/* * Copyright 2008-2011, Ingo Weinhold, ingo_weinhold@gmx.de. * Copyright 2002-2007, Axel Dörfler, axeld@pinc-software.de. All rights reserved. * Distributed under the terms of the MIT License. * * Copyright 2001-2002, Travis Geiselbrecht. All rights reserved. * Distributed under the terms of the NewOS License. */ #include "paging/32bit/X86VMTranslationMap32Bit.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include "paging/32bit/X86PagingMethod32Bit.h" #include "paging/32bit/X86PagingStructures32Bit.h" #include "paging/x86_physical_page_mapper.h" //#define TRACE_X86_VM_TRANSLATION_MAP_32_BIT #ifdef TRACE_X86_VM_TRANSLATION_MAP_32_BIT # define TRACE(x...) dprintf(x) #else # define TRACE(x...) ; #endif X86VMTranslationMap32Bit::X86VMTranslationMap32Bit() : fPagingStructures(NULL) { } X86VMTranslationMap32Bit::~X86VMTranslationMap32Bit() { if (fPagingStructures == NULL) return; if (fPageMapper != NULL) fPageMapper->Delete(); if (fPagingStructures->pgdir_virt != NULL) { // cycle through and free all of the user space pgtables for (uint32 i = VADDR_TO_PDENT(USER_BASE); i <= VADDR_TO_PDENT(USER_BASE + (USER_SIZE - 1)); i++) { if ((fPagingStructures->pgdir_virt[i] & X86_PDE_PRESENT) != 0) { addr_t address = fPagingStructures->pgdir_virt[i] & X86_PDE_ADDRESS_MASK; vm_page* page = vm_lookup_page(address / B_PAGE_SIZE); if (!page) panic("destroy_tmap: didn't find pgtable page\n"); DEBUG_PAGE_ACCESS_START(page); vm_page_set_state(page, PAGE_STATE_FREE); } } } fPagingStructures->RemoveReference(); } status_t X86VMTranslationMap32Bit::Init(bool kernel) { TRACE("X86VMTranslationMap32Bit::Init()\n"); X86VMTranslationMap::Init(kernel); fPagingStructures = new(std::nothrow) X86PagingStructures32Bit; if (fPagingStructures == NULL) return B_NO_MEMORY; X86PagingMethod32Bit* method = X86PagingMethod32Bit::Method(); if (!kernel) { // user // allocate a physical page mapper status_t error = method->PhysicalPageMapper() ->CreateTranslationMapPhysicalPageMapper(&fPageMapper); if (error != B_OK) return error; // allocate the page directory page_directory_entry* virtualPageDir = (page_directory_entry*)memalign( B_PAGE_SIZE, B_PAGE_SIZE); if (virtualPageDir == NULL) return B_NO_MEMORY; // look up the page directory's physical address phys_addr_t physicalPageDir; vm_get_page_mapping(VMAddressSpace::KernelID(), (addr_t)virtualPageDir, &physicalPageDir); fPagingStructures->Init(virtualPageDir, physicalPageDir, method->KernelVirtualPageDirectory()); } else { // kernel // get the physical page mapper fPageMapper = method->KernelPhysicalPageMapper(); // we already know the kernel pgdir mapping fPagingStructures->Init(method->KernelVirtualPageDirectory(), method->KernelPhysicalPageDirectory(), NULL); } return B_OK; } size_t X86VMTranslationMap32Bit::MaxPagesNeededToMap(addr_t start, addr_t end) const { // If start == 0, the actual base address is not yet known to the caller and // we shall assume the worst case. if (start == 0) { // offset the range so it has the worst possible alignment start = 1023 * B_PAGE_SIZE; end += 1023 * B_PAGE_SIZE; } return VADDR_TO_PDENT(end) + 1 - VADDR_TO_PDENT(start); } status_t X86VMTranslationMap32Bit::Map(addr_t va, phys_addr_t pa, uint32 attributes, uint32 memoryType, vm_page_reservation* reservation) { TRACE("map_tmap: entry pa 0x%lx va 0x%lx\n", pa, va); /* dprintf("pgdir at 0x%x\n", pgdir); dprintf("index is %d\n", va / B_PAGE_SIZE / 1024); dprintf("final at 0x%x\n", &pgdir[va / B_PAGE_SIZE / 1024]); dprintf("value is 0x%x\n", *(int *)&pgdir[va / B_PAGE_SIZE / 1024]); dprintf("present bit is %d\n", pgdir[va / B_PAGE_SIZE / 1024].present); dprintf("addr is %d\n", pgdir[va / B_PAGE_SIZE / 1024].addr); */ page_directory_entry* pd = fPagingStructures->pgdir_virt; // check to see if a page table exists for this range uint32 index = VADDR_TO_PDENT(va); if ((pd[index] & X86_PDE_PRESENT) == 0) { phys_addr_t pgtable; vm_page *page; // we need to allocate a pgtable page = vm_page_allocate_page(reservation, PAGE_STATE_WIRED | VM_PAGE_ALLOC_CLEAR); DEBUG_PAGE_ACCESS_END(page); pgtable = (phys_addr_t)page->physical_page_number * B_PAGE_SIZE; TRACE("map_tmap: asked for free page for pgtable. 0x%lx\n", pgtable); // put it in the pgdir X86PagingMethod32Bit::PutPageTableInPageDir(&pd[index], pgtable, attributes | ((attributes & B_USER_PROTECTION) != 0 ? B_WRITE_AREA : B_KERNEL_WRITE_AREA)); // update any other page directories, if it maps kernel space if (index >= FIRST_KERNEL_PGDIR_ENT && index < (FIRST_KERNEL_PGDIR_ENT + NUM_KERNEL_PGDIR_ENTS)) { X86PagingStructures32Bit::UpdateAllPageDirs(index, pd[index]); } fMapCount++; } // now, fill in the pentry Thread* thread = thread_get_current_thread(); ThreadCPUPinner pinner(thread); page_table_entry* pt = (page_table_entry*)fPageMapper->GetPageTableAt( pd[index] & X86_PDE_ADDRESS_MASK); index = VADDR_TO_PTENT(va); ASSERT_PRINT((pt[index] & X86_PTE_PRESENT) == 0, "virtual address: %#" B_PRIxADDR ", existing pte: %#" B_PRIx32, va, pt[index]); X86PagingMethod32Bit::PutPageTableEntryInTable(&pt[index], pa, attributes, memoryType, fIsKernelMap); pinner.Unlock(); // Note: We don't need to invalidate the TLB for this address, as previously // the entry was not present and the TLB doesn't cache those entries. fMapCount++; return 0; } status_t X86VMTranslationMap32Bit::Unmap(addr_t start, addr_t end) { start = ROUNDDOWN(start, B_PAGE_SIZE); if (start >= end) return B_OK; TRACE("unmap_tmap: asked to free pages 0x%lx to 0x%lx\n", start, end); page_directory_entry *pd = fPagingStructures->pgdir_virt; do { int index = VADDR_TO_PDENT(start); if ((pd[index] & X86_PDE_PRESENT) == 0) { // no page table here, move the start up to access the next page // table start = ROUNDUP(start + 1, kPageTableAlignment); continue; } Thread* thread = thread_get_current_thread(); ThreadCPUPinner pinner(thread); page_table_entry* pt = (page_table_entry*)fPageMapper->GetPageTableAt( pd[index] & X86_PDE_ADDRESS_MASK); for (index = VADDR_TO_PTENT(start); (index < 1024) && (start < end); index++, start += B_PAGE_SIZE) { if ((pt[index] & X86_PTE_PRESENT) == 0) { // page mapping not valid continue; } TRACE("unmap_tmap: removing page 0x%lx\n", start); page_table_entry oldEntry = X86PagingMethod32Bit::ClearPageTableEntryFlags(&pt[index], X86_PTE_PRESENT); fMapCount--; if ((oldEntry & X86_PTE_ACCESSED) != 0) { // Note, that we only need to invalidate the address, if the // accessed flags was set, since only then the entry could have // been in any TLB. InvalidatePage(start); } } } while (start != 0 && start < end); return B_OK; } status_t X86VMTranslationMap32Bit::DebugMarkRangePresent(addr_t start, addr_t end, bool markPresent) { start = ROUNDDOWN(start, B_PAGE_SIZE); if (start >= end) return B_OK; page_directory_entry *pd = fPagingStructures->pgdir_virt; do { int index = VADDR_TO_PDENT(start); if ((pd[index] & X86_PDE_PRESENT) == 0) { // no page table here, move the start up to access the next page // table start = ROUNDUP(start + 1, kPageTableAlignment); continue; } Thread* thread = thread_get_current_thread(); ThreadCPUPinner pinner(thread); page_table_entry* pt = (page_table_entry*)fPageMapper->GetPageTableAt( pd[index] & X86_PDE_ADDRESS_MASK); for (index = VADDR_TO_PTENT(start); (index < 1024) && (start < end); index++, start += B_PAGE_SIZE) { if ((pt[index] & X86_PTE_PRESENT) == 0) { if (!markPresent) continue; X86PagingMethod32Bit::SetPageTableEntryFlags(&pt[index], X86_PTE_PRESENT); } else { if (markPresent) continue; page_table_entry oldEntry = X86PagingMethod32Bit::ClearPageTableEntryFlags(&pt[index], X86_PTE_PRESENT); if ((oldEntry & X86_PTE_ACCESSED) != 0) { // Note, that we only need to invalidate the address, if the // accessed flags was set, since only then the entry could // have been in any TLB. InvalidatePage(start); } } } } while (start != 0 && start < end); return B_OK; } /*! Caller must have locked the cache of the page to be unmapped. This object shouldn't be locked. */ status_t X86VMTranslationMap32Bit::UnmapPage(VMArea* area, addr_t address, bool updatePageQueue) { ASSERT(address % B_PAGE_SIZE == 0); page_directory_entry* pd = fPagingStructures->pgdir_virt; TRACE("X86VMTranslationMap32Bit::UnmapPage(%#" B_PRIxADDR ")\n", address); RecursiveLocker locker(fLock); int index = VADDR_TO_PDENT(address); if ((pd[index] & X86_PDE_PRESENT) == 0) return B_ENTRY_NOT_FOUND; ThreadCPUPinner pinner(thread_get_current_thread()); page_table_entry* pt = (page_table_entry*)fPageMapper->GetPageTableAt( pd[index] & X86_PDE_ADDRESS_MASK); index = VADDR_TO_PTENT(address); page_table_entry oldEntry = X86PagingMethod32Bit::ClearPageTableEntry( &pt[index]); pinner.Unlock(); if ((oldEntry & X86_PTE_PRESENT) == 0) { // page mapping not valid return B_ENTRY_NOT_FOUND; } fMapCount--; if ((oldEntry & X86_PTE_ACCESSED) != 0) { // Note, that we only need to invalidate the address, if the // accessed flags was set, since only then the entry could have been // in any TLB. InvalidatePage(address); Flush(); // NOTE: Between clearing the page table entry and Flush() other // processors (actually even this processor with another thread of the // same team) could still access the page in question via their cached // entry. We can obviously lose a modified flag in this case, with the // effect that the page looks unmodified (and might thus be recycled), // but is actually modified. // In most cases this is harmless, but for vm_remove_all_page_mappings() // this is actually a problem. // Interestingly FreeBSD seems to ignore this problem as well // (cf. pmap_remove_all()), unless I've missed something. } locker.Detach(); // PageUnmapped() will unlock for us PageUnmapped(area, (oldEntry & X86_PTE_ADDRESS_MASK) / B_PAGE_SIZE, (oldEntry & X86_PTE_ACCESSED) != 0, (oldEntry & X86_PTE_DIRTY) != 0, updatePageQueue); return B_OK; } void X86VMTranslationMap32Bit::UnmapPages(VMArea* area, addr_t base, size_t size, bool updatePageQueue) { if (size == 0) return; addr_t start = base; addr_t end = base + size - 1; TRACE("X86VMTranslationMap32Bit::UnmapPages(%p, %#" B_PRIxADDR ", %#" B_PRIxADDR ")\n", area, start, end); page_directory_entry* pd = fPagingStructures->pgdir_virt; VMAreaMappings queue; RecursiveLocker locker(fLock); do { int index = VADDR_TO_PDENT(start); if ((pd[index] & X86_PDE_PRESENT) == 0) { // no page table here, move the start up to access the next page // table start = ROUNDUP(start + 1, kPageTableAlignment); continue; } Thread* thread = thread_get_current_thread(); ThreadCPUPinner pinner(thread); page_table_entry* pt = (page_table_entry*)fPageMapper->GetPageTableAt( pd[index] & X86_PDE_ADDRESS_MASK); for (index = VADDR_TO_PTENT(start); (index < 1024) && (start < end); index++, start += B_PAGE_SIZE) { page_table_entry oldEntry = X86PagingMethod32Bit::ClearPageTableEntry(&pt[index]); if ((oldEntry & X86_PTE_PRESENT) == 0) continue; fMapCount--; if ((oldEntry & X86_PTE_ACCESSED) != 0) { // Note, that we only need to invalidate the address, if the // accessed flags was set, since only then the entry could have // been in any TLB. InvalidatePage(start); } if (area->cache_type != CACHE_TYPE_DEVICE) { // get the page vm_page* page = vm_lookup_page( (oldEntry & X86_PTE_ADDRESS_MASK) / B_PAGE_SIZE); ASSERT(page != NULL); DEBUG_PAGE_ACCESS_START(page); // transfer the accessed/dirty flags to the page if ((oldEntry & X86_PTE_ACCESSED) != 0) page->accessed = true; if ((oldEntry & X86_PTE_DIRTY) != 0) page->modified = true; // remove the mapping object/decrement the wired_count of the // page if (area->wiring == B_NO_LOCK) { vm_page_mapping* mapping = NULL; vm_page_mappings::Iterator iterator = page->mappings.GetIterator(); while ((mapping = iterator.Next()) != NULL) { if (mapping->area == area) break; } ASSERT(mapping != NULL); area->mappings.Remove(mapping); page->mappings.Remove(mapping); queue.Add(mapping); } else page->DecrementWiredCount(); if (!page->IsMapped()) { atomic_add(&gMappedPagesCount, -1); if (updatePageQueue) { if (page->Cache()->temporary) vm_page_set_state(page, PAGE_STATE_INACTIVE); else if (page->modified) vm_page_set_state(page, PAGE_STATE_MODIFIED); else vm_page_set_state(page, PAGE_STATE_CACHED); } } DEBUG_PAGE_ACCESS_END(page); } } Flush(); // flush explicitly, since we directly use the lock } while (start != 0 && start < end); // TODO: As in UnmapPage() we can lose page dirty flags here. ATM it's not // really critical here, as in all cases this method is used, the unmapped // area range is unmapped for good (resized/cut) and the pages will likely // be freed. locker.Unlock(); // free removed mappings bool isKernelSpace = area->address_space == VMAddressSpace::Kernel(); uint32 freeFlags = CACHE_DONT_WAIT_FOR_MEMORY | (isKernelSpace ? CACHE_DONT_LOCK_KERNEL_SPACE : 0); while (vm_page_mapping* mapping = queue.RemoveHead()) object_cache_free(gPageMappingsObjectCache, mapping, freeFlags); } void X86VMTranslationMap32Bit::UnmapArea(VMArea* area, bool deletingAddressSpace, bool ignoreTopCachePageFlags) { if (area->cache_type == CACHE_TYPE_DEVICE || area->wiring != B_NO_LOCK) { X86VMTranslationMap32Bit::UnmapPages(area, area->Base(), area->Size(), true); return; } bool unmapPages = !deletingAddressSpace || !ignoreTopCachePageFlags; page_directory_entry* pd = fPagingStructures->pgdir_virt; RecursiveLocker locker(fLock); VMAreaMappings mappings; mappings.MoveFrom(&area->mappings); for (VMAreaMappings::Iterator it = mappings.GetIterator(); vm_page_mapping* mapping = it.Next();) { vm_page* page = mapping->page; page->mappings.Remove(mapping); VMCache* cache = page->Cache(); bool pageFullyUnmapped = false; if (!page->IsMapped()) { atomic_add(&gMappedPagesCount, -1); pageFullyUnmapped = true; } if (unmapPages || cache != area->cache) { addr_t address = area->Base() + ((page->cache_offset * B_PAGE_SIZE) - area->cache_offset); int index = VADDR_TO_PDENT(address); if ((pd[index] & X86_PDE_PRESENT) == 0) { panic("page %p has mapping for area %p (%#" B_PRIxADDR "), but " "has no page dir entry", page, area, address); continue; } ThreadCPUPinner pinner(thread_get_current_thread()); page_table_entry* pt = (page_table_entry*)fPageMapper->GetPageTableAt( pd[index] & X86_PDE_ADDRESS_MASK); page_table_entry oldEntry = X86PagingMethod32Bit::ClearPageTableEntry( &pt[VADDR_TO_PTENT(address)]); pinner.Unlock(); if ((oldEntry & X86_PTE_PRESENT) == 0) { panic("page %p has mapping for area %p (%#" B_PRIxADDR "), but " "has no page table entry", page, area, address); continue; } // transfer the accessed/dirty flags to the page and invalidate // the mapping, if necessary if ((oldEntry & X86_PTE_ACCESSED) != 0) { page->accessed = true; if (!deletingAddressSpace) InvalidatePage(address); } if ((oldEntry & X86_PTE_DIRTY) != 0) page->modified = true; if (pageFullyUnmapped) { DEBUG_PAGE_ACCESS_START(page); if (cache->temporary) vm_page_set_state(page, PAGE_STATE_INACTIVE); else if (page->modified) vm_page_set_state(page, PAGE_STATE_MODIFIED); else vm_page_set_state(page, PAGE_STATE_CACHED); DEBUG_PAGE_ACCESS_END(page); } } fMapCount--; } Flush(); // flush explicitely, since we directly use the lock locker.Unlock(); bool isKernelSpace = area->address_space == VMAddressSpace::Kernel(); uint32 freeFlags = CACHE_DONT_WAIT_FOR_MEMORY | (isKernelSpace ? CACHE_DONT_LOCK_KERNEL_SPACE : 0); while (vm_page_mapping* mapping = mappings.RemoveHead()) object_cache_free(gPageMappingsObjectCache, mapping, freeFlags); } status_t X86VMTranslationMap32Bit::Query(addr_t va, phys_addr_t *_physical, uint32 *_flags) { // default the flags to not present *_flags = 0; *_physical = 0; int index = VADDR_TO_PDENT(va); page_directory_entry *pd = fPagingStructures->pgdir_virt; if ((pd[index] & X86_PDE_PRESENT) == 0) { // no pagetable here return B_OK; } Thread* thread = thread_get_current_thread(); ThreadCPUPinner pinner(thread); page_table_entry* pt = (page_table_entry*)fPageMapper->GetPageTableAt( pd[index] & X86_PDE_ADDRESS_MASK); page_table_entry entry = pt[VADDR_TO_PTENT(va)]; *_physical = entry & X86_PDE_ADDRESS_MASK; // read in the page state flags if ((entry & X86_PTE_USER) != 0) { *_flags |= ((entry & X86_PTE_WRITABLE) != 0 ? B_WRITE_AREA : 0) | B_READ_AREA; } *_flags |= ((entry & X86_PTE_WRITABLE) != 0 ? B_KERNEL_WRITE_AREA : 0) | B_KERNEL_READ_AREA | ((entry & X86_PTE_DIRTY) != 0 ? PAGE_MODIFIED : 0) | ((entry & X86_PTE_ACCESSED) != 0 ? PAGE_ACCESSED : 0) | ((entry & X86_PTE_PRESENT) != 0 ? PAGE_PRESENT : 0); pinner.Unlock(); TRACE("query_tmap: returning pa 0x%lx for va 0x%lx\n", *_physical, va); return B_OK; } status_t X86VMTranslationMap32Bit::QueryInterrupt(addr_t va, phys_addr_t *_physical, uint32 *_flags) { *_flags = 0; *_physical = 0; int index = VADDR_TO_PDENT(va); page_directory_entry* pd = fPagingStructures->pgdir_virt; if ((pd[index] & X86_PDE_PRESENT) == 0) { // no pagetable here return B_OK; } // map page table entry page_table_entry* pt = (page_table_entry*)X86PagingMethod32Bit::Method() ->PhysicalPageMapper()->InterruptGetPageTableAt( pd[index] & X86_PDE_ADDRESS_MASK); page_table_entry entry = pt[VADDR_TO_PTENT(va)]; *_physical = entry & X86_PDE_ADDRESS_MASK; // read in the page state flags if ((entry & X86_PTE_USER) != 0) { *_flags |= ((entry & X86_PTE_WRITABLE) != 0 ? B_WRITE_AREA : 0) | B_READ_AREA; } *_flags |= ((entry & X86_PTE_WRITABLE) != 0 ? B_KERNEL_WRITE_AREA : 0) | B_KERNEL_READ_AREA | ((entry & X86_PTE_DIRTY) != 0 ? PAGE_MODIFIED : 0) | ((entry & X86_PTE_ACCESSED) != 0 ? PAGE_ACCESSED : 0) | ((entry & X86_PTE_PRESENT) != 0 ? PAGE_PRESENT : 0); return B_OK; } status_t X86VMTranslationMap32Bit::Protect(addr_t start, addr_t end, uint32 attributes, uint32 memoryType) { start = ROUNDDOWN(start, B_PAGE_SIZE); if (start >= end) return B_OK; TRACE("protect_tmap: pages 0x%lx to 0x%lx, attributes %lx\n", start, end, attributes); // compute protection flags uint32 newProtectionFlags = 0; if ((attributes & B_USER_PROTECTION) != 0) { newProtectionFlags = X86_PTE_USER; if ((attributes & B_WRITE_AREA) != 0) newProtectionFlags |= X86_PTE_WRITABLE; } else if ((attributes & B_KERNEL_WRITE_AREA) != 0) newProtectionFlags = X86_PTE_WRITABLE; page_directory_entry *pd = fPagingStructures->pgdir_virt; do { int index = VADDR_TO_PDENT(start); if ((pd[index] & X86_PDE_PRESENT) == 0) { // no page table here, move the start up to access the next page // table start = ROUNDUP(start + 1, kPageTableAlignment); continue; } Thread* thread = thread_get_current_thread(); ThreadCPUPinner pinner(thread); page_table_entry* pt = (page_table_entry*)fPageMapper->GetPageTableAt( pd[index] & X86_PDE_ADDRESS_MASK); for (index = VADDR_TO_PTENT(start); index < 1024 && start < end; index++, start += B_PAGE_SIZE) { page_table_entry entry = pt[index]; if ((entry & X86_PTE_PRESENT) == 0) { // page mapping not valid continue; } TRACE("protect_tmap: protect page 0x%lx\n", start); // set the new protection flags -- we want to do that atomically, // without changing the accessed or dirty flag page_table_entry oldEntry; while (true) { oldEntry = X86PagingMethod32Bit::TestAndSetPageTableEntry( &pt[index], (entry & ~(X86_PTE_PROTECTION_MASK | X86_PTE_MEMORY_TYPE_MASK)) | newProtectionFlags | X86PagingMethod32Bit::MemoryTypeToPageTableEntryFlags( memoryType), entry); if (oldEntry == entry) break; entry = oldEntry; } if ((oldEntry & X86_PTE_ACCESSED) != 0) { // Note, that we only need to invalidate the address, if the // accessed flag was set, since only then the entry could have // been in any TLB. InvalidatePage(start); } } } while (start != 0 && start < end); return B_OK; } status_t X86VMTranslationMap32Bit::ClearFlags(addr_t va, uint32 flags) { int index = VADDR_TO_PDENT(va); page_directory_entry* pd = fPagingStructures->pgdir_virt; if ((pd[index] & X86_PDE_PRESENT) == 0) { // no pagetable here return B_OK; } uint32 flagsToClear = ((flags & PAGE_MODIFIED) ? X86_PTE_DIRTY : 0) | ((flags & PAGE_ACCESSED) ? X86_PTE_ACCESSED : 0); Thread* thread = thread_get_current_thread(); ThreadCPUPinner pinner(thread); page_table_entry* pt = (page_table_entry*)fPageMapper->GetPageTableAt( pd[index] & X86_PDE_ADDRESS_MASK); index = VADDR_TO_PTENT(va); // clear out the flags we've been requested to clear page_table_entry oldEntry = X86PagingMethod32Bit::ClearPageTableEntryFlags(&pt[index], flagsToClear); pinner.Unlock(); if ((oldEntry & flagsToClear) != 0) InvalidatePage(va); return B_OK; } bool X86VMTranslationMap32Bit::ClearAccessedAndModified(VMArea* area, addr_t address, bool unmapIfUnaccessed, bool& _modified) { ASSERT(address % B_PAGE_SIZE == 0); page_directory_entry* pd = fPagingStructures->pgdir_virt; TRACE("X86VMTranslationMap32Bit::ClearAccessedAndModified(%#" B_PRIxADDR ")\n", address); RecursiveLocker locker(fLock); int index = VADDR_TO_PDENT(address); if ((pd[index] & X86_PDE_PRESENT) == 0) return false; ThreadCPUPinner pinner(thread_get_current_thread()); page_table_entry* pt = (page_table_entry*)fPageMapper->GetPageTableAt( pd[index] & X86_PDE_ADDRESS_MASK); index = VADDR_TO_PTENT(address); // perform the deed page_table_entry oldEntry; if (unmapIfUnaccessed) { while (true) { oldEntry = pt[index]; if ((oldEntry & X86_PTE_PRESENT) == 0) { // page mapping not valid return false; } if (oldEntry & X86_PTE_ACCESSED) { // page was accessed -- just clear the flags oldEntry = X86PagingMethod32Bit::ClearPageTableEntryFlags( &pt[index], X86_PTE_ACCESSED | X86_PTE_DIRTY); break; } // page hasn't been accessed -- unmap it if (X86PagingMethod32Bit::TestAndSetPageTableEntry(&pt[index], 0, oldEntry) == oldEntry) { break; } // something changed -- check again } } else { oldEntry = X86PagingMethod32Bit::ClearPageTableEntryFlags(&pt[index], X86_PTE_ACCESSED | X86_PTE_DIRTY); } pinner.Unlock(); _modified = (oldEntry & X86_PTE_DIRTY) != 0; if ((oldEntry & X86_PTE_ACCESSED) != 0) { // Note, that we only need to invalidate the address, if the // accessed flags was set, since only then the entry could have been // in any TLB. InvalidatePage(address); Flush(); return true; } if (!unmapIfUnaccessed) return false; // We have unmapped the address. Do the "high level" stuff. fMapCount--; locker.Detach(); // UnaccessedPageUnmapped() will unlock for us UnaccessedPageUnmapped(area, (oldEntry & X86_PTE_ADDRESS_MASK) / B_PAGE_SIZE); return false; } X86PagingStructures* X86VMTranslationMap32Bit::PagingStructures() const { return fPagingStructures; }