/* program the DAC */ /* Author: Rudolf Cornelissen 12/2003-10/2004 */ #define MODULE_BIT 0x00010000 #include "std.h" static status_t nv4_nv10_nv20_dac_pix_pll_find( display_mode target,float * calc_pclk,uint8 * m_result,uint8 * n_result,uint8 * p_result, uint8 test); /* see if an analog VGA monitor is connected to connector #1 */ bool eng_dac_crt_connected(void) { uint32 output, dac; bool present; /* save output connector setting */ output = DACR(OUTPUT); /* save DAC state */ dac = DACR(TSTCTRL); /* turn on DAC */ DACW(TSTCTRL, (DACR(TSTCTRL) & 0xfffeffff)); /* select primary head and turn off CRT (and DVI?) outputs */ DACW(OUTPUT, (output & 0x0000feee)); /* wait for signal lines to stabilize */ snooze(1000); /* re-enable CRT output */ DACW(OUTPUT, (DACR(OUTPUT) | 0x00000001)); /* setup RGB test signal levels to approx 30% of DAC range and enable them */ DACW(TSTDATA, ((0x2 << 30) | (0x140 << 20) | (0x140 << 10) | (0x140 << 0))); /* route test signals to output */ DACW(TSTCTRL, (DACR(TSTCTRL) | 0x00001000)); /* wait for signal lines to stabilize */ snooze(1000); /* do actual detection: all signals paths high == CRT connected */ if (DACR(TSTCTRL) & 0x10000000) { present = true; LOG(4,("DAC: CRT detected on connector #1\n")); } else { present = false; LOG(4,("DAC: no CRT detected on connector #1\n")); } /* kill test signal routing */ DACW(TSTCTRL, (DACR(TSTCTRL) & 0xffffefff)); /* restore output connector setting */ DACW(OUTPUT, output); /* restore DAC state */ DACW(TSTCTRL, dac); return present; } /*set the mode, brightness is a value from 0->2 (where 1 is equivalent to direct)*/ status_t eng_dac_mode(int mode,float brightness) { uint8 *r,*g,*b; int i, ri; /*set colour arrays to point to space reserved in shared info*/ r = si->color_data; g = r + 256; b = g + 256; LOG(4,("DAC: Setting screen mode %d brightness %f\n", mode, brightness)); /* init the palette for brightness specified */ /* (Nvidia cards always use MSbits from screenbuffer as index for PAL) */ for (i = 0; i < 256; i++) { ri = i * brightness; if (ri > 255) ri = 255; b[i] = g[i] = r[i] = ri; } if (eng_dac_palette(r,g,b) != B_OK) return B_ERROR; /* disable palette RAM adressing mask */ ENG_REG8(RG8_PALMASK) = 0xff; LOG(2,("DAC: PAL pixrdmsk readback $%02x\n", ENG_REG8(RG8_PALMASK))); return B_OK; } /*program the DAC palette using the given r,g,b values*/ status_t eng_dac_palette(uint8 r[256],uint8 g[256],uint8 b[256]) { int i; LOG(4,("DAC: setting palette\n")); /* select first PAL adress before starting programming */ ENG_REG8(RG8_PALINDW) = 0x00; /* loop through all 256 to program DAC */ for (i = 0; i < 256; i++) { /* the 6 implemented bits are on b0-b5 of the bus */ ENG_REG8(RG8_PALDATA) = r[i]; ENG_REG8(RG8_PALDATA) = g[i]; ENG_REG8(RG8_PALDATA) = b[i]; } if (ENG_REG8(RG8_PALINDW) != 0x00) { LOG(8,("DAC: PAL write index incorrect after programming\n")); return B_ERROR; } if (1) {//reread LUT uint8 R, G, B; /* select first PAL adress to read (modulo 3 counter) */ ENG_REG8(RG8_PALINDR) = 0x00; for (i = 0; i < 256; i++) { R = ENG_REG8(RG8_PALDATA); G = ENG_REG8(RG8_PALDATA); B = ENG_REG8(RG8_PALDATA); if ((r[i] != R) || (g[i] != G) || (b[i] != B)) LOG(1,("DAC palette %d: w %x %x %x, r %x %x %x\n", i, r[i], g[i], b[i], R, G, B)); // apsed } } return B_OK; } /*program the pixpll - frequency in kHz*/ status_t eng_dac_set_pix_pll(display_mode target) { uint8 m=0,n=0,p=0; // uint time = 0; float pix_setting, req_pclk; status_t result; /* we offer this option because some panels have very tight restrictions, * and there's no overlapping settings range that makes them all work. * note: * this assumes the cards BIOS correctly programmed the panel (is likely) */ //fixme: when VESA DDC EDID stuff is implemented, this option can be deleted... if (si->ps.tmds1_active && !si->settings.pgm_panel) { LOG(4,("DAC: Not programming DFP refresh (specified in skel.settings)\n")); return B_OK; } /* fix a DVI or laptop flatpanel to 60Hz refresh! */ /* Note: * The pixelclock drives the flatpanel modeline, not the CRTC modeline. */ if (si->ps.tmds1_active) { LOG(4,("DAC: Fixing DFP refresh to 60Hz!\n")); /* use the panel's modeline to determine the needed pixelclock */ target.timing.pixel_clock = si->ps.p1_timing.pixel_clock; } req_pclk = (target.timing.pixel_clock)/1000.0; LOG(4,("DAC: Setting PIX PLL for pixelclock %f\n", req_pclk)); /* signal that we actually want to set the mode */ result = eng_dac_pix_pll_find(target,&pix_setting,&m,&n,&p, 1); if (result != B_OK) { return result; } /*reprogram (disable,select,wait for stability,enable)*/ // DXIW(PIXCLKCTRL,(DXIR(PIXCLKCTRL)&0x0F)|0x04); /*disable the PIXPLL*/ // DXIW(PIXCLKCTRL,(DXIR(PIXCLKCTRL)&0x0C)|0x01); /*select the PIXPLL*/ /* program new frequency */ DACW(PIXPLLC, ((p << 16) | (n << 8) | m)); /* program 2nd set N and M scalers if they exist (b31=1 enables them) */ if (si->ps.ext_pll) DACW(PIXPLLC2, 0x80000401); /* Wait for the PIXPLL frequency to lock until timeout occurs */ //fixme: do NV cards have a LOCK indication bit?? /* while((!(DXIR(PIXPLLSTAT)&0x40)) & (time <= 2000)) { time++; snooze(1); } if (time > 2000) LOG(2,("DAC: PIX PLL frequency not locked!\n")); else LOG(2,("DAC: PIX PLL frequency locked\n")); DXIW(PIXCLKCTRL,DXIR(PIXCLKCTRL)&0x0B); //enable the PIXPLL */ //for now: /* Give the PIXPLL frequency some time to lock... */ snooze(1000); LOG(2,("DAC: PIX PLL frequency should be locked now...\n")); return B_OK; } /* find nearest valid pix pll */ status_t eng_dac_pix_pll_find (display_mode target,float * calc_pclk,uint8 * m_result,uint8 * n_result,uint8 * p_result, uint8 test) { switch (si->ps.card_type) { default: return nv4_nv10_nv20_dac_pix_pll_find(target, calc_pclk, m_result, n_result, p_result, test); } return B_ERROR; } /* find nearest valid pixel PLL setting */ static status_t nv4_nv10_nv20_dac_pix_pll_find( display_mode target,float * calc_pclk,uint8 * m_result,uint8 * n_result,uint8 * p_result, uint8 test) { int m = 0, n = 0, p = 0/*, m_max*/; float error, error_best = 999999999; int best[3]; float f_vco, max_pclk; float req_pclk = target.timing.pixel_clock/1000.0; /* determine the max. reference-frequency postscaler setting for the * current card (see G100, G200 and G400 specs). */ /* switch(si->ps.card_type) { case G100: LOG(4,("DAC: G100 restrictions apply\n")); m_max = 7; break; case G200: LOG(4,("DAC: G200 restrictions apply\n")); m_max = 7; break; default: LOG(4,("DAC: G400/G400MAX restrictions apply\n")); m_max = 32; break; } */ LOG(4,("DAC: NV4/NV10/NV20 restrictions apply\n")); /* determine the max. pixelclock for the current videomode */ switch (target.space) { case B_CMAP8: max_pclk = si->ps.max_dac1_clock_8; break; case B_RGB15_LITTLE: case B_RGB16_LITTLE: max_pclk = si->ps.max_dac1_clock_16; break; case B_RGB24_LITTLE: max_pclk = si->ps.max_dac1_clock_24; break; case B_RGB32_LITTLE: max_pclk = si->ps.max_dac1_clock_32; break; default: /* use fail-safe value */ max_pclk = si->ps.max_dac1_clock_32; break; } /* if some dualhead mode is active, an extra restriction might apply */ if ((target.flags & DUALHEAD_BITS) && (target.space == B_RGB32_LITTLE)) max_pclk = si->ps.max_dac1_clock_32dh; /* Make sure the requested pixelclock is within the PLL's operational limits */ /* lower limit is min_pixel_vco divided by highest postscaler-factor */ if (req_pclk < (si->ps.min_pixel_vco / 16.0)) { LOG(4,("DAC: clamping pixclock: requested %fMHz, set to %fMHz\n", req_pclk, (float)(si->ps.min_pixel_vco / 16.0))); req_pclk = (si->ps.min_pixel_vco / 16.0); } /* upper limit is given by pins in combination with current active mode */ if (req_pclk > max_pclk) { LOG(4,("DAC: clamping pixclock: requested %fMHz, set to %fMHz\n", req_pclk, (float)max_pclk)); req_pclk = max_pclk; } /* iterate through all valid PLL postscaler settings */ for (p=0x01; p < 0x20; p = p<<1) { /* calculate the needed VCO frequency for this postscaler setting */ f_vco = req_pclk * p; /* check if this is within range of the VCO specs */ if ((f_vco >= si->ps.min_pixel_vco) && (f_vco <= si->ps.max_pixel_vco)) { /* FX5600 and FX5700 tweak for 2nd set N and M scalers */ if (si->ps.ext_pll) f_vco /= 4; /* iterate trough all valid reference-frequency postscaler settings */ for (m = 7; m <= 14; m++) { /* check if phase-discriminator will be within operational limits */ //fixme: PLL calcs will be resetup/splitup/updated... if (si->ps.card_type == NV36) { if (((si->ps.f_ref / m) < 3.2) || ((si->ps.f_ref / m) > 6.4)) continue; } else { if (((si->ps.f_ref / m) < 1.0) || ((si->ps.f_ref / m) > 2.0)) continue; } /* calculate VCO postscaler setting for current setup.. */ n = (int)(((f_vco * m) / si->ps.f_ref) + 0.5); /* ..and check for validity */ if ((n < 1) || (n > 255)) continue; /* find error in frequency this setting gives */ if (si->ps.ext_pll) { /* FX5600 and FX5700 tweak for 2nd set N and M scalers */ error = fabs((req_pclk / 4) - (((si->ps.f_ref / m) * n) / p)); } else error = fabs(req_pclk - (((si->ps.f_ref / m) * n) / p)); /* note the setting if best yet */ if (error < error_best) { error_best = error; best[0]=m; best[1]=n; best[2]=p; } } } } /* setup the scalers programming values for found optimum setting */ m = best[0]; n = best[1]; p = best[2]; /* log the VCO frequency found */ f_vco = ((si->ps.f_ref / m) * n); /* FX5600 and FX5700 tweak for 2nd set N and M scalers */ if (si->ps.ext_pll) f_vco *= 4; LOG(2,("DAC: pix VCO frequency found %fMhz\n", f_vco)); /* return the results */ *calc_pclk = (f_vco / p); *m_result = m; *n_result = n; switch(p) { case 1: p = 0x00; break; case 2: p = 0x01; break; case 4: p = 0x02; break; case 8: p = 0x03; break; case 16: p = 0x04; break; } *p_result = p; /* display the found pixelclock values */ LOG(2,("DAC: pix PLL check: requested %fMHz got %fMHz, mnp 0x%02x 0x%02x 0x%02x\n", req_pclk, *calc_pclk, *m_result, *n_result, *p_result)); return B_OK; } /* find nearest valid system PLL setting */ status_t eng_dac_sys_pll_find( float req_sclk, float* calc_sclk, uint8* m_result, uint8* n_result, uint8* p_result, uint8 test) { int m = 0, n = 0, p = 0, m_max, p_max; float error, error_best = 999999999; int best[3]; float f_vco, discr_low, discr_high; /* determine the max. reference-frequency postscaler setting for the * current requested clock */ switch (si->ps.card_arch) { case NV04A: LOG(4,("DAC: NV04 restrictions apply\n")); /* set phase-discriminator frequency range (Mhz) (verified) */ discr_low = 1.0; discr_high = 2.0; /* set max. useable reference frequency postscaler divider factor */ m_max = 14; /* set max. useable VCO output postscaler divider factor */ p_max = 16; break; default: switch (si->ps.card_type) { case NV28: //fixme: how about some other cards??? LOG(4,("DAC: NV28 restrictions apply\n")); /* set max. useable reference frequency postscaler divider factor; * apparantly we would get distortions on high PLL output frequencies if * we use the phase-discriminator at low frequencies */ if (req_sclk > 340.0) m_max = 2; /* Fpll > 340Mhz */ else if (req_sclk > 200.0) m_max = 4; /* 200Mhz < Fpll <= 340Mhz */ else if (req_sclk > 150.0) m_max = 6; /* 150Mhz < Fpll <= 200Mhz */ else m_max = 14; /* Fpll < 150Mhz */ /* set max. useable VCO output postscaler divider factor */ p_max = 32; /* set phase-discriminator frequency range (Mhz) (verified) */ discr_low = 1.0; discr_high = 27.0; break; default: LOG(4,("DAC: NV10/NV20/NV30 restrictions apply\n")); /* set max. useable reference frequency postscaler divider factor; * apparantly we would get distortions on high PLL output frequencies if * we use the phase-discriminator at low frequencies */ if (req_sclk > 340.0) m_max = 2; /* Fpll > 340Mhz */ else if (req_sclk > 250.0) m_max = 6; /* 250Mhz < Fpll <= 340Mhz */ else m_max = 14; /* Fpll < 250Mhz */ /* set max. useable VCO output postscaler divider factor */ p_max = 16; /* set phase-discriminator frequency range (Mhz) (verified) */ if (si->ps.card_type == NV36) discr_low = 3.2; else discr_low = 1.0; /* (high discriminator spec is failsafe) */ discr_high = 14.0; break; } break; } LOG(4,("DAC: PLL reference frequency postscaler divider range is 1 - %d\n", m_max)); LOG(4,("DAC: PLL VCO output postscaler divider range is 1 - %d\n", p_max)); LOG(4,("DAC: PLL discriminator input frequency range is %2.2fMhz - %2.2fMhz\n", discr_low, discr_high)); /* Make sure the requested clock is within the PLL's operational limits */ /* lower limit is min_system_vco divided by highest postscaler-factor */ if (req_sclk < (si->ps.min_system_vco / ((float)p_max))) { LOG(4,("DAC: clamping sysclock: requested %fMHz, set to %fMHz\n", req_sclk, (si->ps.min_system_vco / ((float)p_max)))); req_sclk = (si->ps.min_system_vco / ((float)p_max)); } /* upper limit is given by pins */ if (req_sclk > si->ps.max_system_vco) { LOG(4,("DAC: clamping sysclock: requested %fMHz, set to %fMHz\n", req_sclk, (float)si->ps.max_system_vco)); req_sclk = si->ps.max_system_vco; } /* iterate through all valid PLL postscaler settings */ for (p=0x01; p <= p_max; p = p<<1) { /* calculate the needed VCO frequency for this postscaler setting */ f_vco = req_sclk * p; /* check if this is within range of the VCO specs */ if ((f_vco >= si->ps.min_system_vco) && (f_vco <= si->ps.max_system_vco)) { /* FX5600 and FX5700 tweak for 2nd set N and M scalers */ if (si->ps.ext_pll) f_vco /= 4; /* iterate trough all valid reference-frequency postscaler settings */ for (m = 1; m <= m_max; m++) { /* check if phase-discriminator will be within operational limits */ if (((si->ps.f_ref / m) < discr_low) || ((si->ps.f_ref / m) > discr_high)) continue; /* calculate VCO postscaler setting for current setup.. */ n = (int)(((f_vco * m) / si->ps.f_ref) + 0.5); /* ..and check for validity */ if ((n < 1) || (n > 255)) continue; /* find error in frequency this setting gives */ if (si->ps.ext_pll) { /* FX5600 and FX5700 tweak for 2nd set N and M scalers */ error = fabs((req_sclk / 4) - (((si->ps.f_ref / m) * n) / p)); } else error = fabs(req_sclk - (((si->ps.f_ref / m) * n) / p)); /* note the setting if best yet */ if (error < error_best) { error_best = error; best[0]=m; best[1]=n; best[2]=p; } } } } /* setup the scalers programming values for found optimum setting */ m = best[0]; n = best[1]; p = best[2]; /* log the VCO frequency found */ f_vco = ((si->ps.f_ref / m) * n); /* FX5600 and FX5700 tweak for 2nd set N and M scalers */ if (si->ps.ext_pll) f_vco *= 4; LOG(2,("DAC: sys VCO frequency found %fMhz\n", f_vco)); /* return the results */ *calc_sclk = (f_vco / p); *m_result = m; *n_result = n; switch(p) { case 1: p = 0x00; break; case 2: p = 0x01; break; case 4: p = 0x02; break; case 8: p = 0x03; break; case 16: p = 0x04; break; case 32: p = 0x05; break; } *p_result = p; /* display the found pixelclock values */ LOG(2,("DAC: sys PLL check: requested %fMHz got %fMHz, mnp 0x%02x 0x%02x 0x%02x\n", req_sclk, *calc_sclk, *m_result, *n_result, *p_result)); return B_OK; }