/* program the DAC */ /* Author: Rudolf Cornelissen 12/2003-5/2021 */ #define MODULE_BIT 0x00010000 #include "nv_std.h" static void nv_dac_dump_pix_pll(void); static status_t nv4_nv10_nv20_dac_pix_pll_find( display_mode target,float * calc_pclk,uint8 * m_result,uint8 * n_result,uint8 * p_result, uint8 test); /* see if an analog VGA monitor is connected to connector #1 */ bool nv_dac_crt_connected(void) { uint32 output, dac; bool present; /* save output connector setting */ output = DACR(OUTPUT); /* save DAC state */ dac = DACR(TSTCTRL); /* turn on DAC */ DACW(TSTCTRL, (DACR(TSTCTRL) & 0xfffeffff)); if (si->ps.secondary_head) { /* select primary CRTC (head) and turn off CRT (and DVI?) outputs */ DACW(OUTPUT, (output & 0x0000feee)); } else { /* turn off CRT (and DVI?) outputs */ /* note: * Don't touch the CRTC (head) assignment bit, as that would have undefined * results. Confirmed NV15 cards getting into lasting RAM access trouble * otherwise!! (goes for both system gfx RAM access and CRTC/DAC RAM access.) */ DACW(OUTPUT, (output & 0x0000ffee)); } /* wait for signal lines to stabilize */ snooze(1000); /* re-enable CRT output */ DACW(OUTPUT, (DACR(OUTPUT) | 0x00000001)); /* setup RGB test signal levels to approx 30% of DAC range and enable them */ DACW(TSTDATA, ((0x2 << 30) | (0x140 << 20) | (0x140 << 10) | (0x140 << 0))); /* route test signals to output */ DACW(TSTCTRL, (DACR(TSTCTRL) | 0x00001000)); /* wait for signal lines to stabilize */ snooze(1000); /* do actual detection: all signals paths high == CRT connected */ if (DACR(TSTCTRL) & 0x10000000) { present = true; LOG(4,("DAC: CRT detected on connector #1\n")); } else { present = false; LOG(4,("DAC: no CRT detected on connector #1\n")); } /* kill test signal routing */ DACW(TSTCTRL, (DACR(TSTCTRL) & 0xffffefff)); /* restore output connector setting */ DACW(OUTPUT, output); /* restore DAC state */ DACW(TSTCTRL, dac); return present; } /*set the mode, brightness is a value from 0->2 (where 1 is equivalent to direct)*/ status_t nv_dac_mode(int mode,float brightness) { uint8 *r,*g,*b; int i, ri; /*set colour arrays to point to space reserved in shared info*/ r = si->color_data; g = r + 256; b = g + 256; LOG(4,("DAC: Setting screen mode %d brightness %f\n", mode, brightness)); /* init the palette for brightness specified */ /* (Nvidia cards always use MSbits from screenbuffer as index for PAL) */ for (i = 0; i < 256; i++) { ri = i * brightness; if (ri > 255) ri = 255; b[i] = g[i] = r[i] = ri; } if (nv_dac_palette(r,g,b) != B_OK) return B_ERROR; /* disable palette RAM adressing mask */ NV_REG8(NV8_PALMASK) = 0xff; LOG(2,("DAC: PAL pixrdmsk readback $%02x\n", NV_REG8(NV8_PALMASK))); return B_OK; } /* enable/disable dithering */ status_t nv_dac_dither(bool dither) { /* older cards can't do dithering */ if ((si->ps.card_type != NV11) && !si->ps.secondary_head) return B_ERROR; if (dither) { LOG(4,("DAC: enabling dithering\n")); if (si->ps.card_type == NV11) { /* NV11 apparantly has a fixed dithering pattern */ /* enable dithering */ DACW(NV11_DITHER, (DACR(NV11_DITHER) | 0x00010000)); } else { /* setup dithering pattern */ DACW(FP_DITH_PATT1, 0xe4e4e4e4); DACW(FP_DITH_PATT2, 0xe4e4e4e4); DACW(FP_DITH_PATT3, 0xe4e4e4e4); DACW(FP_DITH_PATT4, 0x44444444); DACW(FP_DITH_PATT5, 0x44444444); DACW(FP_DITH_PATT6, 0x44444444); /* enable dithering */ DACW(FP_DITHER, (DACR(FP_DITHER) | 0x00000001)); } } else { LOG(4,("DAC: disabling dithering\n")); if (si->ps.card_type == NV11) { /* disable dithering */ DACW(NV11_DITHER, (DACR(NV11_DITHER) & ~0x00010000)); } else { /* disable dithering */ DACW(FP_DITHER, (DACR(FP_DITHER) & ~0x00000001)); } } return B_OK; } /*program the DAC palette using the given r,g,b values*/ status_t nv_dac_palette(uint8 r[256],uint8 g[256],uint8 b[256]) { int i; LOG(4,("DAC: setting palette\n")); /* select first PAL adress before starting programming */ NV_REG8(NV8_PALINDW) = 0x00; /* loop through all 256 to program DAC */ for (i = 0; i < 256; i++) { /* the 6 implemented bits are on b0-b5 of the bus */ NV_REG8(NV8_PALDATA) = r[i]; NV_REG8(NV8_PALDATA) = g[i]; NV_REG8(NV8_PALDATA) = b[i]; } if (NV_REG8(NV8_PALINDW) != 0x00) { LOG(8,("DAC: PAL write index incorrect after programming\n")); return B_ERROR; } if (1) {//reread LUT uint8 R, G, B; /* select first PAL adress to read (modulo 3 counter) */ NV_REG8(NV8_PALINDR) = 0x00; for (i = 0; i < 256; i++) { R = NV_REG8(NV8_PALDATA); G = NV_REG8(NV8_PALDATA); B = NV_REG8(NV8_PALDATA); if ((r[i] != R) || (g[i] != G) || (b[i] != B)) LOG(1,("DAC palette %d: w %x %x %x, r %x %x %x\n", i, r[i], g[i], b[i], R, G, B)); // apsed } } return B_OK; } /*program the pixpll - frequency in kHz*/ status_t nv_dac_set_pix_pll(display_mode target) { uint8 m=0,n=0,p=0; float pix_setting, req_pclk; status_t result; /* fix a DVI or laptop flatpanel to 60Hz refresh! */ /* Note: * The pixelclock drives the flatpanel modeline, not the CRTC modeline. */ if (si->ps.monitors & CRTC1_TMDS) { LOG(4,("DAC: Fixing DFP refresh to 60Hz!\n")); /* use the panel's modeline to determine the needed pixelclock */ target.timing.pixel_clock = si->ps.p1_timing.pixel_clock; } req_pclk = (target.timing.pixel_clock)/1000.0; /* signal that we actually want to set the mode */ result = nv_dac_pix_pll_find(target,&pix_setting,&m,&n,&p, 1); if (result != B_OK) return result; /* dump old setup for learning purposes */ nv_dac_dump_pix_pll(); /* some logging for learning purposes */ LOG(4,("DAC: current NV30_PLLSETUP settings: $%08x\n", DACR(NV30_PLLSETUP))); /* this register seems to (dis)connect functions blocks and PLLs: * there seem to be two PLL types per function block (on some cards), * b16-17 DAC1clk, b18-19 DAC2clk, b20-21 GPUclk, b22-23 MEMclk. */ LOG(4,("DAC: current (0x0000c040) settings: $%08x\n", NV_REG32(0x0000c040))); /* disable spread spectrum modes for the pixelPLLs _first_ */ /* spread spectrum: b0,1 = GPUclk, b2,3 = MEMclk, b4,5 = DAC1clk, b6,7 = DAC2clk; * b16-19 influence clock routing to digital outputs (internal/external LVDS transmitters?) */ if (si->ps.card_arch >= NV30A) DACW(NV30_PLLSETUP, (DACR(NV30_PLLSETUP) & ~0x000000f0)); /* we offer this option because some panels have very tight restrictions, * and there's no overlapping settings range that makes them all work. * note: * this assumes the cards BIOS correctly programmed the panel (is likely) */ //fixme: when VESA DDC EDID stuff is implemented, this option can be deleted... if ((si->ps.monitors & CRTC1_TMDS) && !si->settings.pgm_panel) { LOG(4,("DAC: Not programming DFP refresh (specified in nvidia.settings)\n")); } else { LOG(4,("DAC: Setting PIX PLL for pixelclock %f\n", req_pclk)); /* program new frequency */ DACW(PIXPLLC, ((p << 16) | (n << 8) | m)); /* program 2nd set N and M scalers if they exist (b31=1 enables them) */ if (si->ps.ext_pll) DACW(PIXPLLC2, 0x80000401); /* Give the PIXPLL frequency some time to lock... (there's no indication bit available) */ snooze(1000); LOG(2,("DAC: PIX PLL frequency should be locked now...\n")); } /* enable programmable PLLs */ /* (confirmed PLLSEL to be a write-only register on NV04 and NV11!) */ /* note: * setup PLL assignment _after_ programming PLL */ if (si->ps.secondary_head) { if (si->ps.card_arch < NV40A) { DACW(PLLSEL, 0x30000f00); } else { DACW(NV40_PLLSEL2, (DACR(NV40_PLLSEL2) & ~0x10000100)); DACW(PLLSEL, 0x30000f04); } } else { DACW(PLLSEL, 0x10000700); } return B_OK; } static void nv_dac_dump_pix_pll(void) { uint32 dividers1, dividers2; uint8 m1, n1, p1; uint8 m2 = 1, n2 = 1; float f_vco, f_phase, f_pixel; LOG(2,("DAC: dumping current pixelPLL settings:\n")); dividers1 = DACR(PIXPLLC); m1 = (dividers1 & 0x000000ff); n1 = (dividers1 & 0x0000ff00) >> 8; p1 = 0x01 << ((dividers1 & 0x00070000) >> 16); LOG(2,("DAC: divider1 settings ($%08x): M1=%d, N1=%d, P1=%d\n", dividers1, m1, n1, p1)); if (si->ps.ext_pll) { dividers2 = DACR(PIXPLLC2); if (dividers2 & 0x80000000) { /* the extended PLL part is enabled */ m2 = (dividers2 & 0x000000ff); n2 = (dividers2 & 0x0000ff00) >> 8; LOG(2,("DAC: divider2 is enabled, settings ($%08x): M2=%d, N2=%d\n", dividers2, m2, n2)); } else { LOG(2,("DAC: divider2 is disabled ($%08x)\n", dividers2)); } } /* log the frequencies found */ f_phase = si->ps.f_ref / (m1 * m2); f_vco = (f_phase * n1 * n2); f_pixel = f_vco / p1; LOG(2,("DAC: phase discriminator frequency is %fMhz\n", f_phase)); LOG(2,("DAC: VCO frequency is %fMhz\n", f_vco)); LOG(2,("DAC: pixelclock is %fMhz\n", f_pixel)); LOG(2,("DAC: end of dump.\n")); /* apparantly if a VESA modecall during boot fails we need to explicitly select the PLL's * again (was already done during driver init) if we readout the current PLL setting.. */ if (si->ps.secondary_head) DACW(PLLSEL, 0x30000f00); else DACW(PLLSEL, 0x10000700); } /* find nearest valid pix pll */ status_t nv_dac_pix_pll_find (display_mode target,float * calc_pclk,uint8 * m_result,uint8 * n_result,uint8 * p_result, uint8 test) { switch (si->ps.card_type) { default: return nv4_nv10_nv20_dac_pix_pll_find(target, calc_pclk, m_result, n_result, p_result, test); } return B_ERROR; } /* find nearest valid pixel PLL setting */ static status_t nv4_nv10_nv20_dac_pix_pll_find( display_mode target, float* calc_pclk, uint8* m_result, uint8* n_result, uint8* p_result, uint8 test) { int m = 0, n = 0, p = 0, m_min = 7, p_max = 0x10; float error, error_best = INFINITY; int best[3] = {0, 0, 0}; float f_vco, max_pclk; float req_pclk = target.timing.pixel_clock/1000.0; LOG(4, ("DAC: NV4/NV10/NV20 restrictions apply\n")); /* determine the max. pixelclock for the current videomode */ switch (target.space) { case B_CMAP8: max_pclk = si->ps.max_dac1_clock_8; break; case B_RGB15_LITTLE: case B_RGB16_LITTLE: max_pclk = si->ps.max_dac1_clock_16; break; case B_RGB24_LITTLE: max_pclk = si->ps.max_dac1_clock_24; break; case B_RGB32_LITTLE: max_pclk = si->ps.max_dac1_clock_32; break; default: /* use fail-safe value */ max_pclk = si->ps.max_dac1_clock_32; break; } /* update PLL divider specs for C51 chipset */ if ((CFGR(DEVID) & 0xfff0ffff) == 0x024010de) { m_min = 4; p_max = 0x20; } /* if some dualhead mode is active, an extra restriction might apply */ if ((target.flags & DUALHEAD_BITS) && (target.space == B_RGB32_LITTLE)) max_pclk = si->ps.max_dac1_clock_32dh; /* Make sure the requested pixelclock is within the PLL's operational limits */ /* lower limit is min_pixel_vco divided by highest postscaler-factor */ if (req_pclk < (si->ps.min_pixel_vco / p_max)) { LOG(4,("DAC: clamping pixclock: requested %fMHz, set to %fMHz\n", req_pclk, (float)(si->ps.min_pixel_vco / p_max))); req_pclk = (si->ps.min_pixel_vco / p_max); } /* upper limit is given by pins in combination with current active mode */ if (req_pclk > max_pclk) { LOG(4,("DAC: clamping pixclock: requested %fMHz, set to %fMHz\n", req_pclk, (float)max_pclk)); req_pclk = max_pclk; } /* iterate through all valid PLL postscaler settings */ for (p=0x01; p <= p_max; p = p<<1) { /* calculate the needed VCO frequency for this postscaler setting */ f_vco = req_pclk * p; /* check if this is within range of the VCO specs */ if ((f_vco >= si->ps.min_pixel_vco) && (f_vco <= si->ps.max_pixel_vco)) { /* FX5600 and FX5700 tweak for 2nd set N and M scalers */ if (si->ps.ext_pll) f_vco /= 4; /* iterate trough all valid reference-frequency postscaler settings */ for (m = m_min; m <= 14; m++) { /* check if phase-discriminator will be within operational limits */ //fixme: PLL calcs will be resetup/splitup/updated... if (si->ps.card_type == NV36) { if (((si->ps.f_ref / m) < 3.2) || ((si->ps.f_ref / m) > 6.4)) continue; } else { if ((CFGR(DEVID) & 0xfff0ffff) == 0x024010de) { /* C51 chipset */ if (((si->ps.f_ref / m) < 1.7) || ((si->ps.f_ref / m) > 6.4)) continue; } else { if (((si->ps.f_ref / m) < 1.0) || ((si->ps.f_ref / m) > 2.0)) continue; } } /* calculate VCO postscaler setting for current setup.. */ n = (int)(((f_vco * m) / si->ps.f_ref) + 0.5); /* ..and check for validity */ if ((n < 1) || (n > 255)) continue; /* find error in frequency this setting gives */ if (si->ps.ext_pll) { /* FX5600 and FX5700 tweak for 2nd set N and M scalers */ error = fabs((req_pclk / 4) - (((si->ps.f_ref / m) * n) / p)); } else error = fabs(req_pclk - (((si->ps.f_ref / m) * n) / p)); /* note the setting if best yet */ if (error < error_best) { error_best = error; best[0]=m; best[1]=n; best[2]=p; } } } } /* setup the scalers programming values for found optimum setting */ m = best[0]; n = best[1]; p = best[2]; /* log the VCO frequency found */ f_vco = ((si->ps.f_ref / m) * n); /* FX5600 and FX5700 tweak for 2nd set N and M scalers */ if (si->ps.ext_pll) f_vco *= 4; LOG(2,("DAC: pix VCO frequency found %fMhz\n", f_vco)); /* return the results */ *calc_pclk = (f_vco / p); *m_result = m; *n_result = n; switch(p) { case 1: p = 0x00; break; case 2: p = 0x01; break; case 4: p = 0x02; break; case 8: p = 0x03; break; case 16: p = 0x04; break; case 32: p = 0x05; break; } *p_result = p; /* display the found pixelclock values */ LOG(2,("DAC: pix PLL check: requested %fMHz got %fMHz, mnp 0x%02x 0x%02x 0x%02x\n", req_pclk, *calc_pclk, *m_result, *n_result, *p_result)); return B_OK; } /* find nearest valid system PLL setting */ status_t nv_dac_sys_pll_find( float req_sclk, float* calc_sclk, uint8* m_result, uint8* n_result, uint8* p_result, uint8 test) { int m = 0, n = 0, p = 0, m_max, p_max; float error, error_best = INFINITY; int best[3] = {0, 0, 0}; float f_vco, discr_low, discr_high; /* determine the max. reference-frequency postscaler setting for the * current requested clock */ switch (si->ps.card_arch) { case NV04A: LOG(4, ("DAC: NV04 restrictions apply\n")); /* set phase-discriminator frequency range (Mhz) (verified) */ discr_low = 1.0; discr_high = 2.0; /* set max. useable reference frequency postscaler divider factor */ m_max = 14; /* set max. useable VCO output postscaler divider factor */ p_max = 16; break; default: switch (si->ps.card_type) { case NV28: //fixme: how about some other cards??? LOG(4, ("DAC: NV28 restrictions apply\n")); /* set max. useable reference frequency postscaler divider factor; * apparantly we would get distortions on high PLL output frequencies if * we use the phase-discriminator at low frequencies */ if (req_sclk > 340.0) m_max = 2; /* Fpll > 340Mhz */ else if (req_sclk > 200.0) m_max = 4; /* 200Mhz < Fpll <= 340Mhz */ else if (req_sclk > 150.0) m_max = 6; /* 150Mhz < Fpll <= 200Mhz */ else m_max = 14; /* Fpll < 150Mhz */ /* set max. useable VCO output postscaler divider factor */ p_max = 32; /* set phase-discriminator frequency range (Mhz) (verified) */ discr_low = 1.0; discr_high = 27.0; break; default: LOG(4, ("DAC: NV10/NV20/NV30 restrictions apply\n")); /* set max. useable reference frequency postscaler divider factor; * apparantly we would get distortions on high PLL output frequencies if * we use the phase-discriminator at low frequencies */ if (req_sclk > 340.0) m_max = 2; /* Fpll > 340Mhz */ else if (req_sclk > 250.0) m_max = 6; /* 250Mhz < Fpll <= 340Mhz */ else m_max = 14; /* Fpll < 250Mhz */ /* set max. useable VCO output postscaler divider factor */ p_max = 16; /* set phase-discriminator frequency range (Mhz) (verified) */ if (si->ps.card_type == NV36) discr_low = 3.2; else discr_low = 1.0; /* (high discriminator spec is failsafe) */ discr_high = 14.0; break; } break; } LOG(4, ("DAC: PLL reference frequency postscaler divider range is 1 - %d\n", m_max)); LOG(4, ("DAC: PLL VCO output postscaler divider range is 1 - %d\n", p_max)); LOG(4, ("DAC: PLL discriminator input frequency range is %2.2fMhz - %2.2fMhz\n", discr_low, discr_high)); /* Make sure the requested clock is within the PLL's operational limits */ /* lower limit is min_system_vco divided by highest postscaler-factor */ if (req_sclk < (si->ps.min_system_vco / ((float)p_max))) { LOG(4, ("DAC: clamping sysclock: requested %fMHz, set to %fMHz\n", req_sclk, (si->ps.min_system_vco / ((float)p_max)))); req_sclk = (si->ps.min_system_vco / ((float)p_max)); } /* upper limit is given by pins */ if (req_sclk > si->ps.max_system_vco) { LOG(4, ("DAC: clamping sysclock: requested %fMHz, set to %fMHz\n", req_sclk, (float)si->ps.max_system_vco)); req_sclk = si->ps.max_system_vco; } /* iterate through all valid PLL postscaler settings */ for (p=0x01; p <= p_max; p = p<<1) { /* calculate the needed VCO frequency for this postscaler setting */ f_vco = req_sclk * p; /* check if this is within range of the VCO specs */ if ((f_vco >= si->ps.min_system_vco) && (f_vco <= si->ps.max_system_vco)) { /* FX5600 and FX5700 tweak for 2nd set N and M scalers */ if (si->ps.ext_pll) f_vco /= 4; /* iterate trough all valid reference-frequency postscaler settings */ for (m = 1; m <= m_max; m++) { /* check if phase-discriminator will be within operational limits */ if (((si->ps.f_ref / m) < discr_low) || ((si->ps.f_ref / m) > discr_high)) continue; /* calculate VCO postscaler setting for current setup.. */ n = (int)(((f_vco * m) / si->ps.f_ref) + 0.5); /* ..and check for validity */ if ((n < 1) || (n > 255)) continue; /* find error in frequency this setting gives */ if (si->ps.ext_pll) { /* FX5600 and FX5700 tweak for 2nd set N and M scalers */ error = fabs((req_sclk / 4) - (((si->ps.f_ref / m) * n) / p)); } else error = fabs(req_sclk - (((si->ps.f_ref / m) * n) / p)); /* note the setting if best yet */ if (error < error_best) { error_best = error; best[0]=m; best[1]=n; best[2]=p; } } } } /* setup the scalers programming values for found optimum setting */ m = best[0]; n = best[1]; p = best[2]; /* log the VCO frequency found */ f_vco = ((si->ps.f_ref / m) * n); /* FX5600 and FX5700 tweak for 2nd set N and M scalers */ if (si->ps.ext_pll) f_vco *= 4; LOG(2,("DAC: sys VCO frequency found %fMhz\n", f_vco)); /* return the results */ *calc_sclk = (f_vco / p); *m_result = m; *n_result = n; switch(p) { case 1: p = 0x00; break; case 2: p = 0x01; break; case 4: p = 0x02; break; case 8: p = 0x03; break; case 16: p = 0x04; break; case 32: p = 0x05; break; } *p_result = p; /* display the found pixelclock values */ LOG(2,("DAC: sys PLL check: requested %fMHz got %fMHz, mnp 0x%02x 0x%02x 0x%02x\n", req_sclk, *calc_sclk, *m_result, *n_result, *p_result)); return B_OK; }