/* * Copyright 2003-2011, Haiku, Inc. All rights reserved. * Distributed under the terms of the MIT License. * * Authors: * Axel Dörfler * Ingo Weinhold * * Copyright 2001, Travis Geiselbrecht. All rights reserved. * Distributed under the terms of the NewOS License. */ #include #include #include #include #include #include #include //#include #include // Valid initial arch_thread state. We just memcpy() it when initializing // a new thread structure. static struct arch_thread sInitialState; // Helper function for thread creation, defined in arch_asm.S. extern "C" void ppc_kernel_thread_root(); void ppc_push_iframe(struct iframe_stack *stack, struct iframe *frame) { ASSERT(stack->index < IFRAME_TRACE_DEPTH); stack->frames[stack->index++] = frame; } void ppc_pop_iframe(struct iframe_stack *stack) { ASSERT(stack->index > 0); stack->index--; } /** Returns the current iframe structure of the running thread. * This function must only be called in a context where it's actually * sure that such iframe exists; ie. from syscalls, but usually not * from standard kernel threads. */ static struct iframe * ppc_get_current_iframe(void) { Thread *thread = thread_get_current_thread(); ASSERT(thread->arch_info.iframes.index >= 0); return thread->arch_info.iframes.frames[thread->arch_info.iframes.index - 1]; } /** \brief Returns the current thread's topmost (i.e. most recent) * userland->kernel transition iframe (usually the first one, save for * interrupts in signal handlers). * \return The iframe, or \c NULL, if there is no such iframe (e.g. when * the thread is a kernel thread). */ struct iframe * ppc_get_user_iframe(void) { Thread *thread = thread_get_current_thread(); int i; for (i = thread->arch_info.iframes.index - 1; i >= 0; i--) { struct iframe *frame = thread->arch_info.iframes.frames[i]; if (frame->srr1 & MSR_PRIVILEGE_LEVEL) return frame; } return NULL; } // #pragma mark - status_t arch_thread_init(struct kernel_args *args) { // Initialize the static initial arch_thread state (sInitialState). // Currently nothing to do, i.e. zero initialized is just fine. return B_OK; } status_t arch_team_init_team_struct(Team *team, bool kernel) { // Nothing to do. The structure is empty. return B_OK; } status_t arch_thread_init_thread_struct(Thread *thread) { // set up an initial state (stack & fpu) memcpy(&thread->arch_info, &sInitialState, sizeof(struct arch_thread)); return B_OK; } void arch_thread_init_kthread_stack(Thread* thread, void* _stack, void* _stackTop, void (*function)(void*), const void* data) { #if 0 addr_t *kstack = (addr_t *)t->kernel_stack_base; addr_t *kstackTop = (addr_t *)t->kernel_stack_top; // clear the kernel stack #ifdef DEBUG_KERNEL_STACKS # ifdef STACK_GROWS_DOWNWARDS memset((void *)((addr_t)kstack + KERNEL_STACK_GUARD_PAGES * B_PAGE_SIZE), 0, KERNEL_STACK_SIZE); # else memset(kstack, 0, KERNEL_STACK_SIZE); # endif #else memset(kstack, 0, KERNEL_STACK_SIZE); #endif // space for frame pointer and return address, and stack frames must be // 16 byte aligned kstackTop -= 2; kstackTop = (addr_t*)((addr_t)kstackTop & ~0xf); // LR, CR, r2, r13-r31, f13-f31, as pushed by ppc_context_switch() kstackTop -= 22 + 2 * 19; // let LR point to ppc_kernel_thread_root() kstackTop[0] = (addr_t)&ppc_kernel_thread_root; // the arguments of ppc_kernel_thread_root() are the functions to call, // provided in registers r13-r15 kstackTop[3] = (addr_t)entry_func; kstackTop[4] = (addr_t)start_func; kstackTop[5] = (addr_t)exit_func; // save this stack position t->arch_info.sp = (void *)kstackTop; return B_OK; #else panic("arch_thread_init_kthread_stack(): Implement me!"); #endif } status_t arch_thread_init_tls(Thread *thread) { // TODO: Implement! return B_OK; } void arch_thread_context_switch(Thread *t_from, Thread *t_to) { // set the new kernel stack in the EAR register. // this is used in the exception handler code to decide what kernel stack to // switch to if the exception had happened when the processor was in user mode asm("mtear %0" :: "g"(t_to->kernel_stack_top - 8)); // switch the asids if we need to if (t_to->team->address_space != NULL) { // the target thread has is user space if (t_from->team != t_to->team) { // switching to a new address space ppc_translation_map_change_asid( t_to->team->address_space->TranslationMap()); } } ppc_context_switch(&t_from->arch_info.sp, t_to->arch_info.sp); } void arch_thread_dump_info(void *info) { struct arch_thread *at = (struct arch_thread *)info; dprintf("\tsp: %p\n", at->sp); } status_t arch_thread_enter_userspace(Thread *thread, addr_t entry, void *arg1, void *arg2) { panic("arch_thread_enter_uspace(): not yet implemented\n"); return B_ERROR; } bool arch_on_signal_stack(Thread *thread) { return false; } status_t arch_setup_signal_frame(Thread *thread, struct sigaction *sa, struct signal_frame_data *signalFrameData) { return B_ERROR; } int64 arch_restore_signal_frame(struct signal_frame_data* signalFrameData) { return 0; } /** Saves everything needed to restore the frame in the child fork in the * arch_fork_arg structure to be passed to arch_restore_fork_frame(). * Also makes sure to return the right value. */ void arch_store_fork_frame(struct arch_fork_arg *arg) { } /** Restores the frame from a forked team as specified by the provided * arch_fork_arg structure. * Needs to be called from within the child team, ie. instead of * arch_thread_enter_uspace() as thread "starter". * This function does not return to the caller, but will enter userland * in the child team at the same position where the parent team left of. */ void arch_restore_fork_frame(struct arch_fork_arg *arg) { }