/* * Copyright 2001-2014, Axel Dörfler, axeld@pinc-software.de. * Copyright 2010, Clemens Zeidler * Copyright 2011, Ingo Weinhold, ingo_weinhold@gmx.de. * This file may be used under the terms of the MIT License. */ #ifndef _FILE_SYSTEMS_QUERY_PARSER_H #define _FILE_SYSTEMS_QUERY_PARSER_H /*! Query parsing and evaluation. */ // The operator precedence is =,!=,>,<,>=,<= .. && .. ||. // Apparently, the "!" (not) can only be used with parentheses. // // If you think that there are too few NULL pointer checks in some places // of the code, just read the beginning of the query constructor. // The API is not fully available, just the Query and the Expression class // are. #ifdef FS_SHELL # include # include "fssh_api_wrapper.h" # include "fssh_auto_deleter.h" #else # include # include # include # include # include # include # include # include # include # include # include #endif // !FS_SHELL #include //#define DEBUG_QUERY #ifndef QUERY_RETURN_ERROR # define QUERY_RETURN_ERROR(error) return (error) #endif #ifndef QUERY_REPORT_ERROR # define QUERY_REPORT_ERROR(error) do {} while (false) #endif #ifndef QUERY_FATAL # define QUERY_FATAL(message...) panic(message) #endif #ifndef QUERY_INFORM # define QUERY_INFORM(message...) dprintf(message) #endif #ifndef QUERY_D # define QUERY_D(block) #endif namespace QueryParser { template class Equation; template class Expression; template class Term; template class Query; enum ops { OP_NONE, OP_AND, OP_OR, OP_EQUATION, // is only used for invalid equations OP_EQUAL, OP_UNEQUAL, OP_GREATER_THAN, OP_LESS_THAN, OP_GREATER_THAN_OR_EQUAL, OP_LESS_THAN_OR_EQUAL, }; template union value { int64 Int64; uint64 Uint64; int32 Int32; uint32 Uint32; float Float; double Double; char String[QueryPolicy::kMaxFileNameLength]; }; template class Query { public: typedef typename QueryPolicy::Entry Entry; typedef typename QueryPolicy::Index Index; typedef typename QueryPolicy::IndexIterator IndexIterator; typedef typename QueryPolicy::Node Node; typedef typename QueryPolicy::NodeHolder NodeHolder; typedef typename QueryPolicy::Context Context; public: Query(Context* context, Expression* expression, uint32 flags, port_id port, uint32 token); ~Query(); static status_t Create(Context* context, const char* queryString, uint32 flags, port_id port, uint32 token, Query*& _query); status_t Rewind(); inline status_t GetNextEntry(struct dirent* dirent, size_t size); void LiveUpdate(Entry* entry, Node* node, const char* attribute, int32 type, const uint8* oldKey, size_t oldLength, const uint8* newKey, size_t newLength); void LiveUpdateRenameMove(Entry* entry, Node* node, ino_t oldDirectoryID, const char* oldName, size_t oldLength, ino_t newDirectoryID, const char* newName, size_t newLength); Expression* GetExpression() const { return fExpression; } uint32 Flags() const { return fFlags; } private: status_t _GetNextEntry(struct dirent* dirent, size_t size); void _SendEntryNotification(Entry* entry, status_t (*notify)(port_id, int32, dev_t, ino_t, const char*, ino_t)); private: Context* fContext; Expression* fExpression; Equation* fCurrent; IndexIterator* fIterator; Index fIndex; Stack*> fStack; uint32 fFlags; port_id fPort; int32 fToken; bool fNeedsEntry; }; /*! Abstract base class for the operator/equation classes. */ template class Term { public: typedef typename QueryPolicy::Entry Entry; typedef typename QueryPolicy::Index Index; typedef typename QueryPolicy::IndexIterator IndexIterator; typedef typename QueryPolicy::Node Node; typedef typename QueryPolicy::NodeHolder NodeHolder; typedef typename QueryPolicy::Context Context; public: Term(int8 op) : fOp(op), fParent(NULL) {} virtual ~Term() {} int8 Op() const { return fOp; } void SetParent(Term* parent) { fParent = parent; } Term* Parent() const { return fParent; } virtual status_t Match(Entry* entry, Node* node, const char* attribute = NULL, int32 type = 0, const uint8* key = NULL, size_t size = 0) = 0; virtual void Complement() = 0; virtual void CalculateScore(Index& index) = 0; virtual int32 Score() const = 0; virtual status_t InitCheck() = 0; virtual bool NeedsEntry() = 0; #ifdef DEBUG_QUERY virtual void PrintToStream() = 0; #endif protected: int8 fOp; Term* fParent; }; /*! An Equation object represents an "attribute-equation operator-value" pair. Although an Equation object is quite independent from the volume on which the query is run, there are some dependencies that are produced while querying: The type/size of the value, the score, and if it has an index or not. So you could run more than one query on the same volume, but it might return wrong values when it runs concurrently on another volume. That's not an issue right now, because we run single-threaded and don't use queries more than once. */ template class Equation : public Term { public: typedef typename QueryPolicy::Entry Entry; typedef typename QueryPolicy::Index Index; typedef typename QueryPolicy::IndexIterator IndexIterator; typedef typename QueryPolicy::Node Node; typedef typename QueryPolicy::NodeHolder NodeHolder; typedef typename QueryPolicy::Context Context; public: Equation(const char** expression); virtual ~Equation(); virtual status_t InitCheck(); status_t ParseQuotedString(const char** _start, const char** _end); char* CopyString(const char* start, const char* end); inline bool _IsEquationChar(char c) const; inline bool _IsOperatorChar(char c) const; virtual status_t Match(Entry* entry, Node* node, const char* attribute = NULL, int32 type = 0, const uint8* key = NULL, size_t size = 0); virtual void Complement(); status_t PrepareQuery(Context* context, Index& index, IndexIterator** iterator, bool queryNonIndexed); status_t GetNextMatching(Context* context, IndexIterator* iterator, struct dirent* dirent, size_t bufferSize); virtual void CalculateScore(Index &index); virtual int32 Score() const { return fScore; } virtual bool NeedsEntry(); #ifdef DEBUG_QUERY virtual void PrintToStream(); #endif private: Equation(const Equation& other); Equation& operator=(const Equation& other); // no implementation status_t ConvertValue(type_code type); bool CompareTo(const uint8* value, size_t size); uint8* Value() const { return (uint8*)&fValue; } char* fAttribute; char* fString; union value fValue; type_code fType; size_t fSize; bool fIsPattern; int32 fScore; bool fHasIndex; }; /*! The Operator class does not represent a generic operator, but only those that combine two equations, namely "or", and "and". */ template class Operator : public Term { public: typedef typename QueryPolicy::Entry Entry; typedef typename QueryPolicy::Index Index; typedef typename QueryPolicy::IndexIterator IndexIterator; typedef typename QueryPolicy::Node Node; typedef typename QueryPolicy::Context Context; public: Operator(Term* left, int8 op, Term* right); virtual ~Operator(); Term* Left() const { return fLeft; } Term* Right() const { return fRight; } virtual status_t Match(Entry* entry, Node* node, const char* attribute = NULL, int32 type = 0, const uint8* key = NULL, size_t size = 0); virtual void Complement(); virtual void CalculateScore(Index& index); virtual int32 Score() const; virtual status_t InitCheck(); virtual bool NeedsEntry(); #ifdef DEBUG_QUERY virtual void PrintToStream(); #endif private: Operator(const Operator& other); Operator& operator=(const Operator& other); // no implementation Term* fLeft; Term* fRight; }; template class Expression { public: typedef typename QueryPolicy::Entry Entry; typedef typename QueryPolicy::Index Index; typedef typename QueryPolicy::IndexIterator IndexIterator; typedef typename QueryPolicy::Node Node; typedef typename QueryPolicy::Context Context; public: Expression(); ~Expression(); status_t Init(const char* expr, const char** position); Term* Root() const { return fTerm; } protected: bool IsOperator(const char** expr, char op); private: Expression(const Expression& other); Expression& operator=(const Expression& other); // no implementation Term* fTerm; }; // #pragma mark - template Equation::Equation(const char** expr) : Term(OP_EQUATION), fAttribute(NULL), fString(NULL), fType(0), fIsPattern(false) { const char* string = *expr; const char* start = string; const char* end = NULL; // Since the equation is the integral part of any query, we're just parsing // the whole thing here. // The whitespace at the start is already removed in // Expression::ParseEquation() if (*start == '"' || *start == '\'') { // string is quoted (start has to be on the beginning of a string) if (ParseQuotedString(&start, &end) < B_OK) return; // set string to a valid start of the equation symbol string = end + 2; skipWhitespace(&string); if (!_IsEquationChar(string[0])) { *expr = string; return; } } else { // search the (in)equation for the actual equation symbol (and for other operators // in case the equation is malformed) while (string[0] != 0 && !_IsOperatorChar(string[0]) && !_IsEquationChar(string[0])) { if (string[0] == '\\' && string[1] != 0) string++; string++; } // get the attribute string (and trim whitespace), in case // the string was not quoted end = string - 1; skipWhitespaceReverse(&end, start); } // attribute string is empty (which is not allowed) if (start > end) return; // At this point, "start" points to the beginning of the string, "end" // points to the last character of the string, and "string" points to the // first character of the equation symbol // test for the right symbol (as this doesn't need any memory) switch (*string) { case '=': Term::fOp = OP_EQUAL; break; case '>': Term::fOp = *(string + 1) == '=' ? OP_GREATER_THAN_OR_EQUAL : OP_GREATER_THAN; break; case '<': Term::fOp = *(string + 1) == '=' ? OP_LESS_THAN_OR_EQUAL : OP_LESS_THAN; break; case '!': if (*(string + 1) != '=') return; Term::fOp = OP_UNEQUAL; break; // any invalid characters will be rejected default: *expr = string; return; } // lets change "start" to point to the first character after the symbol if (*(string + 1) == '=') string++; string++; skipWhitespace(&string); // allocate & copy the attribute string fAttribute = CopyString(start, end); if (fAttribute == NULL) return; start = string; if (*start == '"' || *start == '\'') { // string is quoted (start has to be on the beginning of a string) if (ParseQuotedString(&start, &end) < B_OK) return; string = end + 2; skipWhitespace(&string); } else { while (string[0] && !_IsOperatorChar(string[0]) && string[0] != ')') string++; end = string - 1; skipWhitespaceReverse(&end, start); } // at this point, "start" will point to the first character of the value, // "end" will point to its last character, and "start" to the first non- // whitespace character after the value string fString = CopyString(start, end); if (fString == NULL) return; // patterns are only allowed for these operations (and strings) if (Term::fOp == OP_EQUAL || Term::fOp == OP_UNEQUAL) { fIsPattern = isPattern(fString); if (fIsPattern && isValidPattern(fString) < B_OK) { // we only want to have valid patterns; setting fString // to NULL will cause InitCheck() to fail free(fString); fString = NULL; } } *expr = string; } template Equation::~Equation() { free(fAttribute); free(fString); } template status_t Equation::InitCheck() { if (fAttribute == NULL || fString == NULL || Term::fOp == OP_NONE) { return B_BAD_VALUE; } return B_OK; } template status_t Equation::ParseQuotedString(const char** _start, const char** _end) { const char* start = *_start; const char quote = *start++; const char* end = start; for (; *end && *end != quote; end++) { if (*end == '\\') end++; } if (*end == '\0') return B_BAD_VALUE; *_start = start; *_end = end - 1; return B_OK; } template char* Equation::CopyString(const char* start, const char* end) { // end points to the last character of the string - and the length // also has to include the null-termination int32 length = end + 2 - start; // just to make sure; since that's the max. attribute name length and // the max. string in an index, it make sense to have it that way if (length > QueryPolicy::kMaxFileNameLength || length <= 0) return NULL; char* copy = (char*)malloc(length); if (copy == NULL) return NULL; // Filter out remaining escaping slashes for (int32 i = 0; i < length; i++) { char c = start++[0]; if (c == '\\' && i < length) { length--; i--; continue; } copy[i] = c; } copy[length - 1] = '\0'; return copy; } template bool Equation::_IsEquationChar(char c) const { return c == '=' || c == '<' || c == '>' || c == '!'; } template bool Equation::_IsOperatorChar(char c) const { return c == '&' || c == '|'; } template status_t Equation::ConvertValue(type_code type) { // Has the type already been converted? if (type == fType) return B_OK; char* string = fString; switch (type) { case B_MIME_STRING_TYPE: type = B_STRING_TYPE; // supposed to fall through case B_STRING_TYPE: strncpy(fValue.String, string, QueryPolicy::kMaxFileNameLength); fValue.String[QueryPolicy::kMaxFileNameLength - 1] = '\0'; fSize = strlen(fValue.String); break; case B_INT32_TYPE: fValue.Int32 = strtol(string, &string, 0); fSize = sizeof(int32); break; case B_UINT32_TYPE: fValue.Int32 = strtoul(string, &string, 0); fSize = sizeof(uint32); break; case B_TIME_TYPE: type = B_INT64_TYPE; // supposed to fall through case B_INT64_TYPE: fValue.Int64 = strtoll(string, &string, 0); fSize = sizeof(int64); break; case B_UINT64_TYPE: fValue.Uint64 = strtoull(string, &string, 0); fSize = sizeof(uint64); break; case B_FLOAT_TYPE: fValue.Float = strtod(string, &string); fSize = sizeof(float); break; case B_DOUBLE_TYPE: fValue.Double = strtod(string, &string); fSize = sizeof(double); break; default: QUERY_FATAL("query value conversion to 0x%x requested!\n", (int)type); // should we fail here or just do a safety int32 conversion? return B_ERROR; } fType = type; // patterns are only allowed for string types if (fType != B_STRING_TYPE && fIsPattern) fIsPattern = false; return B_OK; } /*! Returns true when the key matches the equation. You have to call ConvertValue() before this one. */ template bool Equation::CompareTo(const uint8* value, size_t size) { int32 compare; // fIsPattern is only true if it's a string type, and fOp OP_EQUAL, or // OP_UNEQUAL if (fIsPattern) { // we have already validated the pattern, so we don't check for failing // here - if something is broken, and matchString() returns an error, // we just don't match compare = matchString(fValue.String, (const char*)value) == MATCH_OK ? 0 : 1; } else compare = compareKeys(fType, value, size, Value(), fSize); switch (Term::fOp) { case OP_EQUAL: return compare == 0; case OP_UNEQUAL: return compare != 0; case OP_LESS_THAN: return compare < 0; case OP_LESS_THAN_OR_EQUAL: return compare <= 0; case OP_GREATER_THAN: return compare > 0; case OP_GREATER_THAN_OR_EQUAL: return compare >= 0; } QUERY_FATAL("Unknown/Unsupported operation: %d\n", Term::fOp); return false; } template void Equation::Complement() { QUERY_D(if (Term::fOp <= OP_EQUATION || Term::fOp > OP_LESS_THAN_OR_EQUAL) { QUERY_FATAL("op out of range!\n"); return; }); int8 complementOp[] = {OP_UNEQUAL, OP_EQUAL, OP_LESS_THAN_OR_EQUAL, OP_GREATER_THAN_OR_EQUAL, OP_LESS_THAN, OP_GREATER_THAN}; Term::fOp = complementOp[Term::fOp - OP_EQUAL]; } /*! Matches the node's attribute value with the equation. Returns MATCH_OK if it matches, NO_MATCH if not, < 0 if something went wrong. */ template status_t Equation::Match(Entry* entry, Node* node, const char* attributeName, int32 type, const uint8* key, size_t size) { // get a pointer to the attribute in question NodeHolder nodeHolder; union value value; uint8* buffer = (uint8*)&value; const size_t bufferSize = sizeof(value); // first, check if we are matching for a live query and use that value if (attributeName != NULL && !strcmp(fAttribute, attributeName)) { if (key == NULL) return NO_MATCH; buffer = const_cast(key); } else if (!strcmp(fAttribute, "name")) { // if not, check for "fake" attributes ("name", "size", "last_modified") if (entry == NULL) return B_ERROR; buffer = (uint8*)QueryPolicy::EntryGetNameNoCopy(nodeHolder, entry); if (buffer == NULL) return B_ERROR; type = B_STRING_TYPE; size = strlen((const char*)buffer); } else if (!strcmp(fAttribute, "size")) { value.Int64 = QueryPolicy::NodeGetSize(node); type = B_INT64_TYPE; } else if (!strcmp(fAttribute, "last_modified")) { value.Int64 = QueryPolicy::NodeGetLastModifiedTime(node); type = B_INT64_TYPE; } else { // then for attributes size = bufferSize; if (QueryPolicy::NodeGetAttribute(nodeHolder, node, fAttribute, buffer, &size, &type) != B_OK) { return NO_MATCH; } } // prepare own value for use, if it is possible to convert it status_t status = ConvertValue(type); if (status == B_OK) status = CompareTo(buffer, size) ? MATCH_OK : NO_MATCH; QUERY_RETURN_ERROR(status); } template void Equation::CalculateScore(Index &index) { // As always, these values could be tuned and refined. // And the code could also need some real world testing :-) // do we have to operate on a "foreign" index? if (Term::fOp == OP_UNEQUAL || QueryPolicy::IndexSetTo(index, fAttribute) < B_OK) { fScore = 0; return; } // if we have a pattern, how much does it help our search? if (fIsPattern) { fScore = getFirstPatternSymbol(fString) << 3; // Even if the first pattern symbol is at position 0, // there's still an index, so don't let our score revert to zero. if (fScore == 0) fScore = 1; } else { // Score by operator if (Term::fOp == OP_EQUAL) { // higher than pattern="255 chars+*" fScore = 2048; } else { // the pattern search is regarded cheaper when you have at // least one character to set your index to fScore = 5; } } // take index size into account fScore = QueryPolicy::IndexGetWeightedScore(index, fScore); } template status_t Equation::PrepareQuery(Context* /*context*/, Index& index, IndexIterator** iterator, bool queryNonIndexed) { status_t status = QueryPolicy::IndexSetTo(index, fAttribute); // if we should query attributes without an index, we can just proceed here if (status != B_OK && !queryNonIndexed) return B_ENTRY_NOT_FOUND; type_code type; // Special case for OP_UNEQUAL - it will always operate through the whole // index but we need the call to the original index to get the correct type if (status != B_OK || Term::fOp == OP_UNEQUAL) { // Try to get an index that holds all files (name) // Also sets the default type for all attributes without index // to string. type = status < B_OK ? B_STRING_TYPE : QueryPolicy::IndexGetType(index); if (QueryPolicy::IndexSetTo(index, "name") != B_OK) return B_ENTRY_NOT_FOUND; fHasIndex = false; } else { fHasIndex = true; type = QueryPolicy::IndexGetType(index); } if (ConvertValue(type) < B_OK) return B_BAD_VALUE; *iterator = QueryPolicy::IndexCreateIterator(index); if (*iterator == NULL) return B_NO_MEMORY; if ((Term::fOp == OP_EQUAL || Term::fOp == OP_GREATER_THAN || Term::fOp == OP_GREATER_THAN_OR_EQUAL || fIsPattern) && fHasIndex) { // set iterator to the exact position int32 keySize = QueryPolicy::IndexGetKeySize(index); // At this point, fIsPattern is only true if it's a string type, and fOp // is either OP_EQUAL or OP_UNEQUAL if (fIsPattern) { // let's see if we can use the beginning of the key for positioning // the iterator and adjust the key size; if not, just leave the // iterator at the start and return success keySize = getFirstPatternSymbol(fString); if (keySize <= 0) return B_OK; } if (keySize == 0) { // B_STRING_TYPE doesn't have a fixed length, so it was set // to 0 before - we compute the correct value here if (fType == B_STRING_TYPE) { keySize = strlen(fValue.String); // The empty string is a special case - we normally don't check // for the trailing null byte, in the case for the empty string // we do it explicitly, because there can't be keys in the // B+tree with a length of zero if (keySize == 0) keySize = 1; } else QUERY_RETURN_ERROR(B_ENTRY_NOT_FOUND); } status = QueryPolicy::IndexIteratorFind(*iterator, Value(), keySize); if (Term::fOp == OP_EQUAL && !fIsPattern) return status; else if (status == B_ENTRY_NOT_FOUND && (fIsPattern || Term::fOp == OP_GREATER_THAN || Term::fOp == OP_GREATER_THAN_OR_EQUAL)) return B_OK; QUERY_RETURN_ERROR(status); } return B_OK; } template status_t Equation::GetNextMatching(Context* context, IndexIterator* iterator, struct dirent* dirent, size_t bufferSize) { while (true) { NodeHolder nodeHolder; union value indexValue; size_t keyLength; size_t duplicate = 0; status_t status = QueryPolicy::IndexIteratorFetchNextEntry(iterator, &indexValue, &keyLength, (size_t)sizeof(indexValue), &duplicate); if (status != B_OK) return status; // only compare against the index entry when this is the correct // index for the equation if (fHasIndex && duplicate < 2 && !CompareTo((uint8*)&indexValue, keyLength)) { // They aren't equal? Let the operation decide what to do. Since // we always start at the beginning of the index (or the correct // position), only some needs to be stopped if the entry doesn't // fit. if (Term::fOp == OP_LESS_THAN || Term::fOp == OP_LESS_THAN_OR_EQUAL || (Term::fOp == OP_EQUAL && !fIsPattern)) return B_ENTRY_NOT_FOUND; if (duplicate > 0) QueryPolicy::IndexIteratorSkipDuplicates(iterator); continue; } Entry* entry = NULL; status = QueryPolicy::IndexIteratorGetEntry(context, iterator, nodeHolder, &entry); if (status != B_OK) { // try with next continue; } // TODO: check user permissions here - but which one?! // we could filter out all those where we don't have // read access... (we should check for every parent // directory if the X_OK is allowed) // Although it's quite expensive to open all parents, // it's likely that the application that runs the // query will do something similar (and we don't have // to do it for root, either). // go up in the tree until a &&-operator is found, and check if the // node matches with the rest of the expression - we don't have to // check ||-operators for that Term* term = this; status = MATCH_OK; if (!fHasIndex) status = Match(entry, QueryPolicy::EntryGetNode(entry)); while (term != NULL && status == MATCH_OK) { Operator* parent = (Operator*)term->Parent(); if (parent == NULL) break; if (parent->Op() == OP_AND) { // choose the other child of the parent Term* other = parent->Right(); if (other == term) other = parent->Left(); if (other == NULL) { QUERY_FATAL("&&-operator has only one child... " "(parent = %p)\n", parent); break; } status = other->Match(entry, QueryPolicy::EntryGetNode(entry)); if (status < 0) { QUERY_REPORT_ERROR(status); status = NO_MATCH; } } term = (Term*)parent; } if (status == MATCH_OK) { ssize_t nameLength = QueryPolicy::EntryGetName(entry, dirent->d_name, (const char*)dirent + bufferSize - dirent->d_name); if (nameLength < 0) { // Invalid or unknown name. nameLength = 0; } dirent->d_dev = QueryPolicy::ContextGetVolumeID(context); dirent->d_ino = QueryPolicy::EntryGetNodeID(entry); dirent->d_pdev = dirent->d_dev; dirent->d_pino = QueryPolicy::EntryGetParentID(entry); dirent->d_reclen = offsetof(struct dirent, d_name) + nameLength; } if (status == MATCH_OK) return B_OK; } QUERY_RETURN_ERROR(B_ERROR); } template bool Equation::NeedsEntry() { return strcmp(fAttribute, "name") == 0; } // #pragma mark - template Operator::Operator(Term* left, int8 op, Term* right) : Term(op), fLeft(left), fRight(right) { if (left) left->SetParent(this); if (right) right->SetParent(this); } template Operator::~Operator() { delete fLeft; delete fRight; } template status_t Operator::Match(Entry* entry, Node* node, const char* attribute, int32 type, const uint8* key, size_t size) { if (Term::fOp == OP_AND) { status_t status = fLeft->Match(entry, node, attribute, type, key, size); if (status != MATCH_OK) return status; return fRight->Match(entry, node, attribute, type, key, size); } else { // choose the term with the better score for OP_OR Term* first; Term* second; if (fRight->Score() > fLeft->Score()) { first = fLeft; second = fRight; } else { first = fRight; second = fLeft; } status_t status = first->Match(entry, node, attribute, type, key, size); if (status != NO_MATCH) return status; return second->Match(entry, node, attribute, type, key, size); } } template void Operator::Complement() { if (Term::fOp == OP_AND) Term::fOp = OP_OR; else Term::fOp = OP_AND; fLeft->Complement(); fRight->Complement(); } template void Operator::CalculateScore(Index &index) { fLeft->CalculateScore(index); fRight->CalculateScore(index); } template int32 Operator::Score() const { if (Term::fOp == OP_AND) { // return the one with the better score if (fRight->Score() > fLeft->Score()) return fRight->Score(); return fLeft->Score(); } // for OP_OR, be honest, and return the one with the worse score if (fRight->Score() < fLeft->Score()) return fRight->Score(); return fLeft->Score(); } template status_t Operator::InitCheck() { if ((Term::fOp != OP_AND && Term::fOp != OP_OR) || fLeft == NULL || fLeft->InitCheck() < B_OK || fRight == NULL || fRight->InitCheck() < B_OK) return B_ERROR; return B_OK; } template bool Operator::NeedsEntry() { return ((fLeft && fLeft->NeedsEntry()) || (fRight && fRight->NeedsEntry())); } // #pragma mark - #ifdef DEBUG_QUERY template void Operator::PrintToStream() { QUERY_D(__out("( ")); if (fLeft != NULL) fLeft->PrintToStream(); const char* op; switch (Term::fOp) { case OP_OR: op = "OR"; break; case OP_AND: op = "AND"; break; default: op = "?"; break; } QUERY_D(__out(" %s ", op)); if (fRight != NULL) fRight->PrintToStream(); QUERY_D(__out(" )")); } template void Equation::PrintToStream() { const char* symbol = "???"; switch (Term::fOp) { case OP_EQUAL: symbol = "=="; break; case OP_UNEQUAL: symbol = "!="; break; case OP_GREATER_THAN: symbol = ">"; break; case OP_GREATER_THAN_OR_EQUAL: symbol = ">="; break; case OP_LESS_THAN: symbol = "<"; break; case OP_LESS_THAN_OR_EQUAL: symbol = "<="; break; } QUERY_D(__out("[\"%s\" %s \"%s\"]", fAttribute, symbol, fString)); } #endif // DEBUG_QUERY // #pragma mark - template Expression::Expression() : fTerm(NULL) { } template status_t Expression::Init(const char* expr, const char** position) { if (expr == NULL) return B_BAD_VALUE; if (fTerm != NULL) return EALREADY; status_t status = B_OK; int32 equations = 0; const int32 kMaxEquations = 32; struct ExpressionNode { Term* term = NULL; bool negated = false; ops op = OP_NONE; }; Stack*> exprsTree; Stack* currentExpr = NULL; ExpressionNode* current = NULL; while (expr != NULL) { skipWhitespace(&expr); if (currentExpr == NULL) { currentExpr = new(std::nothrow) Stack; if (currentExpr == NULL) { status = B_NO_MEMORY; break; } } const char c = *expr; bool complete = false; if (c == ')' || c == '\0') { if (currentExpr->IsEmpty()) break; // Illegal empty expression. complete = true; } if (current == NULL && !complete) { currentExpr->Push(ExpressionNode()); current = currentExpr->Array() + (currentExpr->CountItems() - 1); } if (c == '(') { exprsTree.Push(currentExpr); currentExpr = NULL; current = NULL; expr++; } else if (c == '!') { skipWhitespace(&expr, 1); if (*expr != '(') break; // Not allowed. current->negated = true; } else if (c == '|' || c == '&') { if (current->term == NULL) break; // Nothing to operate on. ops op = OP_NONE; if (IsOperator(&expr, '|')) op = OP_OR; else if (IsOperator(&expr, '&')) op = OP_AND; else break; // Illegal operator. current->op = op; current = NULL; } else if (!complete) { if (current->term != NULL) break; // There already is a term. if ((equations + 1) > kMaxEquations) { status = E2BIG; break; } Equation* equation = new(std::nothrow) Equation(&expr); if (equation == NULL) { status = B_NO_MEMORY; break; } if (equation == NULL || equation->InitCheck() != B_OK) { status = equation->InitCheck(); delete equation; break; } current->term = equation; equations++; } if (!complete) continue; if (currentExpr->CountItems() == 1) { if (current == NULL) break; // Probably an anomalous operator. } // First pass: negation. for (int32 i = 0; i < currentExpr->CountItems(); i++) { current = currentExpr->Array() + i; // If the term is negated, we just complement the tree, to get // rid of the not, a.k.a. DeMorgan's Law. if (current->negated) { current->term->Complement(); current->negated = false; } } // Second & third passes: && and ||. int32 nodes = currentExpr->CountItems(); for (ops op = OP_AND; op <= OP_OR; op = (ops)(op + 1)) { for (int32 i = 0; i < (currentExpr->CountItems() - 1); ) { ExpressionNode* left = currentExpr->Array() + i; if (left->op != op) { i++; continue; } // Find the right-hand expression (may have to jump over now-unused nodes.) ExpressionNode* right = NULL; for (int32 j = i + 1; j < currentExpr->CountItems(); j++) { current = currentExpr->Array() + j; if (current->term == NULL) continue; right = current; break; } if (right == NULL) break; // Invalid expression, somehow. Term* newTerm = new(std::nothrow) Operator( left->term, left->op, right->term); if (newTerm == NULL) { status = B_NO_MEMORY; break; } left->term = newTerm; left->op = right->op; right->op = OP_NONE; right->term = NULL; nodes--; } } // At this point we should have only one node left. if (nodes != 1) break; current = currentExpr->Array(); Term* term = current->term; delete currentExpr; currentExpr = NULL; if (exprsTree.Pop(¤tExpr)) { current = currentExpr->Array() + (currentExpr->CountItems() - 1); if (current->term != NULL) break; // There already is a term. current->term = term; } else { if (c != '\0') break; // Unexpected end of expression. fTerm = term; break; } expr++; } if (position != NULL) *position = expr; do { if (currentExpr == NULL) continue; ExpressionNode item; while (currentExpr->Pop(&item)) delete item.term; delete currentExpr; } while (exprsTree.Pop(¤tExpr)); if (fTerm == NULL && status == B_OK) return B_BAD_VALUE; QUERY_D(if (fTerm != NULL) { fTerm->PrintToStream(); QUERY_D(__out("\n")); if (*expr != '\0') PRINT(("Unexpected end of string: \"%s\"!\n", expr)); }); return status; } template Expression::~Expression() { delete fTerm; } template bool Expression::IsOperator(const char** expr, char op) { const char* string = *expr; if (*string == op && *(string + 1) == op) { *expr += 2; return true; } return false; } // #pragma mark - template Query::Query(Context* context, Expression* expression, uint32 flags, port_id port, uint32 token) : fContext(context), fExpression(expression), fCurrent(NULL), fIterator(NULL), fIndex(context), fFlags(flags), fPort(port), fToken(token), fNeedsEntry(false) { // If the expression has a valid root pointer, the whole tree has // already passed the sanity check, so that we don't have to check // every pointer if (context == NULL || expression == NULL || expression->Root() == NULL) return; // create index on the stack and delete it afterwards fExpression->Root()->CalculateScore(fIndex); QueryPolicy::IndexUnset(fIndex); fNeedsEntry = fExpression->Root()->NeedsEntry(); Rewind(); } template Query::~Query() { delete fExpression; } template /*static*/ status_t Query::Create(Context* context, const char* queryString, uint32 flags, port_id port, uint32 token, Query*& _query) { Expression* expression = new(std::nothrow) Expression; if (expression == NULL) QUERY_RETURN_ERROR(B_NO_MEMORY); const char* position = NULL; status_t status = expression->Init(queryString, &position); if (status != B_OK) { QUERY_INFORM("Could not parse query \"%s\", stopped at: \"%s\"\n", queryString, position); delete expression; QUERY_RETURN_ERROR(status); } Query* query = new(std::nothrow) Query(context, expression, flags, port, token); if (query == NULL) { delete expression; QUERY_RETURN_ERROR(B_NO_MEMORY); } _query = query; return B_OK; } template status_t Query::Rewind() { // free previous stuff fStack.MakeEmpty(); QueryPolicy::IndexIteratorDelete(fIterator); fIterator = NULL; fCurrent = NULL; // put the whole expression on the stack Stack*> stack; stack.Push(fExpression->Root()); Term* term; while (stack.Pop(&term)) { if (term->Op() < OP_EQUATION) { Operator* op = (Operator*)term; if (op->Op() == OP_OR) { stack.Push(op->Left()); stack.Push(op->Right()); } else { // For OP_AND, we can use the scoring system to decide which // path to add if (op->Right()->Score() > op->Left()->Score()) stack.Push(op->Right()); else stack.Push(op->Left()); } } else if (term->Op() == OP_EQUATION || fStack.Push((Equation*)term) != B_OK) QUERY_FATAL("Unknown term on stack or stack error\n"); } return B_OK; } template status_t Query::GetNextEntry(struct dirent* dirent, size_t size) { if (fIterator != NULL) QueryPolicy::IndexIteratorResume(fIterator); status_t error = _GetNextEntry(dirent, size); if (fIterator != NULL) QueryPolicy::IndexIteratorSuspend(fIterator); return error; } template void Query::LiveUpdate(Entry* entry, Node* node, const char* attribute, int32 type, const uint8* oldKey, size_t oldLength, const uint8* newKey, size_t newLength) { if (fPort < 0 || fExpression == NULL || attribute == NULL) return; // TODO: check if the attribute is part of the query at all... // If no entry has been supplied, but the we need one for the evaluation // (i.e. the "name" attribute is used), we invoke ourselves for all entries // referring to the given node. if (entry == NULL && fNeedsEntry) { entry = QueryPolicy::NodeGetFirstReferrer(node); while (entry) { LiveUpdate(entry, node, attribute, type, oldKey, oldLength, newKey, newLength); entry = QueryPolicy::NodeGetNextReferrer(node, entry); } return; } status_t oldStatus = fExpression->Root()->Match(entry, node, attribute, type, oldKey, oldLength); status_t newStatus = fExpression->Root()->Match(entry, node, attribute, type, newKey, newLength); bool entryCreated = false; bool stillInQuery = false; if (oldStatus != MATCH_OK) { if (newStatus != MATCH_OK) { // nothing has changed return; } entryCreated = true; } else if (newStatus != MATCH_OK) { // entry got removed entryCreated = false; } else if ((fFlags & B_ATTR_CHANGE_NOTIFICATION) != 0) { // The entry stays in the query stillInQuery = true; } else return; // notify query listeners status_t (*notify)(port_id, int32, dev_t, ino_t, const char*, ino_t); if (stillInQuery) notify = notify_query_attr_changed; else if (entryCreated) notify = notify_query_entry_created; else notify = notify_query_entry_removed; if (entry != NULL) { _SendEntryNotification(entry, notify); } else { entry = QueryPolicy::NodeGetFirstReferrer(node); while (entry) { _SendEntryNotification(entry, notify); entry = QueryPolicy::NodeGetNextReferrer(node, entry); } } } template void Query::LiveUpdateRenameMove(Entry* entry, Node* node, ino_t oldDirectoryID, const char* oldName, size_t oldLength, ino_t newDirectoryID, const char* newName, size_t newLength) { if (fPort < 0 || fExpression == NULL) return; // TODO: check if the attribute is part of the query at all... status_t oldStatus = fExpression->Root()->Match(entry, node, "name", B_STRING_TYPE, (const uint8*)oldName, oldLength); status_t newStatus = fExpression->Root()->Match(entry, node, "name", B_STRING_TYPE, (const uint8*)newName, newLength); if (oldStatus != MATCH_OK || oldStatus != newStatus) return; // The entry stays in the query, notify query listeners about the rename // or move // We send a notification for the given entry, if any, or otherwise for // all entries referring to the node; if (entry != NULL) { _SendEntryNotification(entry, notify_query_entry_removed); _SendEntryNotification(entry, notify_query_entry_created); } else { entry = QueryPolicy::NodeGetFirstReferrer(node); while (entry) { _SendEntryNotification(entry, notify_query_entry_removed); _SendEntryNotification(entry, notify_query_entry_created); entry = QueryPolicy::NodeGetNextReferrer(node, entry); } } } template status_t Query::_GetNextEntry(struct dirent* dirent, size_t size) { // If we don't have an equation to use yet/anymore, get a new one // from the stack while (true) { if (fIterator == NULL) { if (!fStack.Pop(&fCurrent) || fCurrent == NULL) return B_ENTRY_NOT_FOUND; status_t status = fCurrent->PrepareQuery(fContext, fIndex, &fIterator, fFlags & B_QUERY_NON_INDEXED); if (status == B_ENTRY_NOT_FOUND) { // try next equation continue; } if (status != B_OK) return status; } if (fCurrent == NULL) QUERY_RETURN_ERROR(B_ERROR); status_t status = fCurrent->GetNextMatching(fContext, fIterator, dirent, size); if (status != B_OK) { QueryPolicy::IndexIteratorDelete(fIterator); fIterator = NULL; fCurrent = NULL; } else { // only return if we have another entry return B_OK; } } } template void Query::_SendEntryNotification(Entry* entry, status_t (*notify)(port_id, int32, dev_t, ino_t, const char*, ino_t)) { NodeHolder nodeHolder; const char* name = QueryPolicy::EntryGetNameNoCopy(nodeHolder, entry); if (name != NULL) { notify(fPort, fToken, QueryPolicy::ContextGetVolumeID(fContext), QueryPolicy::EntryGetParentID(entry), name, QueryPolicy::EntryGetNodeID(entry)); } } } // namespace QueryParser #endif // _FILE_SYSTEMS_QUERY_PARSER_H