/* * Copyright 2001-2020, Axel Dörfler, axeld@pinc-software.de. * Copyright 2010, Clemens Zeidler * This file may be used under the terms of the MIT License. */ /*! Query parsing and evaluation The pattern matching is roughly based on code originally written by J. Kercheval, and on code written by Kenneth Almquist, though it shares no code. */ #include "Query.h" #include #include #include "BPlusTree.h" #include "bfs.h" #include "Debug.h" #include "Index.h" #include "Inode.h" #include "Volume.h" // The parser has a very static design, but it will do what is required. // // ParseOr(), ParseAnd(), ParseEquation() are guarantying the operator // precedence, that is =,!=,>,<,>=,<= .. && .. ||. // Apparently, the "!" (not) can only be used with brackets. // // If you think that there are too few NULL pointer checks in some places // of the code, just read the beginning of the query constructor. // The API is not fully available, just the Query and the Expression class // are. using namespace QueryParser; enum ops { OP_NONE, OP_AND, OP_OR, OP_EQUATION, // is only used for invalid equations OP_EQUAL, OP_UNEQUAL, OP_GREATER_THAN, OP_LESS_THAN, OP_GREATER_THAN_OR_EQUAL, OP_LESS_THAN_OR_EQUAL, }; union value { int64 Int64; uint64 Uint64; int32 Int32; uint32 Uint32; float Float; double Double; char String[MAX_INDEX_KEY_LENGTH + 1]; }; /*! Abstract base class for the operator/equation classes. */ class Term { public: Term(int8 op) : fOp(op), fParent(NULL) {} virtual ~Term() {} int8 Op() const { return fOp; } void SetParent(Term* parent) { fParent = parent; } Term* Parent() const { return fParent; } virtual status_t Match(Inode* inode, const char* attribute = NULL, int32 type = 0, const uint8* key = NULL, size_t size = 0) = 0; virtual void Complement() = 0; virtual void CalculateScore(Index& index) = 0; virtual int32 Score() const = 0; virtual status_t InitCheck() = 0; #ifdef DEBUG virtual void PrintToStream() = 0; #endif protected: int8 fOp; Term* fParent; }; /*! An Equation object represents an "attribute-equation operator-value" pair. Although an Equation object is quite independent from the volume on which the query is run, there are some dependencies that are produced while querying: The type/size of the value, the score, and if it has an index or not. So you could run more than one query on the same volume, but it might return wrong values when it runs concurrently on another volume. That's not an issue right now, because we run single-threaded and don't use queries more than once. */ class Equation : public Term { public: Equation(char** _expression); virtual ~Equation(); virtual status_t InitCheck(); virtual status_t Match(Inode* inode, const char* attribute = NULL, int32 type = 0, const uint8* key = NULL, size_t size = 0); virtual void Complement(); status_t PrepareQuery(Volume* volume, Index& index, TreeIterator** iterator, bool queryNonIndexed); status_t GetNextMatching(Volume* volume, TreeIterator* iterator, struct dirent* dirent, size_t bufferSize); virtual void CalculateScore(Index &index); virtual int32 Score() const { return fScore; } #ifdef DEBUG virtual void PrintToStream(); #endif private: Equation(const Equation& other); Equation& operator=(const Equation& other); // no implementation status_t _ParseQuotedString(char** _start, char** _end); char* _CopyString(char* start, char* end); inline bool _IsEquationChar(char c) const; inline bool _IsOperatorChar(char c) const; status_t _ConvertValue(type_code type); bool _CompareTo(const uint8* value, uint16 size); uint8* _Value() const { return (uint8*)&fValue; } private: char* fAttribute; char* fString; union value fValue; type_code fType; size_t fSize; bool fIsPattern; bool fIsSpecialTime; int32 fScore; bool fHasIndex; }; /*! The Operator class does not represent a generic operator, but only those that combine two equations, namely "or", and "and". */ class Operator : public Term { public: Operator(Term* left, int8 op, Term* right); virtual ~Operator(); Term* Left() const { return fLeft; } Term* Right() const { return fRight; } virtual status_t Match(Inode* inode, const char* attribute = NULL, int32 type = 0, const uint8* key = NULL, size_t size = 0); virtual void Complement(); virtual void CalculateScore(Index& index); virtual int32 Score() const; virtual status_t InitCheck(); #ifdef DEBUG virtual void PrintToStream(); #endif private: Operator(const Operator& other); Operator& operator=(const Operator& other); // no implementation private: Term* fLeft; Term* fRight; }; // #pragma mark - Equation::Equation(char** _expression) : Term(OP_EQUATION), fAttribute(NULL), fString(NULL), fType(0), fIsPattern(false) { char* string = *_expression; char* start = string; char* end = NULL; // Since the equation is the integral part of any query, we're just parsing // the whole thing here. // The whitespace at the start is already removed in // Expression::ParseEquation() if (*start == '"' || *start == '\'') { // string is quoted (start has to be on the beginning of a string) if (_ParseQuotedString(&start, &end) < B_OK) return; // set string to a valid start of the equation symbol string = end + 2; skipWhitespace(&string); if (!_IsEquationChar(string[0])) { *_expression = string; return; } } else { // search the (in)equation for the actual equation symbol (and for other operators // in case the equation is malformed) while (string[0] != 0 && !_IsOperatorChar(string[0]) && !_IsEquationChar(string[0])) { if (string[0] == '\\' && string[1] != 0) string++; string++; } // get the attribute string (and trim whitespace), in case // the string was not quoted end = string - 1; skipWhitespaceReverse(&end, start); } // attribute string is empty (which is not allowed) if (start > end) return; // At this point, "start" points to the beginning of the string, "end" // points to the last character of the string, and "string" points to the // first character of the equation symbol // test for the right symbol (as this doesn't need any memory) switch (*string) { case '=': fOp = OP_EQUAL; break; case '>': fOp = *(string + 1) == '=' ? OP_GREATER_THAN_OR_EQUAL : OP_GREATER_THAN; break; case '<': fOp = *(string + 1) == '=' ? OP_LESS_THAN_OR_EQUAL : OP_LESS_THAN; break; case '!': if (*(string + 1) != '=') return; fOp = OP_UNEQUAL; break; // any invalid characters will be rejected default: *_expression = string; return; } // lets change "start" to point to the first character after the symbol if (*(string + 1) == '=') string++; string++; skipWhitespace(&string); // allocate & copy the attribute string fAttribute = _CopyString(start, end); if (fAttribute == NULL) return; start = string; if (*start == '"' || *start == '\'') { // string is quoted (start has to be on the beginning of a string) if (_ParseQuotedString(&start, &end) < B_OK) return; string = end + 2; skipWhitespace(&string); } else { while (string[0] && !_IsOperatorChar(string[0]) && string[0] != ')') string++; end = string - 1; skipWhitespaceReverse(&end, start); } // At this point, "start" will point to the first character of the value, // "end" will point to its last character, and "start" to the first non- // whitespace character after the value string. fString = _CopyString(start, end); if (fString == NULL) return; // Patterns are only allowed for these operations (and strings) if (fOp == OP_EQUAL || fOp == OP_UNEQUAL) { fIsPattern = isPattern(fString); if (fIsPattern && isValidPattern(fString) < B_OK) { // Only valid patterns are allowed; setting fString // to NULL will cause InitCheck() to fail free(fString); fString = NULL; } } // The special time flag is set if the time values are shifted // 64-bit values to reduce the number of duplicates. // We have to be able to compare them against unshifted values // later. The only index which needs this is the last_modified // index, but we may want to open that feature for other indices, // too one day. fIsSpecialTime = !strcmp(fAttribute, "last_modified"); *_expression = string; } Equation::~Equation() { free(fAttribute); free(fString); } status_t Equation::InitCheck() { if (fAttribute == NULL || fString == NULL || fOp == OP_NONE) return B_BAD_VALUE; return B_OK; } /*! Matches the inode's attribute value with the equation. Returns MATCH_OK if it matches, NO_MATCH if not, < 0 if something went wrong. */ status_t Equation::Match(Inode* inode, const char* attributeName, int32 type, const uint8* key, size_t size) { // get a pointer to the attribute in question NodeGetter nodeGetter(inode->GetVolume()); union value value; uint8* buffer = (uint8*)&value; bool locked = false; // first, check if we are matching for a live query and use that value if (attributeName != NULL && !strcmp(fAttribute, attributeName)) { if (key == NULL) return NO_MATCH; buffer = const_cast(key); } else if (!strcmp(fAttribute, "name")) { // we need to lock before accessing Inode::Name() status_t status = nodeGetter.SetTo(inode); if (status != B_OK) return status; recursive_lock_lock(&inode->SmallDataLock()); locked = true; // if not, check for "fake" attributes ("name", "size", "last_modified") buffer = (uint8*)inode->Name(nodeGetter.Node()); if (buffer == NULL) { recursive_lock_unlock(&inode->SmallDataLock()); return B_ERROR; } type = B_STRING_TYPE; size = strlen((const char*)buffer); } else if (!strcmp(fAttribute, "size")) { #ifdef BFS_NATIVE_ENDIAN buffer = (uint8*)&inode->Node().data.size; #else value.Int64 = inode->Size(); #endif type = B_INT64_TYPE; } else if (!strcmp(fAttribute, "last_modified")) { #ifdef BFS_NATIVE_ENDIAN buffer = (uint8*)&inode->Node().last_modified_time; #else value.Int64 = inode->Node().LastModifiedTime(); #endif type = B_INT64_TYPE; } else { // then for attributes in the small_data section, and finally for the // real attributes status_t status = nodeGetter.SetTo(inode); if (status != B_OK) return status; Inode* attribute; recursive_lock_lock(&inode->SmallDataLock()); small_data* smallData = inode->FindSmallData(nodeGetter.Node(), fAttribute); if (smallData != NULL) { buffer = smallData->Data(); type = smallData->type; size = smallData->data_size; locked = true; } else { // needed to unlock the small_data section as fast as possible recursive_lock_unlock(&inode->SmallDataLock()); nodeGetter.Unset(); if (inode->GetAttribute(fAttribute, &attribute) == B_OK) { buffer = (uint8*)&value; type = attribute->Type(); size = attribute->Size(); if (size > MAX_INDEX_KEY_LENGTH) size = MAX_INDEX_KEY_LENGTH; if (attribute->ReadAt(0, buffer, &size) < B_OK) { inode->ReleaseAttribute(attribute); return B_IO_ERROR; } inode->ReleaseAttribute(attribute); } else return NO_MATCH; } } // prepare own value for use, if it is possible to convert it status_t status = _ConvertValue(type); if (status == B_OK) status = _CompareTo(buffer, size) ? MATCH_OK : NO_MATCH; if (locked) recursive_lock_unlock(&inode->SmallDataLock()); RETURN_ERROR(status); } void Equation::Complement() { D(if (fOp <= OP_EQUATION || fOp > OP_LESS_THAN_OR_EQUAL) { FATAL(("op out of range!")); return; }); int8 complementOp[] = {OP_UNEQUAL, OP_EQUAL, OP_LESS_THAN_OR_EQUAL, OP_GREATER_THAN_OR_EQUAL, OP_LESS_THAN, OP_GREATER_THAN}; fOp = complementOp[fOp - OP_EQUAL]; } status_t Equation::PrepareQuery(Volume* /*volume*/, Index& index, TreeIterator** iterator, bool queryNonIndexed) { status_t status = index.SetTo(fAttribute); // if we should query attributes without an index, we can just proceed here if (status != B_OK && !queryNonIndexed) return B_ENTRY_NOT_FOUND; type_code type; // Special case for OP_UNEQUAL - it will always operate through the whole // index but we need the call to the original index to get the correct type if (status != B_OK || fOp == OP_UNEQUAL) { // Try to get an index that holds all files (name) // Also sets the default type for all attributes without index // to string. type = status < B_OK ? B_STRING_TYPE : index.Type(); if (index.SetTo("name") != B_OK) return B_ENTRY_NOT_FOUND; fHasIndex = false; } else { fHasIndex = true; type = index.Type(); } if (_ConvertValue(type) < B_OK) return B_BAD_VALUE; BPlusTree* tree = index.Node()->Tree(); if (tree == NULL) return B_ERROR; *iterator = new(std::nothrow) TreeIterator(tree); if (*iterator == NULL) return B_NO_MEMORY; if ((fOp == OP_EQUAL || fOp == OP_GREATER_THAN || fOp == OP_GREATER_THAN_OR_EQUAL || fIsPattern) && fHasIndex) { // set iterator to the exact position int32 keySize = index.KeySize(); // At this point, fIsPattern is only true if it's a string type, and fOp // is either OP_EQUAL or OP_UNEQUAL if (fIsPattern) { // let's see if we can use the beginning of the key for positioning // the iterator and adjust the key size; if not, just leave the // iterator at the start and return success keySize = getFirstPatternSymbol(fString); if (keySize <= 0) return B_OK; } if (keySize == 0) { // B_STRING_TYPE doesn't have a fixed length, so it was set // to 0 before - we compute the correct value here if (fType == B_STRING_TYPE) { keySize = strlen(fValue.String); // The empty string is a special case - we normally don't check // for the trailing null byte, in the case for the empty string // we do it explicitly, because there can't be keys in the // B+tree with a length of zero if (keySize == 0) keySize = 1; } else RETURN_ERROR(B_ENTRY_NOT_FOUND); } if (fIsSpecialTime) { // we have to find the first matching shifted value off_t value = fValue.Int64 << INODE_TIME_SHIFT; status = (*iterator)->Find((uint8*)&value, keySize); if (status == B_ENTRY_NOT_FOUND) return B_OK; } else { status = (*iterator)->Find(_Value(), keySize); if (fOp == OP_EQUAL && !fIsPattern) return status; else if (status == B_ENTRY_NOT_FOUND && (fIsPattern || fOp == OP_GREATER_THAN || fOp == OP_GREATER_THAN_OR_EQUAL)) return B_OK; } RETURN_ERROR(status); } return B_OK; } status_t Equation::GetNextMatching(Volume* volume, TreeIterator* iterator, struct dirent* dirent, size_t bufferSize) { while (true) { union value indexValue; uint16 keyLength; uint16 duplicate; off_t offset; status_t status = iterator->GetNextEntry(&indexValue, &keyLength, (uint16)sizeof(indexValue), &offset, &duplicate); if (status != B_OK) return status; // only compare against the index entry when this is the correct // index for the equation if (fHasIndex && duplicate < 2 && !_CompareTo((uint8*)&indexValue, keyLength)) { // They aren't equal? Let the operation decide what to do. Since // we always start at the beginning of the index (or the correct // position), only some needs to be stopped if the entry doesn't // fit. if (fOp == OP_LESS_THAN || fOp == OP_LESS_THAN_OR_EQUAL || (fOp == OP_EQUAL && !fIsPattern)) return B_ENTRY_NOT_FOUND; if (duplicate > 0) iterator->SkipDuplicates(); continue; } Vnode vnode(volume, offset); Inode* inode; if ((status = vnode.Get(&inode)) != B_OK) { REPORT_ERROR(status); FATAL(("could not get inode %" B_PRIdOFF " in index \"%s\"!\n", offset, fAttribute)); // try with next continue; } // TODO: check user permissions here - but which one?! // we could filter out all those where we don't have // read access... (we should check for every parent // directory if the X_OK is allowed) // Although it's quite expensive to open all parents, // it's likely that the application that runs the // query will do something similar (and we don't have // to do it for root, either). // go up in the tree until a &&-operator is found, and check if the // inode matches with the rest of the expression - we don't have to // check ||-operators for that Term* term = this; status = MATCH_OK; if (!fHasIndex) status = Match(inode); while (term != NULL && status == MATCH_OK) { Operator* parent = (Operator*)term->Parent(); if (parent == NULL) break; if (parent->Op() == OP_AND) { // choose the other child of the parent Term* other = parent->Right(); if (other == term) other = parent->Left(); if (other == NULL) { FATAL(("&&-operator has only one child... (parent = %p)\n", parent)); break; } status = other->Match(inode); if (status < 0) { REPORT_ERROR(status); status = NO_MATCH; } } term = (Term*)parent; } if (status == MATCH_OK) { dirent->d_dev = volume->ID(); dirent->d_ino = offset; dirent->d_pdev = volume->ID(); dirent->d_pino = volume->ToVnode(inode->Parent()); dirent->d_reclen = offsetof(struct dirent, d_name); if (inode->GetName(dirent->d_name) < B_OK) { FATAL(("inode %" B_PRIdOFF " in query has no name!\n", inode->BlockNumber())); } else { dirent->d_reclen += strlen(dirent->d_name) + 1; } } if (status == MATCH_OK) return B_OK; } RETURN_ERROR(B_ERROR); } void Equation::CalculateScore(Index &index) { // As always, these values could be tuned and refined. // And the code could also need some real world testing :-) // do we have to operate on a "foreign" index? if (fOp == OP_UNEQUAL || index.SetTo(fAttribute) < B_OK) { fScore = 0; return; } // if we have a pattern, how much does it help our search? if (fIsPattern) fScore = getFirstPatternSymbol(fString) << 3; else { // Score by operator if (fOp == OP_EQUAL) // higher than pattern="255 chars+*" fScore = 2048; else // the pattern search is regarded cheaper when you have at // least one character to set your index to fScore = 5; } // take index size into account (1024 is the current node size // in our B+trees) // 2048 * 2048 == 4194304 is the maximum score (for an empty // tree, since the header + 1 node are already 2048 bytes) fScore = fScore * ((2048 * 1024LL) / index.Node()->Size()); } status_t Equation::_ParseQuotedString(char** _start, char** _end) { char* start = *_start; char quote = *start++; char* end = start; for (; *end && *end != quote; end++) { if (*end == '\\') end++; } if (*end == '\0') return B_BAD_VALUE; *_start = start; *_end = end - 1; return B_OK; } char* Equation::_CopyString(char* start, char* end) { // end points to the last character of the string - and the length // also has to include the null-termination int32 length = end + 2 - start; // just to make sure; since that's the max. attribute name length and // the max. string in an index, it make sense to have it that way if (length > MAX_INDEX_KEY_LENGTH + 1 || length <= 0) return NULL; char* copy = (char*)malloc(length); if (copy == NULL) return NULL; // Filter out remaining escaping slashes for (int32 i = 0; i < length; i++) { char c = start++[0]; if (c == '\\' && i < length) { length--; i--; continue; } copy[i] = c; } copy[length - 1] = '\0'; return copy; } bool Equation::_IsEquationChar(char c) const { return c == '=' || c == '<' || c == '>' || c == '!'; } bool Equation::_IsOperatorChar(char c) const { return c == '&' || c == '|'; } status_t Equation::_ConvertValue(type_code type) { // Has the type already been converted? if (type == fType) return B_OK; char* string = fString; switch (type) { case B_MIME_STRING_TYPE: type = B_STRING_TYPE; // supposed to fall through case B_STRING_TYPE: strncpy(fValue.String, string, MAX_INDEX_KEY_LENGTH + 1); fValue.String[MAX_INDEX_KEY_LENGTH] = '\0'; fSize = strlen(fValue.String); break; case B_TIME_TYPE: type = B_INT32_TYPE; // supposed to fall through case B_INT32_TYPE: fValue.Int32 = strtol(string, &string, 0); fSize = sizeof(int32); break; case B_UINT32_TYPE: fValue.Int32 = strtoul(string, &string, 0); fSize = sizeof(uint32); break; case B_INT64_TYPE: fValue.Int64 = strtoll(string, &string, 0); fSize = sizeof(int64); break; case B_UINT64_TYPE: fValue.Uint64 = strtoull(string, &string, 0); fSize = sizeof(uint64); break; case B_FLOAT_TYPE: fValue.Float = strtod(string, &string); fSize = sizeof(float); break; case B_DOUBLE_TYPE: fValue.Double = strtod(string, &string); fSize = sizeof(double); break; default: FATAL(("query value conversion to 0x%x requested!\n", (int)type)); // should we fail here or just do a safety int32 conversion? return B_ERROR; } fType = type; // patterns are only allowed for string types if (fType != B_STRING_TYPE && fIsPattern) fIsPattern = false; return B_OK; } /*! Returns true when the key matches the equation. You have to call ConvertValue() before this one. */ bool Equation::_CompareTo(const uint8* value, uint16 size) { int32 compare; // fIsPattern is only true if it's a string type, and fOp OP_EQUAL, or // OP_UNEQUAL if (fIsPattern) { // we have already validated the pattern, so we don't check for failing // here - if something is broken, and matchString() returns an error, // we just don't match compare = matchString(fValue.String, (char*)value) == MATCH_OK ? 0 : 1; } else if (fIsSpecialTime) { // the index is a shifted int64 index, but we have to match // against an unshifted value (i.e. the last_modified index) int64 timeValue = *(int64*)value >> INODE_TIME_SHIFT; compare = compareKeys(fType, &timeValue, sizeof(int64), &fValue.Int64, sizeof(int64)); } else compare = compareKeys(fType, value, size, _Value(), fSize); switch (fOp) { case OP_EQUAL: return compare == 0; case OP_UNEQUAL: return compare != 0; case OP_LESS_THAN: return compare < 0; case OP_LESS_THAN_OR_EQUAL: return compare <= 0; case OP_GREATER_THAN: return compare > 0; case OP_GREATER_THAN_OR_EQUAL: return compare >= 0; } FATAL(("Unknown/Unsupported operation: %d\n", fOp)); return false; } // #pragma mark - Operator::Operator(Term* left, int8 op, Term* right) : Term(op), fLeft(left), fRight(right) { if (left) left->SetParent(this); if (right) right->SetParent(this); } Operator::~Operator() { delete fLeft; delete fRight; } status_t Operator::Match(Inode* inode, const char* attribute, int32 type, const uint8* key, size_t size) { if (fOp == OP_AND) { status_t status = fLeft->Match(inode, attribute, type, key, size); if (status != MATCH_OK) return status; return fRight->Match(inode, attribute, type, key, size); } else { // choose the term with the better score for OP_OR Term* first; Term* second; if (fRight->Score() > fLeft->Score()) { first = fLeft; second = fRight; } else { first = fRight; second = fLeft; } status_t status = first->Match(inode, attribute, type, key, size); if (status != NO_MATCH) return status; return second->Match(inode, attribute, type, key, size); } } void Operator::Complement() { if (fOp == OP_AND) fOp = OP_OR; else fOp = OP_AND; fLeft->Complement(); fRight->Complement(); } void Operator::CalculateScore(Index &index) { fLeft->CalculateScore(index); fRight->CalculateScore(index); } int32 Operator::Score() const { if (fOp == OP_AND) { // return the one with the better score if (fRight->Score() > fLeft->Score()) return fRight->Score(); return fLeft->Score(); } // for OP_OR, be honest, and return the one with the worse score if (fRight->Score() < fLeft->Score()) return fRight->Score(); return fLeft->Score(); } status_t Operator::InitCheck() { if ((fOp != OP_AND && fOp != OP_OR) || fLeft == NULL || fLeft->InitCheck() < B_OK || fRight == NULL || fRight->InitCheck() < B_OK) return B_ERROR; return B_OK; } #if 0 Term* Operator::Copy() const { if (fEquation != NULL) { Equation* equation = new(std::nothrow) Equation(*fEquation); if (equation == NULL) return NULL; Term* term = new(std::nothrow) Term(equation); if (term == NULL) delete equation; return term; } Term* left = NULL; Term* right = NULL; if (fLeft != NULL && (left = fLeft->Copy()) == NULL) return NULL; if (fRight != NULL && (right = fRight->Copy()) == NULL) { delete left; return NULL; } Term* term = new(std::nothrow) Term(left, fOp, right); if (term == NULL) { delete left; delete right; return NULL; } return term; } #endif // #pragma mark - #ifdef DEBUG void Operator::PrintToStream() { __out("( "); if (fLeft != NULL) fLeft->PrintToStream(); const char* op; switch (fOp) { case OP_OR: op = "OR"; break; case OP_AND: op = "AND"; break; default: op = "?"; break; } __out(" %s ", op); if (fRight != NULL) fRight->PrintToStream(); __out(" )"); } void Equation::PrintToStream() { const char* symbol = "???"; switch (fOp) { case OP_EQUAL: symbol = "=="; break; case OP_UNEQUAL: symbol = "!="; break; case OP_GREATER_THAN: symbol = ">"; break; case OP_GREATER_THAN_OR_EQUAL: symbol = ">="; break; case OP_LESS_THAN: symbol = "<"; break; case OP_LESS_THAN_OR_EQUAL: symbol = "<="; break; } __out("[\"%s\" %s \"%s\"]", fAttribute, symbol, fString); } #endif // DEBUG // #pragma mark - Expression::Expression(char* expr) { if (expr == NULL) return; fTerm = ParseOr(&expr); if (fTerm != NULL && fTerm->InitCheck() < B_OK) { FATAL(("Corrupt tree in expression!\n")); delete fTerm; fTerm = NULL; } D(if (fTerm != NULL) { fTerm->PrintToStream(); D(__out("\n")); if (*expr != '\0') PRINT(("Unexpected end of string: \"%s\"!\n", expr)); }); fPosition = expr; } Expression::~Expression() { delete fTerm; } Term* Expression::ParseEquation(char** expr) { skipWhitespace(expr); bool _not = false; if (**expr == '!') { skipWhitespace(expr, 1); if (**expr != '(') return NULL; _not = true; } if (**expr == ')') { // shouldn't be handled here return NULL; } else if (**expr == '(') { skipWhitespace(expr, 1); Term* term = ParseOr(expr); skipWhitespace(expr); if (**expr != ')') { delete term; return NULL; } // If the term is negated, we just complement the tree, to get // rid of the not, a.k.a. DeMorgan's Law. if (_not) term->Complement(); skipWhitespace(expr, 1); return term; } Equation* equation = new(std::nothrow) Equation(expr); if (equation == NULL || equation->InitCheck() < B_OK) { delete equation; return NULL; } return equation; } Term* Expression::ParseAnd(char** expr) { Term* left = ParseEquation(expr); if (left == NULL) return NULL; while (IsOperator(expr, '&')) { Term* right = ParseAnd(expr); Term* newParent = NULL; if (right == NULL || (newParent = new(std::nothrow) Operator(left, OP_AND, right)) == NULL) { delete left; delete right; return NULL; } left = newParent; } return left; } Term* Expression::ParseOr(char** expr) { Term* left = ParseAnd(expr); if (left == NULL) return NULL; while (IsOperator(expr, '|')) { Term* right = ParseAnd(expr); Term* newParent = NULL; if (right == NULL || (newParent = new(std::nothrow) Operator(left, OP_OR, right)) == NULL) { delete left; delete right; return NULL; } left = newParent; } return left; } bool Expression::IsOperator(char** expr, char op) { char* string = *expr; if (*string == op && *(string + 1) == op) { *expr += 2; return true; } return false; } status_t Expression::InitCheck() { if (fTerm == NULL) return B_BAD_VALUE; return B_OK; } // #pragma mark - Query::Query(Volume* volume, Expression* expression, uint32 flags) : fVolume(volume), fExpression(expression), fCurrent(NULL), fIterator(NULL), fIndex(volume), fFlags(flags), fPort(-1) { // If the expression has a valid root pointer, the whole tree has // already passed the sanity check, so that we don't have to check // every pointer if (volume == NULL || expression == NULL || expression->Root() == NULL) return; // create index on the stack and delete it afterwards fExpression->Root()->CalculateScore(fIndex); fIndex.Unset(); Rewind(); if ((fFlags & B_LIVE_QUERY) != 0) volume->AddQuery(this); } Query::~Query() { if ((fFlags & B_LIVE_QUERY) != 0) fVolume->RemoveQuery(this); } status_t Query::Rewind() { // free previous stuff fStack.MakeEmpty(); delete fIterator; fIterator = NULL; fCurrent = NULL; // put the whole expression on the stack Stack stack; stack.Push(fExpression->Root()); Term* term; while (stack.Pop(&term)) { if (term->Op() < OP_EQUATION) { Operator* op = (Operator*)term; if (op->Op() == OP_OR) { stack.Push(op->Left()); stack.Push(op->Right()); } else { // For OP_AND, we can use the scoring system to decide which // path to add if (op->Right()->Score() > op->Left()->Score()) stack.Push(op->Right()); else stack.Push(op->Left()); } } else if (term->Op() == OP_EQUATION || fStack.Push((Equation*)term) != B_OK) FATAL(("Unknown term on stack or stack error")); } return B_OK; } status_t Query::GetNextEntry(struct dirent* dirent, size_t size) { // If we don't have an equation to use yet/anymore, get a new one // from the stack while (true) { if (fIterator == NULL) { if (!fStack.Pop(&fCurrent) || fCurrent == NULL) return B_ENTRY_NOT_FOUND; status_t status = fCurrent->PrepareQuery(fVolume, fIndex, &fIterator, fFlags & B_QUERY_NON_INDEXED); if (status == B_ENTRY_NOT_FOUND) { // try next equation continue; } if (status != B_OK) return status; } if (fCurrent == NULL) RETURN_ERROR(B_ERROR); status_t status = fCurrent->GetNextMatching(fVolume, fIterator, dirent, size); if (status != B_OK) { delete fIterator; fIterator = NULL; fCurrent = NULL; } else { // only return if we have another entry return B_OK; } } } void Query::SetLiveMode(port_id port, int32 token) { fPort = port; fToken = token; if ((fFlags & B_LIVE_QUERY) == 0) { // you can decide at any point to set the live query mode, // only live queries have to be updated by attribute changes fFlags |= B_LIVE_QUERY; fVolume->AddQuery(this); } } void Query::LiveUpdate(Inode* inode, const char* attribute, int32 type, const uint8* oldKey, size_t oldLength, const uint8* newKey, size_t newLength) { if (fPort < 0 || fExpression == NULL || attribute == NULL) return; // TODO: check if the attribute is part of the query at all... status_t oldStatus = fExpression->Root()->Match(inode, attribute, type, oldKey, oldLength); status_t newStatus = fExpression->Root()->Match(inode, attribute, type, newKey, newLength); bool entryCreated = false; bool stillInQuery = false; if (oldStatus != MATCH_OK) { if (newStatus != MATCH_OK) { // nothing has changed return; } entryCreated = true; } else if (newStatus != MATCH_OK) { // entry got removed entryCreated = false; } else if ((fFlags & B_ATTR_CHANGE_NOTIFICATION) != 0) { // The entry stays in the query stillInQuery = true; } else return; // we may need to get the name of the inode char nameBuffer[B_FILE_NAME_LENGTH]; const char* name; if (strcmp(attribute, "name")) { if (inode->GetName(nameBuffer) != B_OK) nameBuffer[0] = '\0'; name = nameBuffer; } else { // a shortcut to prevent having to scan the attribute section name = (const char*)newKey; } // notify query listeners if (stillInQuery) { notify_query_attr_changed(fPort, fToken, fVolume->ID(), fVolume->ToVnode(inode->Parent()), name, inode->ID()); } else if (entryCreated) { notify_query_entry_created(fPort, fToken, fVolume->ID(), fVolume->ToVnode(inode->Parent()), name, inode->ID()); } else { notify_query_entry_removed(fPort, fToken, fVolume->ID(), fVolume->ToVnode(inode->Parent()), name, inode->ID()); } } void Query::LiveUpdateRenameMove(Inode* inode, ino_t oldDirectoryID, const char* oldName, size_t oldLength, ino_t newDirectoryID, const char* newName, size_t newLength) { if (fPort < 0 || fExpression == NULL) return; // TODO: check if the attribute is part of the query at all... status_t oldStatus = fExpression->Root()->Match(inode, "name", B_STRING_TYPE, (const uint8*)oldName, oldLength); status_t newStatus = fExpression->Root()->Match(inode, "name", B_STRING_TYPE, (const uint8*)newName, newLength); if (oldStatus != MATCH_OK || oldStatus != newStatus) return; // The entry stays in the query, notify query listeners about the rename // or move notify_query_entry_removed(fPort, fToken, fVolume->ID(), oldDirectoryID, oldName, inode->ID()); notify_query_entry_created(fPort, fToken, fVolume->ID(), newDirectoryID, newName, inode->ID()); }