be64_to_cpu(consts[0].b); consts[1].a = cpu_to_be64((a << 1) | (b >> 63)); consts[1].b = cpu_to_be64((b << 1) ^ ((a >> 63) ? 0x87 : 0)); return 0; } static int sm4_xcbc_setkey(struct crypto_shash *tfm, const u8 *key, unsigned int key_len) { struct sm4_mac_tfm_ctx *ctx = crypto_shash_ctx(tfm); u8 __aligned(8) key2[SM4_BLOCK_SIZE]; static u8 const ks[3][SM4_BLOCK_SIZE] = { { [0 ... SM4_BLOCK_SIZE - 1] = 0x1}, { [0 ... SM4_BLOCK_SIZE - 1] = 0x2}, { [0 ... SM4_BLOCK_SIZE - 1] = 0x3}, }; if (key_len != SM4_KEY_SIZE) return -EINVAL; kernel_neon_begin(); sm4_ce_expand_key(key, ctx->key.rkey_enc, ctx->key.rkey_dec, crypto_sm4_fk, crypto_sm4_ck); sm4_ce_crypt_block(ctx->key.rkey_enc, key2, ks[0]); sm4_ce_crypt(ctx->key.rkey_enc, ctx->consts, ks[1], 2); sm4_ce_expand_key(key2, ctx->key.rkey_enc, ctx->key.rkey_dec, crypto_sm4_fk, crypto_sm4_ck); kernel_neon_end(); return 0; } static int sm4_mac_init(struct shash_desc *desc) { struct sm4_mac_desc_ctx *ctx = shash_desc_ctx(desc); memset(ctx->digest, 0, SM4_BLOCK_SIZE); ctx->len = 0; return 0; } static int sm4_mac_update(struct shash_desc *desc, const u8 *p, unsigned int len) { struct sm4_mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm); struct sm4_mac_desc_ctx *ctx = shash_desc_ctx(desc); unsigned int l, nblocks; if (len == 0) return 0; if (ctx->len || ctx->len + len < SM4_BLOCK_SIZE) { l = min(len, SM4_BLOCK_SIZE - ctx->len); crypto_xor(ctx->digest + ctx->len, p, l); ctx->len += l; len -= l; p += l; } if (len && (ctx->len % SM4_BLOCK_SIZE) == 0) { kernel_neon_begin(); if (len < SM4_BLOCK_SIZE && ctx->len == SM4_BLOCK_SIZE) { sm4_ce_crypt_block(tctx->key.rkey_enc, ctx->digest, ctx->digest); ctx->len = 0; } else { nblocks = len / SM4_BLOCK_SIZE; len %= SM4_BLOCK_SIZE; sm4_ce_mac_update(tctx->key.rkey_enc, ctx->digest, p, nblocks, (ctx->len == SM4_BLOCK_SIZE), (len != 0)); p += nblocks * SM4_BLOCK_SIZE; if (len == 0) ctx->len = SM4_BLOCK_SIZE; } kernel_neon_end(); if (len) { crypto_xor(ctx->digest, p, len); ctx->len = len; } } return 0; } static int sm4_cmac_final(struct shash_desc *desc, u8 *out) { struct sm4_mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm); struct sm4_mac_desc_ctx *ctx = shash_desc_ctx(desc); const u8 *consts = tctx->consts; if (ctx->len != SM4_BLOCK_SIZE) { ctx->digest[ctx->len] ^= 0x80; consts += SM4_BLOCK_SIZE; } kernel_neon_begin(); sm4_ce_mac_update(tctx->key.rkey_enc, ctx->digest, consts, 1, false, true); kernel_neon_end(); memcpy(out, ctx->digest, SM4_BLOCK_SIZE); return 0; } static int sm4_cbcmac_final(struct shash_desc *desc, u8 *out) { struct sm4_mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm); struct sm4_mac_desc_ctx *ctx = shash_desc_ctx(desc); if (ctx->len) { kernel_neon_begin(); sm4_ce_crypt_block(tctx->key.rkey_enc, ctx->digest, ctx->digest); kernel_neon_end(); } memcpy(out, ctx->digest, SM4_BLOCK_SIZE); return 0; } static struct shash_alg sm4_mac_algs[] = { { .base = { .cra_name = "cmac(sm4)", .cra_driver_name = "cmac-sm4-ce", .cra_priority = 400, .cra_blocksize = SM4_BLOCK_SIZE, .cra_ctxsize = sizeof(struct sm4_mac_tfm_ctx) + SM4_BLOCK_SIZE * 2, .cra_module = THIS_MODULE, }, .digestsize = SM4_BLOCK_SIZE, .init = sm4_mac_init, .update = sm4_mac_update, .final = sm4_cmac_final, .setkey = sm4_cmac_setkey, .descsize = sizeof(struct sm4_mac_desc_ctx), }, { .base = { .cra_name = "xcbc(sm4)", .cra_driver_name = "xcbc-sm4-ce", .cra_priority = 400, .cra_blocksize = SM4_BLOCK_SIZE, .cra_ctxsize = sizeof(struct sm4_mac_tfm_ctx) + SM4_BLOCK_SIZE * 2, .cra_module = THIS_MODULE, }, .digestsize = SM4_BLOCK_SIZE, .init = sm4_mac_init, .update = sm4_mac_update, .final = sm4_cmac_final, .setkey = sm4_xcbc_setkey, .descsize = sizeof(struct sm4_mac_desc_ctx), }, { .base = { .cra_name = "cbcmac(sm4)", .cra_driver_name = "cbcmac-sm4-ce", .cra_priority = 400, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct sm4_mac_tfm_ctx), .cra_module = THIS_MODULE, }, .digestsize = SM4_BLOCK_SIZE, .init = sm4_mac_init, .update = sm4_mac_update, .final = sm4_cbcmac_final, .setkey = sm4_cbcmac_setkey, .descsize = sizeof(struct sm4_mac_desc_ctx), } }; static int __init sm4_init(void) { int err; err = crypto_register_skciphers(sm4_algs, ARRAY_SIZE(sm4_algs)); if (err) return err; err = crypto_register_shashes(sm4_mac_algs, ARRAY_SIZE(sm4_mac_algs)); if (err) goto out_err; return 0; out_err: crypto_unregister_skciphers(sm4_algs, ARRAY_SIZE(sm4_algs)); return err; } static void __exit sm4_exit(void) { crypto_unregister_shashes(sm4_mac_algs, ARRAY_SIZE(sm4_mac_algs)); crypto_unregister_skciphers(sm4_algs, ARRAY_SIZE(sm4_algs)); } module_cpu_feature_match(SM4, sm4_init); module_exit(sm4_exit); MODULE_DESCRIPTION("SM4 ECB/CBC/CTR/XTS using ARMv8 Crypto Extensions"); MODULE_ALIAS_CRYPTO("sm4-ce"); MODULE_ALIAS_CRYPTO("sm4"); MODULE_ALIAS_CRYPTO("ecb(sm4)"); MODULE_ALIAS_CRYPTO("cbc(sm4)"); MODULE_ALIAS_CRYPTO("ctr(sm4)"); MODULE_ALIAS_CRYPTO("cts(cbc(sm4))"); MODULE_ALIAS_CRYPTO("xts(sm4)"); MODULE_ALIAS_CRYPTO("cmac(sm4)"); MODULE_ALIAS_CRYPTO("xcbc(sm4)"); MODULE_ALIAS_CRYPTO("cbcmac(sm4)"); MODULE_AUTHOR("Tianjia Zhang "); MODULE_LICENSE("GPL v2");