//---------------------------------------------------------------------------- // Anti-Grain Geometry - Version 2.4 // Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com) // // Permission to copy, use, modify, sell and distribute this software // is granted provided this copyright notice appears in all copies. // This software is provided "as is" without express or implied // warranty, and with no claim as to its suitability for any purpose. // //---------------------------------------------------------------------------- // Contact: mcseem@antigrain.com // mcseemagg@yahoo.com // http://www.antigrain.com //---------------------------------------------------------------------------- // // Class scanline_p - a general purpose scanline container with packed spans. // //---------------------------------------------------------------------------- // // Adaptation for 32-bit screen coordinates (scanline32_p) has been sponsored by // Liberty Technology Systems, Inc., visit http://lib-sys.com // // Liberty Technology Systems, Inc. is the provider of // PostScript and PDF technology for software developers. // //---------------------------------------------------------------------------- #ifndef AGG_SCANLINE_P_INCLUDED #define AGG_SCANLINE_P_INCLUDED #include "agg_array.h" namespace agg { //=============================================================scanline_p8 // // This is a general purpose scaline container which supports the interface // used in the rasterizer::render(). See description of scanline_u8 // for details. // //------------------------------------------------------------------------ class scanline_p8 { public: typedef scanline_p8 self_type; typedef int8u cover_type; typedef int16 coord_type; //-------------------------------------------------------------------- struct span { coord_type x; coord_type len; // If negative, it's a solid span, covers is valid const cover_type* covers; }; typedef span* iterator; typedef const span* const_iterator; scanline_p8() : m_last_x(0x7FFFFFF0), m_covers(), m_cover_ptr(0), m_spans(), m_cur_span(0) { } //-------------------------------------------------------------------- void reset(int min_x, int max_x) { unsigned max_len = max_x - min_x + 3; if(max_len > m_spans.size()) { m_spans.resize(max_len); m_covers.resize(max_len); } m_last_x = 0x7FFFFFF0; m_cover_ptr = &m_covers[0]; m_cur_span = &m_spans[0]; m_cur_span->len = 0; } //-------------------------------------------------------------------- void add_cell(int x, unsigned cover) { *m_cover_ptr = (cover_type)cover; if(x == m_last_x+1 && m_cur_span->len > 0) { m_cur_span->len++; } else { m_cur_span++; m_cur_span->covers = m_cover_ptr; m_cur_span->x = (int16)x; m_cur_span->len = 1; } m_last_x = x; m_cover_ptr++; } //-------------------------------------------------------------------- void add_cells(int x, unsigned len, const cover_type* covers) { memcpy(m_cover_ptr, covers, len * sizeof(cover_type)); if(x == m_last_x+1 && m_cur_span->len > 0) { m_cur_span->len += (int16)len; } else { m_cur_span++; m_cur_span->covers = m_cover_ptr; m_cur_span->x = (int16)x; m_cur_span->len = (int16)len; } m_cover_ptr += len; m_last_x = x + len - 1; } //-------------------------------------------------------------------- void add_span(int x, unsigned len, unsigned cover) { if(x == m_last_x+1 && m_cur_span->len < 0 && cover == *m_cur_span->covers) { m_cur_span->len -= (int16)len; } else { *m_cover_ptr = (cover_type)cover; m_cur_span++; m_cur_span->covers = m_cover_ptr++; m_cur_span->x = (int16)x; m_cur_span->len = (int16)(-int(len)); } m_last_x = x + len - 1; } //-------------------------------------------------------------------- void finalize(int y) { m_y = y; } //-------------------------------------------------------------------- void reset_spans() { m_last_x = 0x7FFFFFF0; m_cover_ptr = &m_covers[0]; m_cur_span = &m_spans[0]; m_cur_span->len = 0; } //-------------------------------------------------------------------- int y() const { return m_y; } unsigned num_spans() const { return unsigned(m_cur_span - &m_spans[0]); } const_iterator begin() const { return &m_spans[1]; } private: scanline_p8(const self_type&); const self_type& operator = (const self_type&); int m_last_x; int m_y; pod_array m_covers; cover_type* m_cover_ptr; pod_array m_spans; span* m_cur_span; }; //==========================================================scanline32_p8 class scanline32_p8 { public: typedef scanline32_p8 self_type; typedef int8u cover_type; typedef int32 coord_type; struct span { span() {} span(coord_type x_, coord_type len_, const cover_type* covers_) : x(x_), len(len_), covers(covers_) {} coord_type x; coord_type len; // If negative, it's a solid span, covers is valid const cover_type* covers; }; typedef pod_bvector span_array_type; //-------------------------------------------------------------------- class const_iterator { public: const_iterator(const span_array_type& spans) : m_spans(spans), m_span_idx(0) {} const span& operator*() const { return m_spans[m_span_idx]; } const span* operator->() const { return &m_spans[m_span_idx]; } void operator ++ () { ++m_span_idx; } private: const span_array_type& m_spans; unsigned m_span_idx; }; //-------------------------------------------------------------------- scanline32_p8() : m_max_len(0), m_last_x(0x7FFFFFF0), m_covers(), m_cover_ptr(0) { } //-------------------------------------------------------------------- void reset(int min_x, int max_x) { unsigned max_len = max_x - min_x + 3; if(max_len > m_covers.size()) { m_covers.resize(max_len); } m_last_x = 0x7FFFFFF0; m_cover_ptr = &m_covers[0]; m_spans.remove_all(); } //-------------------------------------------------------------------- void add_cell(int x, unsigned cover) { *m_cover_ptr = cover_type(cover); if(x == m_last_x+1 && m_spans.size() && m_spans.last().len > 0) { m_spans.last().len++; } else { m_spans.add(span(coord_type(x), 1, m_cover_ptr)); } m_last_x = x; m_cover_ptr++; } //-------------------------------------------------------------------- void add_cells(int x, unsigned len, const cover_type* covers) { memcpy(m_cover_ptr, covers, len * sizeof(cover_type)); if(x == m_last_x+1 && m_spans.size() && m_spans.last().len > 0) { m_spans.last().len += coord_type(len); } else { m_spans.add(span(coord_type(x), coord_type(len), m_cover_ptr)); } m_cover_ptr += len; m_last_x = x + len - 1; } //-------------------------------------------------------------------- void add_span(int x, unsigned len, unsigned cover) { if(x == m_last_x+1 && m_spans.size() && m_spans.last().len < 0 && cover == *m_spans.last().covers) { m_spans.last().len -= coord_type(len); } else { *m_cover_ptr = cover_type(cover); m_spans.add(span(coord_type(x), -coord_type(len), m_cover_ptr++)); } m_last_x = x + len - 1; } //-------------------------------------------------------------------- void finalize(int y) { m_y = y; } //-------------------------------------------------------------------- void reset_spans() { m_last_x = 0x7FFFFFF0; m_cover_ptr = &m_covers[0]; m_spans.remove_all(); } //-------------------------------------------------------------------- int y() const { return m_y; } unsigned num_spans() const { return m_spans.size(); } const_iterator begin() const { return const_iterator(m_spans); } private: scanline32_p8(const self_type&); const self_type& operator = (const self_type&); unsigned m_max_len; int m_last_x; int m_y; pod_array m_covers; cover_type* m_cover_ptr; span_array_type m_spans; }; } #endif